Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Strategies to reduce the risks of mRNA drug and vaccine toxicity

Abstract

mRNA formulated with lipid nanoparticles is a transformative technology that has enabled the rapid development and administration of billions of coronavirus disease 2019 (COVID-19) vaccine doses worldwide. However, avoiding unacceptable toxicity with mRNA drugs and vaccines presents challenges. Lipid nanoparticle structural components, production methods, route of administration and proteins produced from complexed mRNAs all present toxicity concerns. Here, we discuss these concerns, specifically how cell tropism and tissue distribution of mRNA and lipid nanoparticles can lead to toxicity, and their possible reactogenicity. We focus on adverse events from mRNA applications for protein replacement and gene editing therapies as well as vaccines, tracing common biochemical and cellular pathways. The potential and limitations of existing models and tools used to screen for on-target efficacy and de-risk off-target toxicity, including in vivo and next-generation in vitro models, are also discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Innate immune responses to unmodified IVT mRNA.
Fig. 2: Cytokine release as a response to LNP-formulated modified IVT mRNA.
Fig. 3: LNP–mRNA activates the inflammasome.
Fig. 4: PEGylated LNP–mRNAs raise adaptive immune responses in the spleen.

Similar content being viewed by others

References

  1. Barouch, D. H. Covid-19 vaccines - immunity, variants, boosters. N. Engl. J. Med. 387, 1011–1020 (2022).

    Article  CAS  PubMed  Google Scholar 

  2. El Sahly, H. M. et al. Efficacy of the mRNA-1273 SARS-CoV-2 vaccine at completion of blinded phase. N. Engl. J. Med. 385, 1774–1785 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Thomas, S. J. et al. Efficacy and safety of the BNT162b2 mRNA COVID-19 vaccine in participants with a history of cancer: subgroup analysis of a global phase 3 randomized clinical trial. Vaccine 40, 1483–1492 (2022).

    Article  CAS  PubMed  Google Scholar 

  4. Rouf, N. Z., Biswas, S., Tarannum, N., Oishee, L. M. & Muna, M. M. Demystifying mRNA vaccines: an emerging platform at the forefront of cryptic diseases. RNA Biol. 19, 386–410 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chalkias, S. et al. A bivalent omicron-containing booster vaccine against Covid-19. N. Engl. J. Med. 387, 1279–1291 (2022).

    Article  CAS  PubMed  Google Scholar 

  6. Verma, M. et al. The landscape for lipid-nanoparticle-based genomic medicines. Nat. Rev. Drug. Discov. 22, 349–350 (2023).

    Article  CAS  PubMed  Google Scholar 

  7. CONGRESS.GOV. S.5002 - FDA Modernization Act 2.0. https://congress.gov/bill117th-congress/senate-bill/5002 (2022).

  8. Ingber, D. E. Human organs-on-chips for disease modelling, drug development and personalized medicine. Nat. Rev. Genet. 23, 467–491 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Granot, Y. & Peer, D. Delivering the right message: challenges and opportunities in lipid nanoparticles-mediated modified mRNA therapeutics-an innate immune system standpoint. Semin. Immunol. 34, 68–77 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. Duan, Q. et al. How far are the new wave of mRNA drugs from us? mRNA product current perspective and future development. Front. Immunol. 13, 974433 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Igyarto, B. Z., Jacobsen, S. & Ndeupen, S. Future considerations for the mRNA-lipid nanoparticle vaccine platform. Curr. Opin. Virol. 48, 65–72 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Moghimi, S. M. & Simberg, D. Pro-inflammatory concerns with lipid nanoparticles. Mol. Ther. 30, 2109–2110 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kenjo, E. et al. Low immunogenicity of LNP allows repeated administrations of CRISPR–Cas9 mRNA into skeletal muscle in mice. Nat. Commun. 12, 7101 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Guerrini, G. et al. Monitoring anti-PEG antibodies level upon repeated lipid nanoparticle-based COVID-19 vaccine administration. Int. J. Mol. Sci. 23, 8838 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Verbeke, R., Hogan, M. J., Lore, K. & Pardi, N. Innate immune mechanisms of mRNA vaccines. Immunity 55, 1993–2005 (2022). This article describes the current understanding of how both mRNA and its LNP carrier contribute to the immune response elicited by mRNA vaccines, with the LNP acting as a potent adjuvant.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tenchov, R., Bird, R., Curtze, A. E. & Zhou, Q. Lipid nanoparticles ─ from liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement. ACS Nano 15, 16982–17015 (2021).

    Article  CAS  PubMed  Google Scholar 

  17. Li, D. et al. Messenger RNA-based therapeutics and vaccines: what’s beyond COVID-19? ACS Pharmacol. Transl. Sci. 6, 943–969 (2023).

    Article  CAS  PubMed  Google Scholar 

  18. Huang, X. et al. The landscape of mRNA nanomedicine. Nat. Med. 28, 2273–2287 (2022).

    Article  CAS  PubMed  Google Scholar 

  19. Alexopoulou, L., Holt, A. C., Medzhitov, R. & Flavell, R. A. Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature 413, 732–738 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Kariko, K., Ni, H., Capodici, J., Lamphier, M. & Weissman, D. mRNA is an endogenous ligand for Toll-like receptor 3. J. Biol. Chem. 279, 12542–12550 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Panda, D. et al. IRF1 maintains optimal constitutive expression of antiviral genes and regulates the early antiviral response. Front. Immunol. 10, 1019 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kobayashi, K. et al. IRAK-M is a negative regulator of Toll-like receptor signaling. Cell 110, 191–202 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Cheng, K., Wang, X. & Yin, H. Small-molecule inhibitors of the TLR3/dsRNA complex. J. Am. Chem. Soc. 133, 3764–3767 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bernard, J. J. et al. Ultraviolet radiation damages self noncoding RNA and is detected by TLR3. Nat. Med. 18, 1286–1290 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Hornung, V., Barchet, W., Schlee, M. & Hartmann, G. in Toll-like receptors (TLRs) and Innate Immunity (eds Bauer, S. & Hartmann, G.) 71–86. Handbook of Experimental Pharmacology series https://doi.org/10.1007/978-3-540-72167-3_4 (Springer, 2008).

  26. Weissman, D. et al. HIV gag mRNA transfection of dendritic cells (DC) delivers encoded antigen to MHC class I and II molecules, causes DC maturation, and induces a potent human in vitro primary immune response. J. Immunol. 165, 4710–4717 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Koski, G. K. et al. Cutting edge: innate immune system discriminates between RNA containing bacterial versus eukaryotic structural features that prime for high-level IL-12 secretion by dendritic cells. J. Immunol. 172, 3989–3993 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Diebold, S. S., Kaisho, T., Hemmi, H., Akira, S. & Reis e Sousa, C. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303, 1529–1531 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Heil, F. et al. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303, 1526–1529 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Zhang, Z. et al. Structural analysis reveals that Toll-like receptor 7 is a dual receptor for guanosine and single-stranded RNA. Immunity 45, 737–748 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Tanji, H. et al. Toll-like receptor 8 senses degradation products of single-stranded RNA. Nat. Struct. Mol. Biol. 22, 109–115 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Guo, S. et al. Size, shape, and sequence-dependent immunogenicity of RNA nanoparticles. Mol. Ther. Nucleic Acids 9, 399–408 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mu, X., Greenwald, E., Ahmad, S. & Hur, S. An origin of the immunogenicity of in vitro transcribed RNA. Nucleic Acids Res. 46, 5239–5249 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bui, T. M., Wiesolek, H. L. & Sumagin, R. ICAM-1: a master regulator of cellular responses in inflammation, injury resolution, and tumorigenesis. J. Leukoc. Biol. 108, 787–799 (2020).

