Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The CDK4/6 inhibitor revolution — a game-changing era for breast cancer treatment

Subjects

Abstract

Cyclin-dependent kinase (CDK) 4/6 inhibition in combination with endocrine therapy is the standard-of-care treatment for patients with advanced-stage hormone receptor-positive, HER2 non-amplified (HR+HER2) breast cancer. These agents can also be administered as adjuvant therapy to patients with higher-risk early stage disease. Nonetheless, the clinical success of these agents has created several challenges, such as how to address acquired resistance, identifying which patients are most likely to benefit from therapy prior to treatment, and understanding the optimal timing of administration and sequencing of these agents. In this Review, we describe the rationale for targeting CDK4/6 in patients with breast cancer, including a summary of updated clinical evidence and how this should inform clinical practice. We also discuss ongoing research efforts that are attempting to address the various challenges created by the widespread implementation of these agents.

Key points

  • Cyclin-dependent kinase (CDK) 4/6 inhibitors inhibit the cell cycle, thus inducing cellular senescence and are increasingly being implicated in antitumour immunity.

  • Three CDK4/6 inhibitors are currently used in routine clinical practice and have shown highly consistent progression-free survival results, although inconsistencies have emerged in their overall survival results.

  • The toxicity profile varies between different CDK4/6 inhibitors, allowing a degree of treatment tailoring based on the needs of individual patients.

  • The increased and earlier use of CDK4/6 inhibitors has resulted in a better understanding of the mechanisms of acquired resistance; potential treatment combinations that might overcome these mechanisms are being explored.

  • Treatment selection after disease progression on a CDK4/6 inhibitor remains an area of active research and is likely to be influenced by the underlying mechanisms of resistance

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanism of action of CDK4/6 inhibitors.
Fig. 2: Mechanisms of resistance to CDK4/6 inhibition.

Similar content being viewed by others

References

  1. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Beaver, J. A. et al. FDA approval: palbociclib for the treatment of postmenopausal patients with estrogen receptor-positive, HER2-negative metastatic breast cancer. Clin. Cancer Res. 21, 4760–4766 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Shah, A. et al. FDA approval: ribociclib for the treatment of postmenopausal women with hormone receptor-positive, HER2-negative advanced or metastatic breast cancer. Clin. Cancer Res. 24, 2999–3004 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. US Food and Drug Administration. FDA approves abemaciclib for HR-positive, HER2-negative breast cancer. FDA https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-abemaciclib-hr-positive-her2-negative-breast-cancer (2017).

  5. US Food and Drug Administration. FDA approves abemaciclib with endocrine therapy for early breast cancer. FDA https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-abemaciclib-endocrine-therapy-early-breast-cancer (2021).

  6. Hartwell, L. H., Culotti, J., Pringle, J. R. & Reid, B. J. Genetic control of the cell division cycle in yeast. Science 183, 46–51 (1974).

    Article  CAS  PubMed  Google Scholar 

  7. Morgan, D. O. Principles of CDK regulation. Nature 374, 131–134 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Nurse, P. Finding CDK: linking yeast with humans. Nat. Cell Biol. 14, 776 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. O’Leary, B., Finn, R. S. & Turner, N. C. Treating cancer with selective CDK4/6 inhibitors. Nat. Rev. Clin. Oncol. 13, 417–430 (2016).

    Article  PubMed  Google Scholar 

  10. Asghar, U., Witkiewicz, A. K., Turner, N. C. & Knudsen, E. S. The history and future of targeting cyclin-dependent kinases in cancer therapy. Nat. Rev. Drug Discov. 14, 130–146 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pavletich, N. P. Mechanisms of cyclin-dependent kinase regulation: structures of Cdks, their cyclin activators, and Cip and INK4 inhibitors. J. Mol. Biol. 287, 821–828 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Weintraub, S. J., Prater, C. A. & Dean, D. C. Retinoblastoma protein switches the E2F site from positive to negative element. Nature 358, 259–261 (1992).

    Article  CAS  PubMed  Google Scholar 

  13. Hiebert, S. W., Chellappan, S. P., Horowitz, J. M. & Nevins, J. R. The interaction of RB with E2F coincides with an inhibition of the transcriptional activity of E2F. Genes Dev. 6, 177–185 (1992).

    Article  CAS  PubMed  Google Scholar 

  14. Sellers, W. R., Rodgers, J. W. & Kaelin, W. G. Jr. A potent transrepression domain in the retinoblastoma protein induces a cell cycle arrest when bound to E2F sites. Proc. Natl Acad. Sci. USA 92, 11544–11548 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kato, J., Matsushime, H., Hiebert, S. W., Ewen, M. E. & Sherr, C. J. Direct binding of cyclin D to the retinoblastoma gene product (pRb) and pRb phosphorylation by the cyclin D-dependent kinase CDK4. Genes Dev. 7, 331–342 (1993).

    Article  CAS  PubMed  Google Scholar 

  16. Matsushime, H. et al. Identification and properties of an atypical catalytic subunit (p34PSK-J3/cdk4) for mammalian D type G1 cyclins. Cell 71, 323–334 (1992).

    Article  CAS  PubMed  Google Scholar 

  17. Meyerson, M. & Harlow, E. Identification of G1 kinase activity for cdk6, a novel cyclin D partner. Mol. Cell Biol. 14, 2077–2086 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Goodrich, D. W., Wang, N. P., Qian, Y. W., Lee, E. Y. & Lee, W. H. The retinoblastoma gene product regulates progression through the G1 phase of the cell cycle. Cell 67, 293–302 (1991).

    Article  CAS  PubMed  Google Scholar 

  19. Sherr, C. J. & Roberts, J. M. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 13, 1501–1512 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Serrano, M., Hannon, G. J. & Beach, D. A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature 366, 704–707 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. Hirai, H., Roussel, M. F., Kato, J. Y., Ashmun, R. A. & Sherr, C. J. Novel INK4 proteins, p19 and p18, are specific inhibitors of the cyclin D-dependent kinases CDK4 and CDK6. Mol. Cell Biol. 15, 2672–2681 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chan, F. K., Zhang, J., Cheng, L., Shapiro, D. N. & Winoto, A. Identification of human and mouse p19, a novel CDK4 and CDK6 inhibitor with homology to p16ink4. Mol. Cell Biol. 15, 2682–2688 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shapiro, G. I. et al. Reciprocal Rb inactivation and p16INK4 expression in primary lung cancers and cell lines. Cancer Res. 55, 505–509 (1995).