    Article  CAS  PubMed  Google Scholar 

  35. Mu, X. & Hur, S. Immunogenicity of in vitro-transcribed RNA. Acc. Chem. Res. 54, 4012–4023 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schlake, T., Thess, A., Fotin-Mleczek, M. & Kallen, K. J. Developing mRNA-vaccine technologies. RNA Biol. 9, 1319–1330 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Verbeke, R., Lentacker, I., De Smedt, S. C. & Dewitte, H. Three decades of messenger RNA vaccine development. Nano Today 28, 100766 (2019).

    Article  CAS  Google Scholar 

  38. Vierbuchen, T., Stein, K. & Heine, H. RNA is taking its toll: impact of RNA-specific Toll-like receptors on health and disease. Allergy 74, 223–235 (2019).

    Article  PubMed  Google Scholar 

  39. Kariko, K., Buckstein, M., Ni, H. & Weissman, D. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 23, 165–175 (2005). In this seminal article, it is shown that incorporation of modified nucleosides or pseudouridine in IVT mRNA ablates their immunogenicity against dendritic cells and other TLR-presenting cells.

    Article  CAS  PubMed  Google Scholar 

  40. Kormann, M. S. et al. Expression of therapeutic proteins after delivery of chemically modified mRNA in mice. Nat. Biotechnol. 29, 154–157 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Kariko, K., Muramatsu, H., Ludwig, J. & Weissman, D. Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA. Nucleic Acids Res. 39, e142 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kariko, K., Muramatsu, H., Keller, J. M. & Weissman, D. Increased erythropoiesis in mice injected with submicrogram quantities of pseudouridine-containing mRNA encoding erythropoietin. Mol. Ther. 20, 948–953 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Weissman, D. mRNA transcript therapy. Expert Rev. Vaccines 14, 265–281 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Holtkamp, S. et al. Modification of antigen-encoding RNA increases stability, translational efficacy, and T-cell stimulatory capacity of dendritic cells. Blood 108, 4009–4017 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Schuberth-Wagner, C. et al. A conserved histidine in the RNA sensor RIG-I controls immune tolerance to N1-2′ O-methylated self RNA. Immunity 43, 41–51 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Abbas, Y. M. et al. Structure of human IFIT1 with capped RNA reveals adaptable mRNA binding and mechanisms for sensing N1 and N2 ribose 2′-O methylations. Proc. Natl Acad. Sci. USA 114, E2106–E2115 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Andries, O. et al. N1-methylpseudouridine-incorporated mRNA outperforms pseudouridine-incorporated mRNA by providing enhanced protein expression and reduced immunogenicity in mammalian cell lines and mice. J. Control. Release 217, 337–344 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. Baiersdörfer, M. et al. A facile method for the removal of dsRNA contaminant from in vitro-transcribed mRNA. Mol. Ther. Nucleic Acids 15, 26–35 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Dousis, A., Ravichandran, K., Hobert, E. M., Moore, M. J. & Rabideau, A. E. An engineered T7 RNA polymerase that produces mRNA free of immunostimulatory byproducts. Nat. Biotechnol. 41, 560–568 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Nelson, J. et al. Impact of mRNA chemistry and manufacturing process on innate immune activation. Sci. Adv. 6, eaaz6893 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Qin, S. et al. mRNA-based therapeutics: powerful and versatile tools to combat diseases. Signal Transduct. Target. Ther. 7, 166 (2022). This review provides an in-depth description of the principles of action of mRNA-based drugs at the molecular level.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pekker, M. & Shneider, M. The surface charge of a cell lipid membrane. Preprint at https://doi.org/10.48550/arXiv.1401.4707 (2014).

  53. Houseley, J. & Tollervey, D. The many pathways of RNA degradation. Cell 136, 763–776 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Kiaie, S. H. et al. Recent advances in mRNA-LNP therapeutics: immunological and pharmacological aspects. J. Nanobiotechnol. 20, 276 (2022).

    Article  CAS  Google Scholar 

  55. Ickenstein, L. M. & Garidel, P. Lipid-based nanoparticle formulations for small molecules and RNA drugs. Expert Opin. Drug Deliv. 16, 1205–1226 (2019).

    Article  CAS  PubMed  Google Scholar 

  56. Nakamura, T. et al. Extrahepatic targeting of lipid nanoparticles in vivo with intracellular targeting for future nanomedicines. Adv. Drug Deliv. Rev. 188, 114417 (2022).

    Article  CAS  PubMed  Google Scholar 

  57. Zhang, Y., Sun, C., Wang, C., Jankovic, K. E. & Dong, Y. Lipids and lipid derivatives for RNA delivery. Chem. Rev. 121, 12181–12277 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Han, X. et al. An ionizable lipid toolbox for RNA delivery. Nat. Commun. 12, 7233 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Suk, J. S., Xu, Q., Kim, N., Hanes, J. & Ensign, L. M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev. 99, 28–51 (2016).

    Article  CAS  PubMed  Google Scholar 

  60. Paunovska, K. et al. Nanoparticles containing oxidized cholesterol deliver mRNA to the liver microenvironment at clinically relevant doses. Adv. Mater. 31, e1807748 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Cheng, X. & Lee, R. J. The role of helper lipids in lipid nanoparticles (LNPs) designed for oligonucleotide delivery. Adv. Drug Deliv. Rev. 99, 129–137 (2016).

    Article  CAS  PubMed  Google Scholar 

  62. Zhang, R. et al. Helper lipid structure influences protein adsorption and delivery of lipid nanoparticles to spleen and liver. Biomater. Sci. 9, 1449–1463 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Weng, J., Yang, M., Wang, W., Xu, X. & Tian, Z. Revealing thermodynamics and kinetics of lipid self-assembly by markov state model analysis. J. Am. Chem. Soc. 142, 21344–21352 (2020).

    Article  CAS  PubMed  Google Scholar 

  64. Cornebise, M. et al. Discovery of a novel amino lipid that improves lipid nanoparticle performance through specific interactions with mRNA. Adv. Funct. Mater. 32, 2106727 (2021).

    Article  Google Scholar 

  65. Dolgin, E. Startups set off new wave of mRNA therapeutics. Nat. Biotechnol. 39, 1029–1031 (2021).

    Article  CAS  PubMed  Google Scholar 

  66. Rohner, E., Yang, R., Foo, K. S., Goedel, A. & Chien, K. R. Unlocking the promise of mRNA therapeutics. Nat. Biotechnol. 40, 1586–1600 (2022).

    Article  CAS  PubMed  Google Scholar 

  67. Jeong, M., Lee, Y., Park, J., Jung, H. & Lee, H. Lipid nanoparticles (LNPs) for in vivo RNA delivery and their breakthrough technology for future applications. Adv. Drug Deliv. Rev. 200, 114990 (2023). This review summarizes recent advances of RNA therapeutics and provides a comprehensive description of their pharmacokinetic and pharmacodynamic challenges.

    Article  CAS  PubMed  Google Scholar 

  68. Barbier, A. J., Jiang, A. Y., Zhang, P., Wooster, R. & Anderson, D. G. The clinical progress of mRNA vaccines and immunotherapies. Nat. Biotechnol. 40, 840–854 (2022).

    Article  CAS  PubMed  Google Scholar 

  69. Pardi, N. et al. Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes. J. Control. Release 217, 345–351 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Dilliard, S. A., Cheng, Q. & Siegwart, D. J. On the mechanism of tissue-specific mRNA delivery by selective organ targeting nanoparticles. Proc. Natl Acad. Sci. USA 118, e2019256118 (2021).

    Article  Google Scholar 

  71. John, S. et al. Multi-antigenic human cytomegalovirus mRNA vaccines that elicit potent humoral and cell-mediated immunity. Vaccine 36, 1689–1699 (2018).

    Article  CAS  PubMed  Google Scholar 

  72. Deering, R. P., Kommareddy, S., Ulmer, J. B., Brito, L. A. & Geall, A. J. Nucleic acid vaccines: prospects for non-viral delivery of mRNA vaccines. Expert Opin. Drug Deliv. 11, 885–899 (2014).

    Article  CAS  PubMed  Google Scholar 

  73. Liang, F. et al. Efficient targeting and activation of antigen-presenting cells in vivo after modified mRNA vaccine administration in rhesus macaques. Mol. Ther. 25, 2635–2647 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ols, S. et al. Route of vaccine administration alters antigen trafficking but not innate or adaptive immunity. Cell Rep. 30, 3964–3971.e3967 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Giannotta, G. & Giannotta, N. mRNA COVID-19 vaccines and long-lived plasma cells: a complicated relationship. Vaccines 9, 1503 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Li, C. et al. Mechanisms of innate and adaptive immunity to the Pfizer-BioNTech BNT162b2 vaccine. Nat. Immunol. 23, 543–555 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Manolova, V. et al. Nanoparticles target distinct dendritic cell populations according to their size. Eur. J. Immunol. 38, 1404–1413 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Pardi, N. et al. Nucleoside-modified mRNA vaccines induce potent T follicular helper and germinal center B cell responses. J. Exp. Med. 215, 1571–1588 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Roltgen, K. et al. Immune imprinting, breadth of variant recognition, and germinal center response in human SARS-CoV-2 infection and vaccination. Cell 185, 1025–1040.e1014 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhang, Z. et al. Humoral and cellular immune memory to four COVID-19 vaccines. Cell 185, 2434–2451.e2417 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Alameh, M. G. et al. Lipid nanoparticles enhance the efficacy of mRNA and protein subunit vaccines by inducing robust T follicular helper cell and humoral responses. Immunity 54, 2877–2892 e2877 (2021). This article shows that the LNP component of the mRNA-based vaccines against SARS-CoV-2 has inherent adjuvanticity, leading to long-lived plasma cell and memory B cell responses.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lorentzen, C. L., Haanen, J. B., Met, O. & Svane, I. M. Clinical advances and ongoing trials on mRNA vaccines for cancer treatment. Lancet Oncol. 23, e450–e458 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Jung, H. N., Lee, S. Y., Lee, S., Youn, H. & Im, H. J. Lipid nanoparticles for delivery of RNA therapeutics: current status and the role of in vivo imaging. Theranostics 12, 7509–7531 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zehrung, D., Jarrahian, C. & Wales, A. Intradermal delivery for vaccine dose sparing: overview of current issues. Vaccine 31, 3392–3395 (2013).

    Article  CAS  PubMed  Google Scholar 

  85. Shi, J. et al. Delivery of mRNA for regulating functions of immune cells. J. Control. Release 345, 494–511 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Huysmans, H. et al. Expression kinetics and innate immune response after electroporation and LNP-mediated delivery of a self-amplifying mRNA in the skin. Mol. Ther. Nucleic Acids 17, 867–878 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Szoke, D. et al. Nucleoside-modified VEGFC mRNA induces organ-specific lymphatic growth and reverses experimental lymphedema. Nat. Commun. 12, 3460 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Anderluzzi, G. et al. The role of nanoparticle format and route of administration on self-amplifying mRNA vaccine potency. J. Control. Release 342, 388–399 (2022).

    Article  CAS  PubMed  Google Scholar 

  89. Oberli, M. A. et al. Lipid nanoparticle assisted mRNA delivery for potent cancer immunotherapy. Nano Lett. 17, 1326–1335 (2017).

    Article  CAS  PubMed  Google Scholar 

  90. Zadory, M., Lopez, E., Babity, S., Gravel, S. P. & Brambilla, D. Current knowledge on the tissue distribution of mRNA nanocarriers for therapeutic protein expression. Biomater. Sci. 10, 6077–6115 (2022).

    Article  CAS  PubMed  Google Scholar 

  91. Ngo, W. et al. Identifying cell receptors for the nanoparticle protein corona using genome screens. Nat. Chem. Biol. 18, 1023–1031 (2022).

    Article  CAS  PubMed  Google Scholar 

  92. Sato, Y., Kinami, Y., Hashiba, K. & Harashima, H. Different kinetics for the hepatic uptake of lipid nanoparticles between the apolipoprotein E/low density lipoprotein receptor and the N-acetyl-d-galactosamine/asialoglycoprotein receptor pathway. J. Control. Release 322, 217–226 (2020). This article provides novel insight into the mechanism and kinetics of LNP uptake by hepatocytes.

    Article  CAS  PubMed  Google Scholar 

  93. Chen, D., Parayath, N., Ganesh, S., Wang, W. & Amiji, M. The role of apolipoprotein- and vitronectin-enriched protein corona on lipid nanoparticles for in vivo targeted delivery and transfection of oligonucleotides in murine tumor models. Nanoscale 11, 18806–18824 (2019).

    Article  CAS  PubMed  Google Scholar 

  94. Akinc, A. et al. Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms. Mol. Ther. 18, 1357–1364 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zhang, A. et al. Absorption, distribution, metabolism, and excretion of nanocarriers in vivo and their influences. Adv. Colloid Interface Sci. 284, 102261 (2020).

    Article  CAS  PubMed  Google Scholar 

  96. Eipel, C., Abshagen, K. & Vollmar, B. Regulation of hepatic blood flow: the hepatic arterial buffer response revisited. World J. Gastroenterol. 16, 6046–6057 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Tsoi, K. M. et al. Mechanism of hard-nanomaterial clearance by the liver. Nat. Mater. 15, 1212–1221 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Li, J., Chen, C. & Xia, T. Understanding nanomaterial–liver interactions to facilitate the development of safer nanoapplications. Adv. Mater. 34, e2016456 (2022).

    Google Scholar 

  99. Ramaswamy, S. et al. Systemic delivery of factor IX messenger RNA for protein replacement therapy. Proc. Natl Acad. Sci. USA 114, E1941–E1950 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Sedic, M. et al. Safety evaluation of lipid nanoparticle-formulated modified mRNA in the Sprague-Dawley rat and cynomolgus monkey. Vet. Pathol. 55, 341–354 (2018).

    Article  CAS  PubMed  Google Scholar 

  101. Cao, J. et al. mRNA therapy restores euglycemia and prevents liver tumors in murine model of glycogen storage disease. Nat. Commun. 12, 3090 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Jiang, L. et al. Dual mRNA therapy restores metabolic function in long-term studies in mice with propionic acidemia. Nat. Commun. 11, 5339 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zhu, X. et al. Systemic mRNA therapy for the treatment of Fabry disease: preclinical studies in wild-type mice, Fabry mouse model, and wild-type non-human primates. Am. J. Hum. Genet. 104, 625–637 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ishida, T. & Kiwada, H. Accelerated blood clearance (ABC) phenomenon upon repeated injection of PEGylated liposomes. Int. J. Pharm. 354, 56–62 (2008).

    Article  CAS  PubMed  Google Scholar 

  105. Yang, Q. & Lai, S. K. Anti-PEG immunity: emergence, characteristics, and unaddressed questions. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 7, 655–677 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  106. El Sayed, M. M. et al. Hepatosplenic phagocytic cells indirectly contribute to anti-PEG IgM production in the accelerated blood clearance (ABC) phenomenon against PEGylated liposomes: appearance of an unexplained mechanism in the ABC phenomenon. J. Control. Release 323, 102–109 (2020).