    CAS  PubMed  Google Scholar 

  24. Benedict, W. F. et al. Level of retinoblastoma protein expression correlates with p16 (MTS-1/INK4A/CDKN2) status in bladder cancer. Oncogene 18, 1197–1203 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Parry, D., Mahony, D., Wills, K. & Lees, E. Cyclin D-CDK subunit arrangement is dependent on the availability of competing INK4 and p21 class inhibitors. Mol. Cell Biol. 19, 1775–1783 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zerfass-Thome, K. et al. p27KIP1 blocks cyclin E-dependent transactivation of cyclin A gene expression. Mol. Cell Biol. 17, 407–415 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Harper, J. W., Adami, G. R., Wei, N., Keyomarsi, K. & Elledge, S. J. The P21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75, 805–816 (1993).

    Article  CAS  PubMed  Google Scholar 

  28. Toyoshima, H. & Hunter, T. p27, a novel inhibitor of G1 cyclin-Cdk protein kinase activity, is related to p21. Cell 78, 67–74 (1994).

    Article  CAS  PubMed  Google Scholar 

  29. Lee, M. H., Reynisdottir, I. & Massague, J. Cloning of p57KIP2, a cyclin-dependent kinase inhibitor with unique domain structure and tissue distribution. Genes Dev. 9, 639–649 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Guiley, K. Z. et al. p27 allosterically activates cyclin-dependent kinase 4 and antagonizes palbociclib inhibition. Science 366, eaaw2106 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Grimmler, M. et al. Cdk-inhibitory activity and stability of p27Kip1 are directly regulated by oncogenic tyrosine kinases. Cell 128, 269–280 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Rane, S. G. et al. Loss of Cdk4 expression causes insulin-deficient diabetes and Cdk4 activation results in β-islet cell hyperplasia. Nat. Genet 22, 44–52 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Malumbres, M. et al. Mammalian cells cycle without the D-type cyclin-dependent kinases Cdk4 and Cdk6. Cell 118, 493–504 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Rodriguez-Puebla, M. L. et al. Cdk4 deficiency inhibits skin tumor development but does not affect normal keratinocyte proliferation. Am. J. Pathol. 161, 405–411 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Spencer, S. L. et al. The proliferation-quiescence decision is controlled by a bifurcation in CDK2 activity at mitotic exit. Cell 155, 369–383 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Asghar, U. S. et al. Single-cell dynamics determines response to CDK4/6 inhibition in triple-negative breast cancer. Clin. Cancer Res. 23, 5561–5572 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gillett, C. et al. Amplification and overexpression of cyclin D1 in breast cancer detected by immunohistochemical staining. Cancer Res. 54, 1812–1817 (1994).

    CAS  PubMed  Google Scholar 

  38. Hunter, T. & Pines, J. Cyclins and cancer. II: Cyclin D and CDK inhibitors come of age. Cell 79, 573–582 (1994).

    Article  CAS  PubMed  Google Scholar 

  39. Kenny, F. S. et al. Overexpression of cyclin D1 messenger RNA predicts for poor prognosis in estrogen receptor-positive breast cancer. Clin. Cancer Res. 5, 2069–2076 (1999).

    CAS  PubMed  Google Scholar 

  40. Sherr, C. J. Cancer cell cycles. Science 274, 1672–1677 (1996).

    Article  CAS  PubMed  Google Scholar 

  41. Sutherland, R. L., Prall, O. W., Watts, C. K. & Musgrove, E. A. Estrogen and progestin regulation of cell cycle progression. J. Mammary Gland Biol. Neoplasia 3, 63–72 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Zwijsen, R. M. et al. CDK-independent activation of estrogen receptor by cyclin D1. Cell 88, 405–415 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Neuman, E. et al. Cyclin D1 stimulation of estrogen receptor transcriptional activity independent of cdk4. Mol. Cell Biol. 17, 5338–5347 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Barretina, J. et al. Subtype-specific genomic alterations define new targets for soft-tissue sarcoma therapy. Nat. Genet 42, 715–721 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature 490, 61–70 (2012).

    Article  Google Scholar 

  46. Herschkowitz, J. I., He, X., Fan, C. & Perou, C. M. The functional loss of the retinoblastoma tumour suppressor is a common event in basal-like and luminal B breast carcinomas. Breast Cancer Res. 10, R75 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Goel, S. et al. CDK4/6 inhibition triggers anti-tumour immunity. Nature 548, 471–475 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Deng, J. et al. CDK4/6 inhibition augments antitumor immunity by enhancing T-cell activation. Cancer Discov. 8, 216–233 (2018).

    Article  CAS  PubMed  Google Scholar 

  49. Lelliott, E. J. et al. CDK4/6 inhibition promotes antitumor immunity through the induction of T-cell memory. Cancer Discov. 11, 2582–2601 (2021).

    Article  CAS  PubMed  Google Scholar 

  50. Schaer, D. A. et al. The CDK4/6 inhibitor abemaciclib induces a T cell inflamed tumor microenvironment and enhances the efficacy of PD-L1 checkpoint blockade. Cell Rep. 22, 2978–2994 (2018).

    Article  CAS  PubMed  Google Scholar 

  51. Hurvitz, S. A. et al. Potent cell-cycle inhibition and upregulation of immune response with abemaciclib and anastrozole in neoMONARCH, phase II neoadjuvant study in HR+/HER2 breast cancer. Clin. Cancer Res. 26, 566–580 (2020).

    Article  CAS  PubMed  Google Scholar 

  52. Peng, D. et al. Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy. Nature 527, 249–253 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. US Food and Drug Administration. FDA expands ribociclib indication in HR-positive, HER2-negative advanced or metastatic breast cancer. FDA https://www.fda.gov/drugs/resources-information-approved-drugs/fda-expands-ribociclib-indication-hr-positive-her2-negative-advanced-or-metastatic-breast-cancer (2018).

  54. Xu, B. et al. Dalpiciclib or placebo plus fulvestrant in hormone receptor-positive and HER2-negative advanced breast cancer: a randomized, phase 3 trial. Nat. Med. 27, 1904–1909 (2021).

    Article  CAS  PubMed  Google Scholar 

  55. NMPA approves AiRuiKang (dalpiciclib) in combination with fulvestrant for the treatment of relapsed/progressed HR+/HER2- advanced breast cancer. 2022-01-03. https://www.hengrui.com/en/media/detail-149.html (2022).

  56. Fry, D. W. et al. Specific inhibition of cyclin-dependent kinase 4/6 by PD 0332991 and associated antitumor activity in human tumor xenografts. Mol. Cancer Ther. 3, 1427–1438 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Tripathy, D., Bardia, A. & Sellers, W. R. Ribociclib (LEE011): mechanism of action and clinical impact of this selective cyclin-dependent kinase 4/6 inhibitor in various solid tumors. Clin. Cancer Res. 23, 3251–3262 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gelbert, L. M. et al. Preclinical characterization of the CDK4/6 inhibitor LY2835219: in-vivo cell cycle-dependent/independent anti-tumor activities alone/in combination with gemcitabine. Invest. N. Drugs 32, 825–837 (2014).

    Article  CAS  Google Scholar 

  59. Lallena, M. J. et al. In-vitro characterization of abemaciclib pharmacology in ER+ breast cancer cell lines [abstract]. Cancer Res. 75 (Suppl. 15), 3101 (2015).

    Article  Google Scholar 

  60. Hafner, M. et al. Multiomics profiling establishes the polypharmacology of FDA-approved CDK4/6 inhibitors and the potential for differential clinical activity. Cell Chem. Biol. 26, 1067–1080.e8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ogata, R., Kishino, E., Saitoh, W., Koike, Y. & Kurebayashi, J. Resistance to cyclin-dependent kinase (CDK) 4/6 inhibitors confers cross-resistance to other CDK inhibitors but not to chemotherapeutic agents in breast cancer cells. Breast Cancer 28, 206–215 (2021).

    Article  PubMed  Google Scholar 

  62. Raub, T. J. et al. Brain exposure of two selective dual CDK4 and CDK6 inhibitors and the antitumor activity of CDK4 and CDK6 inhibition in combination with temozolomide in an intracranial glioblastoma xenograft. Drug Metab. Dispos. 43, 1360–1371 (2015).

    Article  CAS  PubMed  Google Scholar 

  63. Tolaney, S. M. et al. A phase II study of abemaciclib in patients with brain metastases secondary to hormone receptor-positive breast cancer. Clin. Cancer Res. 26, 5310–5319 (2020).

    Article  CAS  PubMed  Google Scholar 

  64. Gao, J. J. et al. CDK4/6 inhibitor treatment for patients with hormone receptor-positive, HER2-negative, advanced or metastatic breast cancer: a US Food and Drug Administration pooled analysis. Lancet Oncol. 21, 250–260 (2020).

    Article  CAS  PubMed  Google Scholar 

  65. Wedam, S. et al. FDA approval summary: palbociclib for male patients with metastatic breast cancer. Clin. Cancer Res. 26, 1208–1212 (2020).

    Article  CAS  PubMed  Google Scholar 

  66. US Food and Drug Administration. Highlights of prescribing information: VERZENIO. FDA https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/208716s006s007s008lbl.pdf (2017).

  67. Finn, R. S. et al. The cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as first-line treatment of oestrogen receptor-positive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): a randomised phase 2 study. Lancet Oncol. 16, 25–35 (2015).

    Article  CAS  PubMed  Google Scholar 

  68. Finn, R. S. et al. Palbociclib and letrozole in advanced breast cancer. N. Engl. J. Med. 375, 1925–1936 (2016).

    Article  CAS  PubMed  Google Scholar 

  69. Cristofanilli, M. et al. Fulvestrant plus palbociclib versus fulvestrant plus placebo for treatment of hormone-receptor-positive, HER2-negative metastatic breast cancer that progressed on previous endocrine therapy (PALOMA-3): final analysis of the multicentre, double-blind, phase 3 randomised controlled trial. Lancet Oncol. 17, 425–439 (2016).

    Article  CAS  PubMed  Google Scholar 

  70. Turner, N. C. et al. Palbociclib in hormone-receptor-positive advanced breast cancer. N. Engl. J. Med. 373, 209–219 (2015).

    Article  CAS  PubMed  Google Scholar 

  71. Goetz, M. P. et al. MONARCH 3: abemaciclib as initial therapy for advanced breast cancer. J. Clin. Oncol. 35, 3638–3646 (2017).

    Article  CAS  PubMed  Google Scholar 

  72. Sledge, G. W. Jr. et al. MONARCH 2: abemaciclib in combination with fulvestrant in women with HR+/HER2- advanced breast cancer who had progressed while receiving endocrine therapy. J. Clin. Oncol. 35, 2875–2884 (2017).

    Article  CAS  PubMed  Google Scholar 

  73. Dickler, M. N. et al. MONARCH 1, a phase II study of abemaciclib, a CDK4 and CDK6 inhibitor, as a single agent, in patients with refractory HR+/HER2 metastatic breast cancer. Clin. Cancer Res. 23, 5218–5224 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. DeMichele, A. et al. CDK 4/6 inhibitor palbociclib (PD0332991) in Rb+ advanced breast cancer: phase II activity, safety, and predictive biomarker assessment. Clin. Cancer Res. 21, 995–1001 (2015).

    Article  CAS  PubMed  Google Scholar 

  75. Infante, J. R. et al. A phase I study of the cyclin-dependent kinase 4/6 inhibitor ribociclib (LEE011) in patients with advanced solid tumors and lymphomas. Clin. Cancer Res. 22, 5696–5705 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hortobagyi, G. N. et al. Updated results from MONALEESA-2, a phase III trial of first-line ribociclib plus letrozole versus placebo plus letrozole in hormone receptor-positive, HER2-negative advanced breast cancer. Ann. Oncol. 29, 1541–1547 (2018).

    Article  CAS  PubMed  Google Scholar 

  77. Slamon, D. J. et al. Phase III randomized study of ribociclib and fulvestrant in hormone receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer: MONALEESA-3. J. Clin. Oncol. 36, 2465–2472 (2018).

    Article  CAS  PubMed  Google Scholar 

  78. Slamon, D. J. et al. Overall survival with ribociclib plus fulvestrant in advanced breast cancer. N. Engl. J. Med. 382, 514–524 (2020).

    Article  CAS  PubMed  Google Scholar 

  79. Tripathy, D. et al. Ribociclib plus endocrine therapy for premenopausal women with hormone-receptor-positive, advanced breast cancer (MONALEESA-7): a randomised phase 3 trial. Lancet Oncol. 19, 904–915 (2018).

    Article  CAS  PubMed  Google Scholar 

  80. Flaherty, K. T. et al. Phase I, dose-escalation trial of the oral cyclin-dependent kinase 4/6 inhibitor PD 0332991, administered using a 21-day schedule in patients with advanced cancer. Clin. Cancer Res. 18, 568–576 (2012).

    Article  CAS  PubMed  Google Scholar 

  81. Schwartz, G. K. et al. Phase I study of PD 0332991, a cyclin-dependent kinase inhibitor, administered in 3-week cycles (schedule 2/1). Br. J. Cancer 104, 1862–1868 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Patnaik, A. et al. Efficacy and safety of abemaciclib, an inhibitor of CDK4 and CDK6, for patients with breast cancer, non-small cell lung cancer, and other solid tumors. Cancer Discov. 6, 740–753 (2016).