    Article  CAS  PubMed  Google Scholar 

  107. Shi, D. et al. To PEGylate or not to PEGylate: immunological properties of nanomedicine’s most popular component, polyethylene glycol and its alternatives. Adv. Drug Deliv. Rev. 180, 114079 (2022).

    Article  CAS  PubMed  Google Scholar 

  108. Estape Senti, M. et al. Anti-PEG antibodies compromise the integrity of PEGylated lipid-based nanoparticles via complement. J. Control. Release 341, 475–486 (2022). Ths study shows that anti-PEG antibodies can compromise the integrity of LNP-mRNA formulations, causing early mRNA release, and trigger the release of complement activation products.

    Article  CAS  PubMed  Google Scholar 

  109. Suzuki, T. et al. Accelerated blood clearance of PEGylated liposomes containing doxorubicin upon repeated administration to dogs. Int. J. Pharm. 436, 636–643 (2012).

    Article  CAS  PubMed  Google Scholar 

  110. Abramson, A. et al. Oral mRNA delivery using capsule-mediated gastrointestinal tissue injections. Matter 5, 975–987 (2022).

    Article  CAS  Google Scholar 

  111. O’Driscoll, C. M., Bernkop-Schnurch, A., Friedl, J. D., Preat, V. & Jannin, V. Oral delivery of non-viral nucleic acid-based therapeutics - do we have the guts for this? Eur. J. Pharm. Sci. 133, 190–204 (2019).

    Article  PubMed  Google Scholar 

  112. Tenchov, R., Sasso, J. M. & Zhou, Q. A. PEGylated lipid nanoparticle formulations: immunological safety and efficiency perspective. Bioconjug. Chem. 34, 941–960 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. An, D. et al. Long-term efficacy and safety of mRNA therapy in two murine models of methylmalonic acidemia. EBioMedicine 45, 519–528 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Truong, B. et al. Lipid nanoparticle-targeted mRNA therapy as a treatment for the inherited metabolic liver disorder arginase deficiency. Proc. Natl Acad. Sci. USA 116, 21150–21159 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Broudic, K. et al. Nonclinical safety evaluation of a novel ionizable lipid for mRNA delivery. Toxicol. Appl. Pharmacol. 451, 116143 (2022).

    Article  CAS  PubMed  Google Scholar 

  116. Szebeni, J. et al. Applying lessons learned from nanomedicines to understand rare hypersensitivity reactions to mRNA-based SARS-CoV-2 vaccines. Nat. Nanotechnol. 17, 337–346 (2022). This review summarizes known reactogenicity concerns from past nanomedicine infusions and draws parallels to understand potential risks with SARS-CoV-2 LNP-mRNA vaccines.

    Article  CAS  PubMed  Google Scholar 

  117. Lacy, P. & Stow, J. L. Cytokine release from innate immune cells: association with diverse membrane trafficking pathways. Blood 118, 9–18 (2011).

    Article  CAS  PubMed  Google Scholar 

  118. Elsabahy, M. & Wooley, K. L. Cytokines as biomarkers of nanoparticle immunotoxicity. Chem. Soc. Rev. 42, 5552–5576 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Parhiz, H. et al. Added to pre-existing inflammation, mRNA-lipid nanoparticles induce inflammation exacerbation (IE). J. Control. Release 344, 50–61 (2022).

    Article  CAS  PubMed  Google Scholar 

  120. Hammel, M. et al. Correlating the structure and gene silencing activity of oligonucleotide-loaded lipid nanoparticles using small-angle X-ray scattering. ACS Nano 17, 11454–11465 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Cárdenas, M., Campbell, R. A., Arteta, M. Y., Lawrence, M. J. & Sebastiani, F. Review of structural design guiding the development of lipid nanoparticles for nucleic acid delivery. Curr. Opin. Colloid Interface Sci. 66, 101705 (2023).

    Article  Google Scholar 

  122. Lokugamage, M. P. et al. Mild innate immune activation overrides efficient nanoparticle-mediated RNA delivery. Adv. Mater. 32, e1904905 (2020).

    Article  PubMed  Google Scholar 

  123. Ndeupen, S. et al. The mRNA-LNP platform’s lipid nanoparticle component used in preclinical vaccine studies is highly inflammatory. iScience 24, 103479 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kauffman, K. J. et al. Efficacy and immunogenicity of unmodified and pseudouridine-modified mRNA delivered systemically with lipid nanoparticles in vivo. Biomaterials 109, 78–87 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Unterberger, S., Davies, K. A., Rambhatla, S. B. & Sacre, S. Contribution of Toll-like receptors and the NLRP3 inflammasome in rheumatoid arthritis pathophysiology. Immunotargets Ther. 10, 285–298 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Yu, P. et al. Pyroptosis: mechanisms and diseases. Signal Transduct. Target. Ther. 6, 128 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Forster Iii, J., Nandi, D. & Kulkarni, A. mRNA-carrying lipid nanoparticles that induce lysosomal rupture activate NLRP3 inflammasome and reduce mRNA transfection efficiency. Biomater. Sci. 10, 5566–5582 (2022). In this study it is shown that the ionizable cationic lipids, and cholesterol impact the endosomal rupture capabilities of LNP-mRNA formulations and lead to NLRP3 inflammasome activation.

    Article  CAS  PubMed  Google Scholar 

  128. Chevriaux, A. et al. Cathepsin B is required for NLRP3 inflammasome activation in macrophages, through NLRP3 interaction. Front. Cell Dev. Biol. 8, 167 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Tahtinen, S. et al. IL-1 and IL-1ra are key regulators of the inflammatory response to RNA vaccines. Nat. Immunol. 23, 532–542 (2022). This study shows that the ionizable lipid in LNP-mRNA vaccines triggers the IL-1 pathway, TLR signalling and cytokine release more in human than in murine leukocytes.

    Article  CAS  PubMed  Google Scholar 

  130. Liu, T., Zhang, L., Joo, D. & Sun, S. C. NF-kappaB signaling in inflammation. Signal Transduct. Target. Ther. 2, 17023 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Dunkelberger, J. R. & Song, W. C. Complement and its role in innate and adaptive immune responses. Cell Res. 20, 34–50 (2010).

    Article  CAS  PubMed  Google Scholar 

  132. Song, W. C. Crosstalk between complement and toll-like receptors. Toxicol. Pathol. 40, 174–182 (2012).

    Article  CAS  PubMed  Google Scholar 

  133. Holers, V. M. Phenotypes of complement knockouts. Immunopharmacology 49, 125–131 (2000).

    Article  CAS  PubMed  Google Scholar 

  134. Xu, Y. et al. Complement activation in factor D-deficient mice. Proc. Natl Acad. Sci. USA 98, 14577–14582 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Batista, A. F. et al. Complement C3 lowering in adult inducible conditional knockout mice: long‐lasting effects. Alzheimer’s Dement. 18, e068094 (2022).

    Article  Google Scholar 

  136. Shiraishi, K. et al. Exploring the relationship between anti-PEG IgM behaviors and PEGylated nanoparticles and its significance for accelerated blood clearance. J. Control. Release 234, 59–67 (2016).

    Article  CAS  PubMed  Google Scholar 

  137. Suzuki, T. et al. PEG shedding-rate-dependent blood clearance of PEGylated lipid nanoparticles in mice: faster PEG shedding attenuates anti-PEG IgM production. Int. J. Pharm. 588, 119792 (2020).

    Article  CAS  PubMed  Google Scholar 

  138. Vu, V. P. et al. Immunoglobulin deposition on biomolecule corona determines complement opsonization efficiency of preclinical and clinical nanoparticles. Nat. Nanotechnol. 14, 260–268 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Shimabukuro, T. & Nair, N. Allergic reactions including anaphylaxis after receipt of the first dose of Pfizer–BioNTech COVID-19 vaccine. JAMA 325, 780–781 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Lim, X. R. et al. Anaphylatoxin complement 5a in Pfizer BNT162b2-induced immediate-type vaccine hypersensitivity reactions. Vaccines 11, 1020 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Padin-Gonzalez, E. et al. Understanding the role and impact of poly (ethylene glycol) (PEG) on nanoparticle formulation: implications for COVID-19 vaccines. Front. Bioeng. Biotechnol. 10, 882363 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Kozma, G. T. et al. Pseudo-anaphylaxis to polyethylene glycol (PEG)-coated liposomes: roles of anti-PEG IgM and complement activation in a porcine model of human infusion reactions. ACS Nano 13, 9315–9324 (2019).

    Article  CAS  PubMed  Google Scholar 

  143. Chonn, A., Cullis, P. R. & Devine, D. V. The role of surface charge in the activation of the classical and alternative pathways of complement by liposomes. J. Immunol. 146, 4234–4241 (1991).

    Article  CAS  PubMed  Google Scholar 

  144. Holley, C. K. & Dobrovolskaia, M. A. Innate immunity modulating impurities and the immunotoxicity of nanobiotechnology-based drug products. Molecules 26, 7308 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Descotes, J. & Choquet-Kastylevsky, G. Gell and Coombs’s classification: is it still valid? Toxicology 158, 43–49 (2001).

    Article  CAS  PubMed  Google Scholar 

  146. Dobrovolskaia, M. A. Lessons learned from immunological characterization of nanomaterials at the Nanotechnology Characterization Laboratory. Front. Immunol. 13, 984252 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Zolnik, B. S. & Sadrieh, N. Regulatory perspective on the importance of ADME assessment of nanoscale material containing drugs. Adv. Drug Deliv. Rev. 61, 422–427 (2009).

    Article  CAS  PubMed  Google Scholar 

  148. Patel, S. et al. Boosting intracellular delivery of lipid nanoparticle-encapsulated mRNA. Nano Lett. 17, 5711–5718 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Magtanong, L. et al. Exogenous monounsaturated fatty acids promote a ferroptosis-resistant cell state. Cell Chem. Biol. 26, 420–432 e429 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Das, U. N. Saturated fatty acids, MUFAs and PUFAs regulate ferroptosis. Cell Chem. Biol. 26, 309–311 (2019).

    Article  CAS  PubMed  Google Scholar 

  151. Young, R. S. E. et al. Apocryphal FADS2 activity promotes fatty acid diversification in cancer. Cell Rep. 34, 108738 (2021).

    Article  CAS  PubMed  Google Scholar 

  152. Spickett, C. M. The lipid peroxidation product 4-hydroxy-2-nonenal: advances in chemistry and analysis. Redox Biol. 1, 145–152 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Ioannou, M. S. et al. Neuron-astrocyte metabolic coupling protects against activity-induced fatty acid toxicity. Cell 177, 1522–1535 e1514 (2019).

    Article  CAS  PubMed  Google Scholar 

  154. Bosma, M. et al. Sequestration of fatty acids in triglycerides prevents endoplasmic reticulum stress in an in vitro model of cardiomyocyte lipotoxicity. Biochim. Biophys. Acta 1841, 1648–1655 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Ding, J. et al. The peroxisomal enzyme L-PBE is required to prevent the dietary toxicity of medium-chain fatty acids. Cell Rep. 5, 248–258 (2013).

    Article  CAS  PubMed  Google Scholar 

  156. Sato, Y. et al. Highly specific delivery of siRNA to hepatocytes circumvents endothelial cell-mediated lipid nanoparticle-associated toxicity leading to the safe and efficacious decrease in the hepatitis B virus. J. Control. Release 266, 216–225 (2017).

    Article  CAS  PubMed  Google Scholar 

  157. Kauffman, K. J. et al. Optimization of lipid nanoparticle formulations for mRNA delivery in vivo with fractional factorial and definitive screening designs. Nano Lett. 15, 7300–7306 (2015).

    Article  CAS  PubMed  Google Scholar 

  158. Dilliard, S. A. & Siegwart, D. J. Passive, active and endogenous organ-targeted lipid and polymer nanoparticles for delivery of genetic drugs. Nat. Rev. Mater. 8, 282–300 (2023). This review presents the passive, active and endogenous targeting mechanisms that mediate the delivery of LNP-formulated nucleic acids to cells and tissues.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Verhoef, J. J. & Anchordoquy, T. J. Questioning the use of PEGylation for drug delivery. Drug Deliv. Transl. Res. 3, 499–503 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Bao, Y. et al. Effect of PEGylation on biodistribution and gene silencing of siRNA/lipid nanoparticle complexes. Pharm. Res. 30, 342–351 (2013).

    Article  CAS  PubMed  Google Scholar 

  161. Harvie, P., Wong, F. M. & Bally, M. B. Use of poly(ethylene glycol)–lipid conjugates to regulate the surface attributes and transfection activity of lipid–DNA particles. J. Pharm. Sci. 89, 652–663 (2000).

    Article  CAS  PubMed  Google Scholar 

  162. Besin, G. et al. Accelerated blood clearance of lipid nanoparticles entails a biphasic humoral response of B-1 followed by B-2 lymphocytes to distinct antigenic moieties. Immunohorizons 3, 282–293 (2019). This article proposes a mechanism for the increased blood clearance of PEGylated LNP-mRNA formulations and the connection between their innate and adaptive immune responses.

    Article  CAS  PubMed  Google Scholar 

  163. Wardemann, H., Boehm, T., Dear, N. & Carsetti, R. B-1a B cells that link the innate and adaptive immune responses are lacking in the absence of the spleen. J. Exp. Med. 195, 771–780 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Mohamed, M. et al. PEGylated liposomes: immunological responses. Sci. Technol. Adv. Mater. 20, 710–724 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Wang, X. et al. Preparation of selective organ-targeting (SORT) lipid nanoparticles (LNPs) using multiple technical methods for tissue-specific mRNA delivery. Nat. Protoc. 18, 265–291 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Chander, N., Basha, G., Cheng, M. H. Y., Witzigmann, D. & Cullis, P. R. Lipid nanoparticle mRNA systems containing high levels of sphingomyelin engender enhanced protein expression in hepatic and extra-hepatic tissues. Mol. Ther. Methods Clin. Dev. 30, 235–245 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Patel, S. et al. Naturally-occurring cholesterol analogues in lipid nanoparticles induce polymorphic shape and enhance intracellular delivery of mRNA. Nat. Commun. 11, 983 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Kedmi, R., Ben-Arie, N. & Peer, D. The systemic toxicity of positively charged lipid nanoparticles and the role of Toll-like receptor 4 in immune activation. Biomaterials 31, 6867–6875 (2010).

    Article  CAS  PubMed  Google Scholar 

  169. Audouy, S. A., de Leij, L. F., Hoekstra, D. & Molema, G. In vivo characteristics of cationic liposomes as delivery vectors for gene therapy. Pharm. Res. 19, 1599–1605 (2002).

    Article  CAS  PubMed  Google Scholar 

  170. Xue, H. Y., Liu, S. & Wong, H. L. Nanotoxicity: a key obstacle to clinical translation of siRNA-based nanomedicine. Nanomedicine 9, 295–312 (2014).