    Article  CAS  PubMed  Google Scholar 

  83. Hortobagyi, G. N. et al. Ribociclib as first-line therapy for HR-positive, advanced breast cancer. N. Engl. J. Med. 375, 1738–1748 (2016).

    Article  CAS  PubMed  Google Scholar 

  84. Novartis. Straightforward ECG monitoring. KISQALI https://www.hcp.novartis.com/products/kisqali/metastatic-breast-cancer/safety/ecg-monitoring/ (2023).

  85. Rugo, H. S. et al. Management of abemaciclib-associated adverse events in patients with hormone receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer: safety analysis of MONARCH 2 and MONARCH 3. Oncologist 26, e53–e65 (2021).

    Article  CAS  PubMed  Google Scholar 

  86. Johnston, S. et al. MONARCH 3 final PFS: a randomized study of abemaciclib as initial therapy for advanced breast cancer. NPJ Breast Cancer 5, 5 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Watson, N. W., Wander, S. A., Shatzel, J. J. & Al-Samkari, H. Venous and arterial thrombosis associated with abemaciclib therapy for metastatic breast cancer. Cancer 128, 3224–3232 (2022).

    Article  CAS  PubMed  Google Scholar 

  88. Rugo, H. S. et al. Adjuvant abemaciclib combined with endocrine therapy for high-risk early breast cancer: safety and patient-reported outcomes from the monarchE study. Ann. Oncol. 33, 616–627 (2022).

    Article  CAS  PubMed  Google Scholar 

  89. Zhang, Y., Ma, Z., Sun, X., Feng, X. & An, Z. Interstitial lung disease in patients treated with cyclin-dependent kinase 4/6 inhibitors: a systematic review and meta-analysis of randomized controlled trials. Breast 62, 162–169 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Slamon, D. J. et al. Ribociclib plus fulvestrant for postmenopausal women with hormone receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer in the phase III randomized MONALEESA-3 trial: updated overall survival. Ann. Oncol. 32, 1015–1024 (2021).

    Article  CAS  PubMed  Google Scholar 

  91. Hortobagyi, G. N. et al. Overall survival with ribociclib plus letrozole in advanced breast cancer. N. Engl. J. Med. 386, 942–950 (2022).

    Article  CAS  PubMed  Google Scholar 

  92. Lu, Y. S. et al. Updated overall survival of ribociclib plus endocrine therapy versus endocrine therapy alone in pre- and perimenopausal patients with HR+/HER2− advanced breast cancer in MONALEESA-7: a phase III randomized clinical trial. Clin. Cancer Res. 28, 851–859 (2022).

    Article  CAS  PubMed  Google Scholar 

  93. Llombart-Cussac, A. et al. Final overall survival analysis of monarch 2: a phase 3 trial of abemaciclib plus fulvestrant in patients with hormone receptor-positive, HER2-negative advanced breast cancer [abstract]. Cancer Res. 83 (Suppl. 5), PD13-11 (2023).

    Article  Google Scholar 

  94. Goetz, M. P. et al. MONARCH 3: interim overall survival (OS) results of abemaciclib plus a nonsteroidal aromatase inhibitor (NSAI) in patients (pts) with HR+, HER2-advanced breast cancer (ABC) [abstract LBA15]. Ann. Oncol. 33 (Suppl. 7), S1384 (2022).

    Article  Google Scholar 

  95. Cristofanilli, M. et al. Overall survival with palbociclib and fulvestrant in women with HR+/HER2 ABC: updated exploratory analyses of PALOMA-3, a double-blind, phase III randomized study. Clin. Cancer Res. 28, 3433–3442 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Finn, R. S. et al. Overall survival results from the randomized phase 2 study of palbociclib in combination with letrozole versus letrozole alone for first-line treatment of ER+/HER2− advanced breast cancer (PALOMA-1, TRIO-18). Breast Cancer Res. Treat. 183, 419–428 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Finn, R. S. et al. Overall survival (OS) with first-line palbociclib plus letrozole (PAL plus LET) versus placebo plus letrozole (PBO plus LET) in women with estrogen receptor positive/human epidermal growth factor receptor 2-negative advanced breast cancer (ER+/HER2− ABC): analyses from PALOMA-2 [abstract]. J. Clin. Oncol. 40 (Suppl. 17), LBA1003 (2022).

    Article  Google Scholar 

  98. Maurer, B., Brandstoetter, T., Kollmann, S., Sexl, V. & Prchal-Murphy, M. Inducible deletion of CDK4 and CDK6 – deciphering CDK4/6 inhibitor effects in the hematopoietic system. Haematologica 106, 2624–2632 (2021).

    Article  CAS  PubMed  Google Scholar 

  99. Lu, Y. S. et al. Primary results from the randomized phase II RIGHT Choice trial of premenopausal patients with aggressive HR+/HER2− advanced breast cancer treated with ribociclib + endocrine therapy vs physician’s choice combination chemotherapy [abstract]. Cancer Res. 85 (Suppl. 5), GS1-10 (2023).

    Article  Google Scholar 

  100. Gennari, A. et al. ESMO clinical practice guideline for the diagnosis, staging and treatment of patients with metastatic breast cancer. Ann. Oncol. 32, 1475–1495 (2021).

    Article  CAS  PubMed  Google Scholar 

  101. Sonke, G. S. et al. Primary outcome analysis of the phase 3 SONIA trial (BOOG 2017-03) on selecting the optimal position of cyclin-dependent kinases 4 and 6 (CDK4/6) inhibitors for patients with hormone receptor-positive (HR+), HER2-negative (HER2−) advanced breast cancer (ABC) [abstract]. J. Clin. Oncol. 41 (Suppl. 17), LBA1000 (2023).

    Article  Google Scholar 

  102. Bidard, F. C. et al. Elacestrant (oral selective estrogen receptor degrader) versus standard endocrine therapy for estrogen receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer: results from the randomized phase III EMERALD trial. J. Clin. Oncol. 40, 3246–3256 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Juric, D. et al. Alpelisib plus endocrine therapy (ET) in patients with hormone receptor-positive (HR plus), human epidermal growth factor receptor 2-negative (HER2-), PIK3CA-mutated advanced breast cancer (ABC) previously treated with cyclin-dependent kinase 4/6 inhibitor (CDK4/6i): biomarker analyses from the phase II BYLieve study [abstract]. Cancer Res 82 (Suppl. 4), P5-13-03 (2022).

    Article  Google Scholar 

  104. Turner, N. et al. Capivasertib in hormone receptor-positive advanced breast cancer. N. Engl. J. Med. 388, 2058–2070 (2023).

    Article  CAS  PubMed  Google Scholar 

  105. Rugo, H. S. et al. Alpelisib plus fulvestrant in PIK3CA-mutated, hormone receptor-positive advanced breast cancer after a CDK4/6 inhibitor (BYLieve): one cohort of a phase 2, multicentre, open-label, non-comparative study. Lancet Oncol. 22, 489–498 (2021).

    Article  CAS  PubMed  Google Scholar 

  106. Pan, H. et al. 20-year risks of breast-cancer recurrence after stopping endocrine therapy at 5 years. N. Engl. J. Med. 377, 1836–1846 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Gnant, M. et al. Adjuvant palbociclib for early breast cancer: the PALLAS trial results (ABCSG-42/AFT-05BIG-14-03). J. Clin. Oncol. 40, 282–293 (2022).

    Article  CAS  PubMed  Google Scholar 

  108. Gray, R. G. et al. aTTom: long-term effects of continuing adjuvant tamoxifen to 10 years versus stopping at 5 years in 6,953 women with early breast cancer [abstract]. J. Clin. Oncol. 31 (Suppl. 18), 5 (2013).

    Article  Google Scholar 

  109. Davies, C. et al. Long-term effects of continuing adjuvant tamoxifen to 10 years versus stopping at 5 years after diagnosis of oestrogen receptor-positive breast cancer: ATLAS, a randomised trial. Lancet 381, 805–816 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Loibl, S. et al. Palbociclib for residual high-risk invasive HR-positive and HER2-negative early breast cancer-the Penelope-B trial. J. Clin. Oncol. 39, 1518–1530 (2021).

    Article  CAS  PubMed  Google Scholar 

  111. Johnston, S. R. D. et al. Abemaciclib combined with endocrine therapy for the adjuvant treatment of HR+, HER2−, node-positive, high-risk, early breast cancer (monarchE). J. Clin. Oncol. 38, 3987–3998 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Johnston, S. R. D. et al. Abemaciclib plus endocrine therapy for hormone receptor-positive, HER2-negative, node-positive, high-risk early breast cancer (monarchE): results from a preplanned interim analysis of a randomised, open-label, phase 3 trial. Lancet Oncol. 24, 77–90 (2023).

    Article  CAS  PubMed  Google Scholar 

  113. Rugo, H. S., Vitko, A. & Thoele, K. An overview of adverse event (AE) management for patients (pts) receiving abemaciclib [abstract]. J. Clin. Oncol. 40 (Suppl. 28), 239 (2022).

    Article  Google Scholar 

  114. Royce, M. et al. FDA approval summary: abemaciclib with endocrine therapy for high-risk early breast cancer. J. Clin. Oncol. 40, 1155–1162 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. US Food and Drug Administration. FDA D.I.S.C.O. burst edition: FDA approval of Verzenio (abemaciclib) with endocrine therapy for patients with HR-positive, HER2-negative, node-positive, early breast cancer. FDA https://www.fda.gov/drugs/resources-information-approved-drugs/fda-disco-burst-edition-fda-approval-verzenio-abemaciclib-endocrine-therapy-patients-hr-positive#:~:Text=On%20March%203%2C%202023%2C%20the,at%20high%20risk%20of%20recurrence (2023).

  116. Slamon, D. et al. Ribociclib and endocrine therapy as adjuvant treatment in patients with HR+/HER2− early breast cancer: primary results from the phase III NATALEE trial [abstract]. J. Clin. Oncol. 41 (Suppl. 17), LBA500 (2023).

    Article  Google Scholar 

  117. von Minckwitz, G. et al. Adjuvant pertuzumab and trastuzumab in early HER2-positive breast cancer. N. Engl. J. Med. 377, 122–131 (2017).

    Article  Google Scholar 

  118. Malorni, L. et al. Palbociclib as single agent or in combination with the endocrine therapy received before disease progression for estrogen receptor-positive, HER2-negative metastatic breast cancer: TREnd trial. Ann. Oncol. 29, 1748–1754 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Ribelles, N. et al. Pattern of recurrence of early breast cancer is different according to intrinsic subtype and proliferation index. Breast Cancer Res. 15, R98 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Cardoso, F. et al. 5th ESO-ESMO international consensus guidelines for advanced breast cancer (ABC 5). Ann. Oncol. 31, 1623–1649 (2020).

    Article  CAS  PubMed  Google Scholar 

  121. Cottu, P. et al. Letrozole and palbociclib versus chemotherapy as neoadjuvant therapy of high-risk luminal breast cancer. Ann. Oncol. 29, 2334–2340 (2018).

    Article  CAS  PubMed  Google Scholar 

  122. Ma, C. X. et al. NeoPalAna: neoadjuvant palbociclib, a cyclin-dependent kinase 4/6 inhibitor, and anastrozole for clinical stage 2 or 3 estrogen receptor-positive breast cancer. Clin. Cancer Res. 23, 4055–4065 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Prat, A. et al. Ribociclib plus letrozole versus chemotherapy for postmenopausal women with hormone receptor-positive, HER2-negative, luminal B breast cancer (CORALLEEN): an open-label, multicentre, randomised, phase 2 trial. Lancet Oncol. 21, 33–43 (2020).

    Article  CAS  PubMed  Google Scholar 

  124. Johnston, S. et al. Randomized phase II study evaluating palbociclib in addition to letrozole as neoadjuvant therapy in estrogen receptor-positive early breast cancer: PALLET trial. J. Clin. Oncol. 37, 178–189 (2019).

    Article  CAS  PubMed  Google Scholar 

  125. Khan, Q. J. et al. Letrozole plus ribociclib versus letrozole plus placebo as neoadjuvant therapy for ER plus breast cancer (FELINE trial) [abstract]. J. Clin. Oncol. 38 (Suppl. 15), 505 (2020).

    Article  Google Scholar 

  126. Curigliano, G. et al. Ribociclib plus letrozole in early breast cancer: a presurgical, window-of-opportunity study. Breast 28, 191–198 (2016).

    Article  CAS  PubMed  Google Scholar 

  127. Llombart-Cussac, A. et al. Neoadjuvant letrozole plus palbociclib in patients (pts) with hormone receptor (HR)-positive/HER2-negative early breast cancer (EBC) with baseline Ki67 ≥20% and an Oncotype DX Breast Recurrence Score (R) result (RS) ≥18: DxCARTES [abstract]. Cancer Res. 82 (Suppl. 4), P5-16-12 (2022).