    Article  CAS  PubMed  Google Scholar 

  171. Maldonado-Pereira, L., Schweiss, M., Barnaba, C. & Medina-Meza, I. G. The role of cholesterol oxidation products in food toxicity. Food Chem. Toxicol. 118, 908–939 (2018).

    Article  CAS  PubMed  Google Scholar 

  172. Song, Y., Liu, J., Zhao, K., Gao, L. & Zhao, J. Cholesterol-induced toxicity: an integrated view of the role of cholesterol in multiple diseases. Cell Metab. 33, 1911–1925 (2021).

    Article  CAS  PubMed  Google Scholar 

  173. Austin, L. A. et al. Split-dose administration enhances immune responses elicited by a mRNA/lipid nanoparticle vaccine expressing respiratory syncytial virus F protein. Mol. Pharm. 20, 279–289 (2022).

    Article  PubMed  Google Scholar 

  174. Qin, M., Du, G. & Sun, X. Recent advances in the noninvasive delivery of mRNA. Acc. Chem. Res. 54, 4262–4271 (2021).

    Article  CAS  PubMed  Google Scholar 

  175. Koh, K. J. et al. Formulation, characterization and evaluation of mRNA-loaded dissolvable polymeric microneedles (RNApatch). Sci. Rep. 8, 11842 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Golombek, S. et al. Intradermal delivery of synthetic mRNA using hollow microneedles for efficient and rapid production of exogenous proteins in skin. Mol. Ther. Nucleic Acids 11, 382–392 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Barz, M. et al. RNA particles comprising polysarcosine. WO2020069718 (2020).

  178. Nogueira, S. S. et al. Polysarcosine-functionalized lipid nanoparticles for therapeutic mRNA delivery. ACS Appl. Nano Mater. 3, 10634–10645 (2020).

    Article  CAS  Google Scholar 

  179. Evers, M. J. W. et al. Delivery of modified mRNA to damaged myocardium by systemic administration of lipid nanoparticles. J. Control. Release 343, 207–216 (2022).

    Article  CAS  PubMed  Google Scholar 

  180. Magadum, A. et al. Pkm2 regulates cardiomyocyte cell cycle and promotes cardiac regeneration. Circulation 141, 1249–1265 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Algarni, A. et al. In vivo delivery of plasmid DNA by lipid nanoparticles: the influence of ionizable cationic lipids on organ-selective gene expression. Biomater. Sci. 10, 2940–2952 (2022).

    Article  CAS  PubMed  Google Scholar 

  182. Hashiba, K. et al. Branching ionizable lipids can enhance the stability, fusogenicity, and functional delivery of mRNA. Small Sci. 3, 2200071 (2022).

    Article  Google Scholar 

  183. Akinc, A. et al. A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nat. Biotechnol. 26, 561–569 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Zaslavsky, J., Bannigan, P. & Allen, C. Re-envisioning the design of nanomedicines: harnessing automation and artificial intelligence. Expert Opin. Drug Deliv. 50, 241–257 (2023).

    Article  Google Scholar 

  185. Azarnezhad, A., Samadian, H., Jaymand, M., Sobhani, M. & Ahmadi, A. Toxicological profile of lipid-based nanostructures: are they considered as completely safe nanocarriers? Crit. Rev. Toxicol. 50, 148–176 (2020).

    Article  CAS  PubMed  Google Scholar 

  186. Swingle, K. L. et al. Amniotic fluid stabilized lipid nanoparticles for in utero intra-amniotic mRNA delivery. J. Control. Release 341, 616–633 (2022).

    Article  CAS  PubMed  Google Scholar 

  187. Miao, L., Zhang, Y. & Huang, L. mRNA vaccine for cancer immunotherapy. Mol. Cancer 20, 41 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Liu, J. Q. et al. Intratumoral delivery of IL-12 and IL-27 mRNA using lipid nanoparticles for cancer immunotherapy. J. Control. Release 345, 306–313 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Liu, L. et al. Combination immunotherapy of MUC1 mRNA nano-vaccine and CTLA-4 blockade effectively inhibits growth of triple negative breast cancer. Mol. Ther. 26, 45–55 (2018).

    Article  CAS  PubMed  Google Scholar 

  190. Xiao, Y. et al. Combining p53 mRNA nanotherapy with immune checkpoint blockade reprograms the immune microenvironment for effective cancer therapy. Nat. Commun. 13, 758 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Gillmore, J. D. et al. CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis. N. Engl. J. Med. 385, 493–502 (2021).

    Article  CAS  PubMed  Google Scholar 

  192. Tao, W. et al. Mechanistically probing lipid-siRNA nanoparticle-associated toxicities identifies Jak inhibitors effective in mitigating multifaceted toxic responses. Mol. Ther. 19, 567–575 (2011).

    Article  CAS  PubMed  Google Scholar 

  193. Terada, T., Kulkarni, J. A., Huynh, A., Tam, Y. Y. C. & Cullis, P. Protective effect of edaravone against cationic lipid-mediated oxidative stress and apoptosis. Biol. Pharm. Bull. 44, 144–149 (2021).

    Article  CAS  PubMed  Google Scholar 

  194. O’Brien, J., Hayder, H., Zayed, Y. & Peng, C. Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front. Endocrinol. 9, 402 (2018).

    Article  Google Scholar 

  195. Elhanati, S. et al. Reciprocal regulation between SIRT6 and miR-122 controls liver metabolism and predicts hepatocarcinoma prognosis. Cell Rep. 14, 234–242 (2016).

    Article  CAS  PubMed  Google Scholar 

  196. Davis, A. M., Scott, T. A. & Morris, K. V. Harnessing rift valley fever virus NSs gene for cancer gene therapy. Cancer Gene Ther. 29, 1477–1486 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Jain, R. et al. MicroRNAs enable mRNA therapeutics to selectively program cancer cells to self-destruct. Nucleic Acid. Ther. 28, 285–296 (2018). This study demostrates how inclusion of miRNAs in mRNA therapeutics can allow for the selective expression of therapeutic payloads in diseased cells in vivo.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Loughrey, D. & Dahlman, J. E. Non-liver mRNA delivery. Acc. Chem. Res. 55, 13–23 (2022).

    Article  CAS  PubMed  Google Scholar 

  199. Cheng, Q. et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing. Nat. Nanotechnol. 15, 313–320 (2020). In this study, it was shown that the inclusion of permanently charged lipids in an LNP formulation can faciliate the targeted in vivo biodistribution and expression of mRNA payloads.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Lopez, C. et al. Loading of lutein in egg-sphingomyelin vesicles as lipid carriers: thermotropic phase behaviour, structure of sphingosome membranes and lutein crystals. Food Res. Int. 138, 109770 (2020).

    Article  CAS  PubMed  Google Scholar 

  201. Sato, Y., Hatakeyama, H., Hyodo, M. & Harashima, H. Relationship between the physicochemical properties of lipid nanoparticles and the quality of siRNA delivery to liver cells. Mol. Ther. 24, 788–795 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Muller, P. Y. & Milton, M. N. The determination and interpretation of the therapeutic index in drug development. Nat. Rev. Drug. Discov. 11, 751–761 (2012).

    Article  CAS  PubMed  Google Scholar 

  203. Zuberi, A. & Lutz, C. Mouse models for drug discovery. can new tools and technology improve translational power? ILAR J. 57, 178–185 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Li, M., Al-Jamal, K. T., Kostarelos, K. & Reineke, J. Physiologically based pharmacokinetic modeling of nanoparticles. ACS Nano 4, 6303–6317 (2010).

    Article  CAS  PubMed  Google Scholar 

  205. Moghimi, S. M. & Simberg, D. Translational gaps in animal models of human infusion reactions to nanomedicines. Nanomedicine 13, 973–975 (2018).

    Article  CAS  PubMed  Google Scholar 

  206. Hatit, M. Z. C. et al. Species-dependent in vivo mRNA delivery and cellular responses to nanoparticles. Nat. Nanotechnol. 17, 310–318 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Blais, E. M. et al. Reconciled rat and human metabolic networks for comparative toxicogenomics and biomarker predictions. Nat. Commun. 8, 14250 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Whitebread, S., Hamon, J., Bojanic, D. & Urban, L. Keynote review: in vitro safety pharmacology profiling: an essential tool for successful drug development. Drug Discov. Today 10, 1421–1433 (2005).

    Article  CAS  PubMed  Google Scholar 

  209. Niles, A. L., Moravec, R. A. & Riss, T. L. Update on in vitro cytotoxicity assays for drug development. Expert Opin. Drug Discov. 3, 655–669 (2008).

    Article  CAS  PubMed  Google Scholar 

  210. Stamatiadis, P. et al. Comparative analysis of mouse and human preimplantation development following POU5F1 CRISPR/Cas9 targeting reveals interspecies differences. Hum. Reprod. 36, 1242–1252 (2021).

    Article  CAS  PubMed  Google Scholar 

  211. Moreb, E. A. & Lynch, M. D. Genome dependent Cas9/gRNA search time underlies sequence dependent gRNA activity. Nat. Commun. 12, 5034 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Rogers, M. A. & Aikawa, E. Cardiovascular calcification: artificial intelligence and big data accelerate mechanistic discovery. Nat. Rev. Cardiol. 16, 261–274 (2019).

    Article  CAS  PubMed  Google Scholar 

  213. Malik, N. & Rao, M. S. A review of the methods for human iPSC derivation. Methods Mol. Biol. 997, 23–33 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Ware, B. R., Berger, D. R. & Khetani, S. R. Prediction of drug-induced liver injury in micropatterned co-cultures containing iPSC-derived human hepatocytes. Toxicol. Sci. 145, 252–262 (2015).

    Article  CAS  PubMed  Google Scholar 

  215. Kopljar, I. et al. Development of a human iPSC cardiomyocyte-based scoring system for cardiac hazard identification in early drug safety de-risking. Stem Cell Rep. 11, 1365–1377 (2018).

    Article  CAS  Google Scholar 

  216. Macedo, M. H., Araujo, F., Martinez, E., Barrias, C. & Sarmento, B. iPSC-derived enterocyte-like cells for drug absorption and metabolism studies. Trends Mol. Med. 24, 696–708 (2018).

    Article  CAS  PubMed  Google Scholar 

  217. Gutbier, S. et al. Large-scale production of human iPSC-derived macrophages for drug screening. Int. J. Mol. Sci. 21, 4808 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Sharma, A., Sances, S., Workman, M. J. & Svendsen, C. N. Multi-lineage human iPSC-derived platforms for disease modeling and drug discovery. Cell Stem Cell 26, 309–329 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Liu, C., Oikonomopoulos, A., Sayed, N. & Wu, J. C. Modeling human diseases with induced pluripotent stem cells: from 2D to 3D and beyond. Development 145, dev156166 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  220. Broutier, L. et al. Human primary liver cancer-derived organoid cultures for disease modeling and drug screening. Nat. Med. 23, 1424–1435 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Berical, A. et al. A multimodal iPSC platform for cystic fibrosis drug testing. Nat. Commun. 13, 4270 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Czerniecki, S. M. et al. High-throughput screening enhances kidney organoid differentiation from human pluripotent stem cells and enables automated multidimensional phenotyping. Cell Stem Cell 22, 929–940 e924 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Rowe, R. G. & Daley, G. Q. Induced pluripotent stem cells in disease modelling and drug discovery. Nat. Rev. Genet. 20, 377–388 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Yanez Arteta, M. et al. Successful reprogramming of cellular protein production through mRNA delivered by functionalized lipid nanoparticles. Proc. Natl Acad. Sci. USA 115, E3351–E3360 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  225. Astolfi, M. et al. Micro-dissected tumor tissues on chip: an ex vivo method for drug testing and personalized therapy. Lab. Chip 16, 312–325 (2016).

    Article  CAS  PubMed  Google Scholar 

  226. Workman, M. J. et al. Engineered human pluripotent-stem-cell-derived intestinal tissues with a functional enteric nervous system. Nat. Med. 23, 49–59 (2017).

    Article  CAS  PubMed  Google Scholar 

  227. Ronaldson-Bouchard, K. & Vunjak-Novakovic, G. Organs-on-a-chip: a fast track for engineered human tissues in drug development. Cell Stem Cell 22, 310–324 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Theobald, J. et al. Liver-kidney-on-chip to study toxicity of drug metabolites. ACS Biomater. Sci. Eng. 4, 78–89 (2018).

    Article  CAS  PubMed  Google Scholar 

  229. Conant, G. et al. High-content assessment of cardiac function using heart-on-a-chip devices as drug screening model. Stem Cell Rev. Rep. 13, 335–346 (2017).

    Article  PubMed  Google Scholar 

  230. Jalili-Firoozinezhad, S. et al. Modeling radiation injury-induced cell death and countermeasure drug responses in a human gut-on-a-chip. Cell Death Dis. 9, 223 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  231. Yin, F. et al. A 3D human placenta-on-a-chip model to probe nanoparticle exposure at the placental barrier. Toxicol. Vitr. 54, 105–113 (2019).

    Article  CAS  Google Scholar 

  232. Cohen, A. et al. Mechanism and reversal of drug-induced nephrotoxicity on a chip. Sci. Transl. Med. 13, eabd6299 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Si, L. et al. A human-airway-on-a-chip for the rapid identification of candidate antiviral therapeutics and prophylactics. Nat. Biomed. Eng. 5, 815–829 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Goyal, G. et al. Ectopic lymphoid follicle formation and human seasonal influenza vaccination responses recapitulated in an organ-on-a-chip. Adv. Sci. 9, e2103241 (2022).

    Article  Google Scholar 

  235. Skardal, A., Shupe, T. & Atala, A. Organoid-on-a-chip and body-on-a-chip systems for drug screening and disease modeling. Drug Discov. Today 21, 1399–1411 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Ozkan, A., Ghousifam, N., Hoopes, P. J., Yankeelov, T. E. & Rylander, M. N. In vitro vascularized liver and tumor tissue microenvironments on a chip for dynamic determination of nanoparticle transport and toxicity. Biotechnol. Bioeng. 116, 1201–1219 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Nashimoto, Y. et al. Vascularized cancer on a chip: the effect of perfusion on growth and drug delivery of tumor spheroid. Biomaterials 229, 119547 (2020).

    Article  CAS  PubMed  Google Scholar 

  238. Ewart, L. et al. Performance assessment and economic analysis of a human liver-chip for predictive toxicology. Commun. Med. 2, 154 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  239. Jang, K. J. et al. Reproducing human and cross-species drug toxicities using a liver-chip. Sci. Transl. Med. 11, eaax5516 (2019). This article demonstrates the capacity of liver-on-chip platforms to identify drug-induced liver injuries from small molecules.