    Article  Google Scholar 

  128. Sorlie, T. et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc. Natl Acad. Sci. USA 100, 8418–8423 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Lehmann, B. D. et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J. Clin. Invest. 121, 2750–2767 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Finn, R. S. et al. PD 0332991, a selective cyclin D kinase 4/6 inhibitor, preferentially inhibits proliferation of luminal estrogen receptor-positive human breast cancer cell lines in vitro. Breast Cancer Res. 11, R77 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Witkiewicz, A. K., Cox, D. & Knudsen, E. S. CDK4/6 inhibition provides a potent adjunct to Her2-targeted therapies in preclinical breast cancer models. Genes Cancer 5, 261–272 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Goel, S. et al. Overcoming therapeutic resistance in HER2-positive breast cancers with CDK4/6 inhibitors. Cancer Cell 29, 255–269 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Gianni, L. et al. Neoadjuvant treatment with trastuzumab and pertuzumab plus palbociclib and fulvestrant in HER2-positive, ER-positive breast cancer (NA-PHER2): an exploratory, open-label, phase 2 study. Lancet Oncol. 19, 249–256 (2018).

    Article  CAS  PubMed  Google Scholar 

  134. Gianni, L. et al. Effects of neoadjuvant trastuzumab, pertuzumab and palbociclib on Ki67 in HER2 and ER-positive breast cancer. NPJ Breast Cancer 8, 1 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Gianni, L. et al. Efficacy and safety of neoadjuvant pertuzumab and trastuzumab in women with locally advanced, inflammatory, or early HER2-positive breast cancer (NeoSphere): a randomised multicentre, open-label, phase 2 trial. Lancet Oncol. 13, 25–32 (2012).

    Article  CAS  PubMed  Google Scholar 

  136. Ciruelos, E. et al. Palbociclib and trastuzumab in HER2-positive advanced breast cancer: results from the phase II SOLTI-1303 PATRICIA trial. Clin. Cancer Res. 26, 5820–5829 (2020).

    Article  CAS  PubMed  Google Scholar 

  137. Tolaney, S. M. et al. Abemaciclib plus trastuzumab with or without fulvestrant versus trastuzumab plus standard-of-care chemotherapy in women with hormone receptor-positive, HER2-positive advanced breast cancer (monarcHER): a randomised, open-label, phase 2 trial. Lancet Oncol. 21, 763–775 (2020).

    Article  CAS  PubMed  Google Scholar 

  138. André, F. et al. Final overall survival (OS) for abemaciclib plus trastuzumab +/− fulvestrant versus trastuzumab plus chemotherapy in patients with HR+, HER2+ advanced breast cancer (monarcHER): a randomized, open-label, phase II trial [abstract LBA18]. Ann. Oncol. 33 (Suppl. 7), S1386–S1387 (2022).

    Article  Google Scholar 

  139. Schmid, P. et al. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N. Engl. J. Med. 379, 2108–2121 (2018).

    Article  CAS  PubMed  Google Scholar 

  140. Cortes, J. et al. Pembrolizumab plus chemotherapy versus placebo plus chemotherapy for previously untreated locally recurrent inoperable or metastatic triple-negative breast cancer (KEYNOTE-355): a randomised, placebo-controlled, double-blind, phase 3 clinical trial. Lancet 396, 1817–1828 (2020).

    Article  PubMed  Google Scholar 

  141. Rugo, H. S. et al. Abemaciclib in combination with pembrolizumab for HR+, HER2− metastatic breast cancer: phase 1b study. NPJ Breast Cancer 8, 118 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Yuan, Y. et al. Phase I/II trial of palbociclib, pembrolizumab and letrozole in patients with hormone receptor-positive metastatic breast cancer. Eur. J. Cancer 154, 11–20 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Goodman, A. Palbociclib/fulvestrant does not improve progression-free survival after progression on a CDK4/6 inhibitor in metastatic breast cancer. The ASCO Post https://ascopost.com/issues/january-25-2023/palbociclibfulvestrant-does-not-improve-progression-free-survival-after-progression-on-a-cdk46-inhibitor-in-metastatic-breast-cancer/ (2023).

  144. André, F. et al. Pooled ctDNA analysis of the MONALEESA (ML) phase III advanced breast cancer (ABC) trials. J. Clin. Oncol. 38, 1009 (2020).

    Article  Google Scholar 

  145. Ciriello, G. et al. Comprehensive molecular portraits of invasive lobular breast cancer. Cell 163, 506–519 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Knudsen, E. S. et al. Pan-cancer molecular analysis of the RB tumor suppressor pathway. Commun. Biol. 3, 158 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Safonov, A. M. et al. Allelic dosage of RB1 drives CDK4/6 inhibitor treatment resistance in metastatic breast cancer. J. Clin. Oncol. 40, 1010 (2022).

    Article  Google Scholar 

  148. Razavi, P. et al. The genomic landscape of endocrine-resistant advanced breast cancers. Cancer Cell 34, 427–438.e6 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Li, Z. et al. Loss of the FAT1 tumor suppressor promotes resistance to CDK4/6 inhibitors via the Hippo pathway. Cancer Cell 34, 893–905.e8 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Finn, R. S. et al. Biomarker analyses of response to cyclin-dependent kinase 4/6 inhibition and endocrine therapy in women with treatment-naive metastatic breast cancer. Clin. Cancer Res. 26, 110–121 (2020).

    Article  CAS  PubMed  Google Scholar 

  151. Finn, R. S. et al. Treatment effect of palbociclib plus endocrine therapy by prognostic and intrinsic subtype and biomarker analysis in patients with bone-only disease: a joint analysis of PALOMA-2 and PALOMA-3 clinical trials. Breast Cancer Res. Treat. 184, 23–35 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Prat, A. et al. Correlative biomarker analysis of intrinsic subtypes and efficacy across the MONALEESA phase III studies. J. Clin. Oncol. 39, 1458–1467 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Pascual, T. et al. HARMONIA SOLTI-2101/AFT-58: a head-to-head phase III study comparing ribociclib (RIB) and palbociclib (PAL) in patients (pts) with hormone receptor-positive/HER2-negative/HER2-enriched (HR+/HER2-/HER2-E) advanced breast cancer (ABC) [abstract 272TiP]. Ann. Oncol. 33 (Suppl. 7), S662 (2022).

    Article  Google Scholar 

  154. Turner, N. C. et al. Cyclin E1 expression and palbociclib efficacy in previously treated hormone receptor-positive metastatic breast cancer. J. Clin. Oncol. 37, 1169–1178 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Dean, J. L., Thangavel, C., McClendon, A. K., Reed, C. A. & Knudsen, E. S. Therapeutic CDK4/6 inhibition in breast cancer: key mechanisms of response and failure. Oncogene 29, 4018–4032 (2010).

    Article  CAS  PubMed  Google Scholar 

  156. Sakurikar, N., Thompson, R., Montano, R. & Eastman, A. A subset of cancer cell lines is acutely sensitive to the Chk1 inhibitor MK-8776 as monotherapy due to CDK2 activation in S phase. Oncotarget 7, 1380–1394 (2016).

    Article  PubMed  Google Scholar 

  157. Chen, X. et al. Cyclin E overexpression sensitizes triple-negative breast cancer to Wee1 kinase inhibition. Clin. Cancer Res. 24, 6594–6610 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Gallo, D. et al. CCNE1 amplification is synthetic lethal with PKMYT1 kinase inhibition. Nature 604, 749–756 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. De Angelis, C. et al. Activation of the IFN signaling pathway is associated with resistance to CDK4/6 inhibitors and immune checkpoint activation in ER-positive breast cancer. Clin. Cancer Res. 27, 4870–4882 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Loibl, S. et al. Development and validation of a composite biomarker predictive of palbociclib + endocrine treatment benefit in early breast cancer: PENELOPE-B and PALLAS trials [abstract]. Cancer Res. 83 (Suppl. 5), PD17-05 (2023).

    Article  Google Scholar 

  161. Wander, S. A. et al. The genomic landscape of intrinsic and acquired resistance to cyclin-dependent kinase 4/6 inhibitors in patients with hormone receptor-positive metastatic breast cancer. Cancer Discov. 10, 1174–1193 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Herrera-Abreu, M. T. et al. Early adaptation and acquired resistance to CDK4/6 inhibition in estrogen receptor-positive breast cancer. Cancer Res 76, 2301–2313 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. O’Leary, B. et al. The genetic landscape and clonal evolution of breast cancer resistance to palbociclib plus fulvestrant in the PALOMA-3 trial. Cancer Discov. ery 8, 1390–1403 (2018).

    Article  Google Scholar 

  164. Condorelli, R. et al. Polyclonal RB1 mutations and acquired resistance to CDK 4/6 inhibitors in patients with metastatic breast cancer. Ann. Oncol. 29, 640–645 (2018).

    Article  CAS  PubMed  Google Scholar 

  165. Opyrchal, M. et al. Aurora-A mitotic kinase induces endocrine resistance through down-regulation of ERα expression in initially ERα+ breast cancer cells. PLoS ONE 9, e96995 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Gong, X. et al. Aurora a kinase inhibition is synthetic lethal with loss of the RB1 tumor suppressor gene. Cancer Discov. 9, 248–263 (2019).

    Article  CAS  PubMed  Google Scholar 

  167. Oser, M. G. et al. Cells lacking the RB1 tumor suppressor gene are hyperdependent on aurora B kinase for survival. Cancer Discov. 9, 230–247 (2019).

    Article  CAS  PubMed  Google Scholar 

  168. Haddad, T. C. et al. Evaluation of alisertib alone or combined with fulvestrant in patients with endocrine-resistant advanced breast cancer: the phase 2 TBCRC041 randomized clinical trial. JAMA Oncol. 9, 815–824 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Soria-Bretones, I. et al. The spindle assembly checkpoint is a therapeutic vulnerability of CDK4/6 inhibitor-resistant ER+ breast cancer with mitotic aberrations. Sci. Adv. 8, eabq4293 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Yang, C. et al. Acquired CDK6 amplification promotes breast cancer resistance to CDK4/6 inhibitors and loss of ER signaling and dependence. Oncogene 36, 2255–2264 (2017).

    Article  CAS  PubMed  Google Scholar 

  171. Cornell, L., Wander, S. A., Visal, T., Wagle, N. & Shapiro, G. I. MicroRNA-mediated suppression of the TGF-β pathway confers transmissible and reversible CDK4/6 inhibitor resistance. Cell Rep. 26, 2667–2680.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Li, Q. et al. INK4 tumor suppressor proteins mediate resistance to CDK4/6 kinase inhibitors. Cancer Discov. 12, 356–371 (2022).

    Article  CAS  PubMed  Google Scholar 

  173. Costa, C. et al. PTEN loss mediates clinical cross-resistance to CDK4/6 and PI3Kα inhibitors in breast cancer. Cancer Discov. 10, 72–85 (2020).

    Article  CAS  PubMed  Google Scholar 

  174. Turner, N. C. et al. Capivasertib in hormone receptor-positive advanced breast cancer. N. Engl. J. Med. 388, 2058–2070 (2023).

    Article  CAS  PubMed  Google Scholar 

  175. Turner, N., Sharpe, R., Johnson, D., Pearson, A. & Ashworth, A. FGFR signalling drives the growth of triple negative and basal-like breast cancer cell lines both in vitro and in vivo. Cancer Res. 70, 5275–5286 (2010).

    Article  Google Scholar 

  176. Mao, P. et al. Acquired FGFR and FGF alterations confer resistance to estrogen receptor (ER) targeted therapy in ER+ metastatic breast cancer. Clin. Cancer Res. 26, 5974–5989 (2020).

    Article  CAS  PubMed  Google Scholar 

  177. Formisano, L. et al. Aberrant FGFR signaling mediates resistance to CDK4/6 inhibitors in ER plus breast cancer. Nat. Commun. 10, 1373 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Goetz, M. P. et al. Acquired genomic alterations in circulating tumor DNA from patients receiving abemaciclib alone or in combination with endocrine therapy. J. Clin. Oncol. 38, 3519 (2020).

    Article  Google Scholar 

  179. Pandey, K. et al. Combined CDK2 and CDK4/6 inhibition overcomes palbociclib resistance in breast cancer by enhancing senescence. Cancers 12, 3566 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Kaklamani, V. et al. Oral elacestrant vs standard-of-care in estrogen receptor-positive, HER2-negative (ER+/HER2-) advanced or metastatic breast cancer (mBC) without detectable ESR1 mutation (EMERALD): Subgroup analysis by prior duration of CDK4/6i plus endocrine therapy (ET). J. Clin. Onc. 41 (no. 16_suppl.) 1070-1070 (2023).

    Article  Google Scholar 

  181. US Food and Drug Administration. FDA approves elacestrant for ER-positive, HER2-negative, ESR1-mutated advanced or metastatic breast cancer. FDA https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-elacestrant-er-positive-her2-negative-esr1-mutated-advanced-or-metastatic-breast-cancer (2023).

  182. Nayar, U. et al. Acquired HER2 mutations in ER+ metastatic breast cancer confer resistance to estrogen receptor-directed therapies. Nat. Genet. 51, 207–216 (2019).

    Article  CAS  PubMed  Google Scholar 

  183. Croessmann, S. et al. Combined blockade of activating ERBB2 mutations and ER results in synthetic lethality of ER+/HER2 mutant breast cancer. Clin. Cancer Res. 25, 277–289 (2019).