    Article  CAS  PubMed  Google Scholar 

  240. Lu, R. X. Z. & Radisic, M. Organ-on-a-chip platforms for evaluation of environmental nanoparticle toxicity. Bioact. Mater. 6, 2801–2819 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  241. Shanti, A., Teo, J. & Stefanini, C. In vitro immune organs-on-chip for drug development: a review. Pharmaceutics 10, 278 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Baysoy, A., Bai, Z., Satija, R. & Fan, R. The technological landscape and applications of single-cell multi-omics. Nat. Rev. Mol. Cell Biol. 24, 695–713 (2023).

    Article  CAS  PubMed  Google Scholar 

  243. Dobrowolski, C. et al. Nanoparticle single-cell multiomic readouts reveal that cell heterogeneity influences lipid nanoparticle-mediated messenger RNA delivery. Nat. Nanotechnol. 17, 871–879 (2022). This study reveals that cell subsets have distinct responses to LNPs that may affect mRNA therapies.

    Article  CAS  PubMed  Google Scholar 

  244. Kackos, C. M. et al. mRNA vaccine mitigates SARS-CoV-2 infections and COVID-19. Microbiol. Spectr. 11, e04240–e04222 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  245. Kulkarni, J. A. et al. The current landscape of nucleic acid therapeutics. Nat. Nanotechnol. 16, 630–643 (2021).

    Article  CAS  PubMed  Google Scholar 

  246. Chaudhary, N., Weissman, D. & Whitehead, K. A. mRNA vaccines for infectious diseases: principles, delivery and clinical translation. Nat. Rev. Drug Discov. 20, 817–838 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Munchel, S. E., Shultzaberger, R. K., Takizawa, N. & Weis, K. Dynamic profiling of mRNA turnover reveals gene-specific and system-wide regulation of mRNA decay. Mol. Biol. Cell 22, 2787–2795 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Mathieson, T. et al. Systematic analysis of protein turnover in primary cells. Nat. Commun. 9, 689 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  249. Deal, C. E., Carfi, A. & Plante, O. J. Advancements in mRNA encoded antibodies for passive immunotherapy. Vaccines 9, 108 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Van Tendeloo, V. F., Ponsaerts, P. & Berneman, Z. N. mRNA-based gene transfer as a tool for gene and cell therapy. Curr. Opin. Mol. Ther. 9, 423–431 (2007).

    PubMed  Google Scholar 

  251. Gu, Y., Duan, J., Yang, N., Yang, Y. & Zhao, X. mRNA vaccines in the prevention and treatment of diseases. MedComm 3, e167 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Sanger, H. L., Klotz, G., Riesner, D., Gross, H. J. & Kleinschmidt, A. K. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc. Natl Acad. Sci. USA 73, 3852–3856 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Salzman, J. Circular RNA expression: its potential regulation and function. Trends Genet. 32, 309–316 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Chen, Y. G. et al. Sensing self and foreign circular RNAs by intron identity. Mol. Cell 67, 228–238.e225 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Chen, Y. G. et al. N6-methyladenosine modification controls circular RNA immunity. Mol. Cell 76, 96–109.e109 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Wesselhoeft, R. A. et al. RNA circularization diminishes immunogenicity and can extend translation duration in vivo. Mol. Cell 74, 508–520.e504 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Loan Young, T., Chang Wang, K., James Varley, A. & Li, B. Clinical delivery of circular RNA: lessons learned from RNA drug development. Adv. Drug. Deliv. Rev. 197, 114826 (2023).

    Article  CAS  PubMed  Google Scholar 

  258. Bai, Y. et al. Research progress on circular RNA vaccines. Front. Immunol. 13, 1091797 (2022).

    Article  CAS  PubMed  Google Scholar 

  259. Munson, M. J. et al. A high-throughput Galectin-9 imaging assay for quantifying nanoparticle uptake, endosomal escape and functional RNA delivery. Commun. Biol. 4, 211 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Robinson, M. W., Harmon, C. & O’Farrelly, C. Liver immunology and its role in inflammation and homeostasis. Cell Mol. Immunol. 13, 267–276 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Malik, A. et al. “Complimenting the complement”: mechanistic insights and opportunities for therapeutics in hepatocellular carcinoma. Front. Oncol. 10, 627701 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  262. Hillebrandt, S. et al. Complement factor 5 is a quantitative trait gene that modifies liver fibrogenesis in mice and humans. Nat. Genet. 37, 835–843 (2005).

    Article  CAS  PubMed  Google Scholar 

  263. Francia, V., Schiffelers, R. M., Cullis, P. R. & Witzigmann, D. The biomolecular corona of lipid nanoparticles for gene therapy. Bioconjug. Chem. 31, 2046–2059 (2020).

    Article  CAS  PubMed  Google Scholar 

  264. Packer, M., Gyawali, D., Yerabolu, R., Schariter, J. & White, P. A novel mechanism for the loss of mRNA activity in lipid nanoparticle delivery systems. Nat. Commun. 12, 6777 (2021). This work describes previously unknown lipid–mRNA reactions that may hamper the translatability and therapeutic effect of mRNA payloads.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Suzuki, Y. & Ishihara, H. Difference in the lipid nanoparticle technology employed in three approved siRNA (Patisiran) and mRNA (COVID-19 vaccine) drugs. Drug. Metab. Pharmacokinet. 41, 100424 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Sebastiani, F. et al. Apolipoprotein E binding drives structural and compositional rearrangement of mRNA-containing lipid nanoparticles. ACS Nano 15, 6709–6722 (2021). This study shows that binding of ApoE on the surface of LNPs can change their internal structure and cause release of mRNA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Moghimi, S. M., Haroon, H. B., Yaghmur, A., Simberg, D. & Trohopoulos, P. N. Nanometer- and Ångstrom-scale characteristics that modulate complement responses to nanoparticles. J. Control. Release 351, 432–443 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Francia, V. et al. Corona composition can affect the mechanisms cells use to internalize nanoparticles. ACS Nano 13, 11107–11121 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. DeLoid, G. M., Cohen, J. M., Pyrgiotakis, G. & Demokritou, P. Preparation, characterization, and in vitro dosimetry of dispersed, engineered nanomaterials. Nat. Protoc. 12, 355–371 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansoor M. Amiji.

Ethics declarations

Competing interests

E.J. is employed by Moderna, Inc. D.B. is a Northeastern University post-doctoral fellow with a Moderna, Inc.-sponsored fellowship. M.A.R. is currently affiliated with Intellia Therapeutics, but completed this review while working at Moderna.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Adjuvanticity

The property of certain substances to enhance the immune response against an antigen, thereby improving the effectiveness of vaccines.

Biomolecular corona

A layer of proteins, lipids and small molecules that forms on the surface of nanoparticles when they interact with biological fluids, influencing their biological identity and activity.

Drug-induced liver injury

Liver damage caused by medications or other xenobiotics, which ranges from small abnormalities in liver tests to severe liver dysfunction or failure.

Ionizable lipids

Lipids that remain neutral at physiological pH but are protonated at low pH and are commonly used in the formulation of lipid nanoparticles for RNA delivery.

Lipid nanoparticles

Nanoparticles made of ionizable and other types of lipid, often used as delivery vehicles for genetic material.

MicroRNAs

Small, non-coding, endogenous RNA molecules that regulate protein synthesis by binding to and destroying specific mRNA, thus inhibiting its translation.

Pattern recognition receptors

Proteins that recognize molecules found in pathogens or released because of cellular damage and that can regulate the innate immune response of cells.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bitounis, D., Jacquinet, E., Rogers, M.A. et al. Strategies to reduce the risks of mRNA drug and vaccine toxicity. Nat Rev Drug Discov 23, 281–300 (2024). https://doi.org/10.1038/s41573-023-00859-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41573-023-00859-3

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research