    Article  CAS  PubMed  Google Scholar 

  184. Bose, R. et al. Activating HER2 mutations in HER2 gene amplification negative breast cancer. Cancer Discov. 3, 224–237 (2013).

    Article  CAS  PubMed  Google Scholar 

  185. Jhaveri, K. L. et al. Neratinib plus fulvestrant plus trastzuzumab (N+F+T) for hormone receptor-positive (HR+), HER2-negative, HER2-mutant metastatic breast cancer (MBC): outcomes and biomarker analysis from the SUMMIT trial [abstract]. J. Clin. Oncol. 40 (Suppl. 16), 1028 (2022).

    Article  Google Scholar 

  186. Ma, C. X. et al. A phase II trial of neratinib (NER) or NER plus fulvestrant (FUL) (N+F) in HER2 mutant, non-amplified (HER2mut) metastatic breast cancer (MBC): part II of MutHER [abstract]. Cancer Res. 81 (Suppl. 13), CT026 (2021).

    Article  Google Scholar 

  187. Bidard, F. C. et al. Switch to fulvestrant and palbociclib versus no switch in advanced breast cancer with rising ESR1 mutation during aromatase inhibitor and palbociclib therapy (PADA-1): a randomised, open-label, multicentre, phase 3 trial. Lancet Oncol. 23, 1367–1377 (2022).

    Article  CAS  PubMed  Google Scholar 

  188. André, F. et al. Alpelisib for PIK3CA-mutated, hormone receptor-positive advanced breast cancer. N. Engl. J. Med. 380, 1929–1940 (2019).

    Article  PubMed  Google Scholar 

  189. Kalinsky, K. et al. A randomized, phase II trial of fulvestrant or exemestane with or without ribociclib after progression on anti-estrogen therapy plus cyclin-dependent kinase 4/6 inhibition (CDK 4/6i) in patients (pts) with unresectable or hormone receptor positive (HR+), HER2-negative metastatic breast cancer (MBC): MAINTAIN trial [abstract]. J. Clin. Oncol. 40 (Suppl. 17), LBA1004 (2022).

    Article  Google Scholar 

  190. Mayer, E. L. et al. Palbociclib after CDK4/6i and endocrine therapy (PACE): a randomised phase II study of fulvestrant, palbociclib and avelumab for endocrine pre-treated ER+/HER2- metastatic breast cancer. 2022 San Antonia Breast Cancer Symposium. Abstract GS3-06. (8 December 2022).

  191. Llombart-Cussac, A. et al. Second-line endocrine therapy (ET) with or without palbociclib (P) maintenance in patients (pts) with hormone receptor-positive (HR[+])/human epidermal growth factor receptor 2-negative (HER2[−]) advanced breast cancer (ABC): PALMIRA trial [abstract]. J. Clin. Oncol. 41 (Suppl. 16), 1001 (2023).

    Article  Google Scholar 

  192. Wander, S. A. et al. Clinical outcomes with abemaciclib after prior CDK4/6 inhibitor progression in breast cancer: a multicenter experience. J. Natl Compr. Canc. Netw. https://doi.org/10.6004/jnccn.2020.7662 (2021).

  193. Darrigues, L. et al. Circulating tumor DNA as a dynamic biomarker of response to palbociclib and fulvestrant in metastatic breast cancer patients. Breast Cancer Res. 23, 31 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Yap, T. A. et al. First-in-human first-in-class phase 1/2a study of the next generation CDK4-selective inhibitor PF-07220060 in patients (pts) with advanced solid tumors, enriched for HR+ HER2− mBC who progressed on prior CDK4/6 inhibitors and endocrine therapy [abstract]. J. Clin. Oncol. 41 (Suppl. 16), 3009 (2023).

    Article  Google Scholar 

  195. Rizzolio, F., Tuccinardi, T., Caligiuri, I., Lucchetti, C. & Giordano, A. CDK inhibitors: from the bench to clinical trials. Curr. Drug Targets 11, 279–290 (2010).

    Article  CAS  PubMed  Google Scholar 

  196. Yap, T. et al. Abstract P5-16-06: A first-in-human phase 1/2a dose escalation/expansion study of the first-in-class CDK2/4/6 inhibitor PF-06873600 alone or in combination with endocrine therapy in patients with breast or ovarian cancer. Cancer Res. 82 (Suppl. 4), P5-16-06 (2022).

    Article  Google Scholar 

  197. Brown, V. et al. Abstract 2306: BLU-222, an investigational, potent, and selective CDK2 inhibitor, demonstrated robust antitumor activity in CCNE1-amplified ovarian cancer models. Cancer Res. 82 (Suppl. 12), 2306 (2022).

    Article  Google Scholar 

  198. Choi, Y. J. et al. Development of a selective CDK2-E inhibitor in CCNE driven cancers [abstract]. Cancer Res 81 (Suppl. 13), 1279 (2021).

    Article  Google Scholar 

  199. Vora, S. R. et al. CDK 4/6 inhibitors sensitize PIK3CA mutant breast cancer to PI3K inhibitors. Cancer Cell 26, 136–149 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. O’Brien, N. A. et al. Targeting activated PI3K/mTOR signaling overcomes acquired resistance to CDK4/6-based therapies in preclinical models of hormone receptor-positive breast cancer. Breast Cancer Res. 22, 89 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Tolaney, S. M. et al. Phase Ib study of ribociclib plus fulvestrant and ribociclib plus fulvestrant plus PI3K inhibitor (alpelisib or buparlisib) for HR+ advanced breast cancer. Clin. Cancer Res. 27, 418–428 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

L.M. and N.C.T. researched data for the manuscript and L.M. wrote the manuscript. All authors made a substantial contribution to discussions of content and edited and/or reviewed the manuscript prior to submission.

Corresponding author

Correspondence to Nicholas C. Turner.

Ethics declarations

Competing interests

L.M. and S.L. declare no competing interests. N.C.T. has acted as an adviser to Astra Zeneca, Exact Sciences, Gilead, GlaxoSmithKline, Guardant, Inivata, Lilly, Novartis, Pfizer, Relay therapeutics, Repare therapeutics, Roche/Genentech and Zentalis, and has received research funding from Astra Zeneca, Guardant Health, Inivata, Invitae, Merck Sharpe and Dohme, Natera, Personalis, Pfizer and Roche/Genentech.

Peer review

Peer review information

Nature Reviews Clinical Oncology thanks C.L. Arteaga and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morrison, L., Loibl, S. & Turner, N.C. The CDK4/6 inhibitor revolution — a game-changing era for breast cancer treatment. Nat Rev Clin Oncol 21, 89–105 (2024). https://doi.org/10.1038/s41571-023-00840-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-023-00840-4

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer