Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Quantitative PET-based biomarkers in lymphoma: getting ready for primetime

Abstract

The use of functional quantitative biomarkers extracted from routine PET–CT scans to characterize clinical responses in patients with lymphoma is gaining increased attention, and these biomarkers can outperform established clinical risk factors. Total metabolic tumour volume enables individualized estimation of survival outcomes in patients with lymphoma and has shown the potential to predict response to therapy suitable for  risk-adapted treatment approaches in clinical trials. The deployment of machine learning tools in molecular imaging research can assist in recognizing complex patterns and, with image classification, in tumour identification and segmentation of data from PET–CT scans. Initial studies using fully automated approaches to calculate metabolic tumour volume and other PET-based biomarkers have demonstrated appropriate correlation with calculations from experts, warranting further testing in large-scale studies. The extraction of computer-based quantitative tumour characterization through radiomics can provide a comprehensive view of phenotypic heterogeneity that better captures the molecular and functional features of the disease. Additionally, radiomics can be integrated with genomic data to provide more accurate prognostic information. Further improvements in PET-based biomarkers are imminent, although their incorporation into clinical decision-making currently has methodological shortcomings that need to be addressed with confirmatory prospective validation in selected patient populations. In this Review, we discuss the current knowledge, challenges and opportunities in the integration of quantitative PET-based biomarkers in clinical trials and the routine management of patients with lymphoma.

Key points

  • [18F]-Fluorodeoxyglucose (FDG)-PET–CT scans are routinely used for initial staging and assessment of treatment response in patients with lymphoma; however, the development of novel effective therapies has challenged the predictive power of routine PET–CT scans, underscoring the need for improved PET-based biomarkers.

  • Metabolic tumour volume is a quantitative PET-based biomarker that enables assessment of total disease burden (FDG-avid areas) and has prognostic value across several lymphoma subtypes independently of the assessment method, thus having potential for adoption in various clinical decision-making scenarios.

  • The deployment of deep learning-driven segmentation tools in molecular imaging enables rapid processing and normalization of data and can therefore improve risk stratification and enable scaling up of the workflows for PET-based biomarker assessment.

  • Radiomics is a rapidly evolving tool that involves high-throughput analysis of computer-extracted quantitative imaging data with the aim of capturing the whole tumour phenotype in a non-invasive manner; radiomics studies focused on PET-based biomarkers are ongoing, with promising results.

  • The identification of predictive biomarkers remains an unmet need in lymphoma research; imaging biomarkers have shown promise in pretreatment risk assessment and can potentially be used in risk-adapted clinical trials.

  • After much-needed standardization, we expect PET-based biomarkers to be incorporated in clinical trials and subsequently into decision-making models to enable the selection of the patients who will derive the greatest benefit from specific therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: MTV and TLG in a patient with advanced-stage diffuse large B cell lymphoma.
Fig. 2: Potential applications of deep learning-driven artificial intelligence in the clinical management of lymphoma.
Fig. 3: Workflow of radiomics analyses in lymphoma.
Fig. 4: Quantitative PET-based imaging biomarkers.
Fig. 5: Schematic overview of a factorial design for a potential PET-based risk-adapted clinical trial involving patients with Hodgkin lymphoma.

Similar content being viewed by others

References

  1. Tilly, H. et al. Polatuzumab vedotin in previously untreated diffuse large B-cell lymphoma. N. Engl. J. Med. 386, 351–363 (2022).

    Article  CAS  PubMed  Google Scholar 

  2. Phillips, T. et al. Epcoritamab monotherapy provides deep and durable responses including minimal residual disease (MRD) negativity: novel subgroup analyses in patients with relapsed/refractory (R/R) large B-cell lymphoma (LBCL). Blood 140, 9443–9445 (2022).

    Article  Google Scholar 

  3. Olszewski, A. J. et al. Mosunetuzumab with polatuzumab vedotin is effective and has a manageable safety profile in patients aged <65 and ≥65 years with relapsed/refractory diffuse large B-cell lymphoma (R/R DLBCL) and ≥1 prior therapy: subgroup analysis of a phase Ib/II study. Blood 140, 3757–3759 (2022).

    Article  Google Scholar 

  4. Locke, F. L. et al. Axicabtagene ciloleucel as second-line therapy for large B-cell lymphoma. N. Engl. J. Med. 386, 640–654 (2022).

    Article  CAS  PubMed  Google Scholar 

  5. Kamdar, M. et al. Lisocabtagene maraleucel versus standard of care with salvage chemotherapy followed by autologous stem cell transplantation as second-line treatment in patients with relapsed or refractory large B-cell lymphoma (TRANSFORM): results from an interim analysis of an open-label, randomised, phase 3 trial. Lancet 399, 2294–2308 (2022).

    Article  CAS  PubMed  Google Scholar 

  6. Dickinson, M. J. et al. Glofitamab for relapsed or refractory diffuse large B-cell lymphoma. N. Engl. J. Med. 387, 2220–2231 (2022).

    Article  CAS  PubMed  Google Scholar 

  7. Budde, L. E. et al. Safety and efficacy of mosunetuzumab, a bispecific antibody, in patients with relapsed or refractory follicular lymphoma: a single-arm, multicentre, phase 2 study. Lancet Oncol. 23, 1055–1065 (2022).

    Article  CAS  PubMed  Google Scholar 

  8. Ansell, S. M. et al. Overall survival with brentuximab vedotin in stage III or IV Hodgkin’s lymphoma. N. Engl. J. Med. 387, 310–320 (2022).

    Article  CAS  PubMed  Google Scholar 

  9. International Non-Hodgkin’s Lymphoma Prognostic Factors Project. A predictive model for aggressive non-Hodgkin’s lymphoma. N. Engl. J. Med. 329, 987–994 (1993).

    Article  Google Scholar 

  10. Solal-Céligny, P. et al. Follicular lymphoma international prognostic index. Blood 104, 1258–1265 (2004).

    Article  PubMed  Google Scholar 

  11. Hasenclever, D. & Diehl, V. A prognostic score for advanced Hodgkin’s disease. International Prognostic Factors Project on Advanced Hodgkin’s Disease. N. Engl. J. Med. 339, 1506–1514 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Cheson, B. D. et al. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J. Clin. Oncol. 32, 3059–3068 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Cheson, B. D. et al. Revised response criteria for malignant lymphoma. J. Clin. Oncol. 25, 579–586 (2007).

    Article  PubMed  Google Scholar 

  14. Barrington, S. F. et al. Role of imaging in the staging and response assessment of lymphoma: consensus of the International Conference on Malignant Lymphomas Imaging Working Group. J. Clin. Oncol. 32, 3048–3058 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Younes, A. et al. International Working Group consensus response evaluation criteria in lymphoma (RECIL 2017). Ann. Oncol. 28, 1436–1447 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Voorhees, T. J. et al. Pretherapy metabolic tumor volume is associated with response to CD30 CAR T cells in Hodgkin lymphoma. Blood Adv. 6, 1255–1263 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Alderuccio, J. P. et al. Prognostic value of presalvage metabolic tumor volume in patients with relapsed/refractory diffuse large B-cell lymphoma. Leuk. Lymphoma 63, 43–53 (2022).

    Article  CAS  PubMed  Google Scholar 

  18. Cottereau, A. S. et al. Risk stratification in diffuse large B-cell lymphoma using lesion dissemination and metabolic tumor burden calculated from baseline PET/CT. Ann. Oncol. 32, 404–411 (2021).

    Article  PubMed  Google Scholar 

  19. Zucca, E. et al. Prognostic models integrating quantitative parameters from baseline and interim positron emission computed tomography in patients with diffuse large B-cell lymphoma: post-hoc analysis from the SAKK38/07 clinical trial. Hematol. Oncol. 38, 715–725 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Vercellino, L. et al. High total metabolic tumor volume at baseline predicts survival independent of response to therapy. Blood 135, 1396–1405 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dean, E. A. et al. High metabolic tumor volume is associated with decreased efficacy of axicabtagene ciloleucel in large B-cell lymphoma. Blood Adv. 4, 3268–3276 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ceriani, L. et al. SAKK38/07 study: integration of baseline metabolic heterogeneity and metabolic tumor volume in DLBCL prognostic model. Blood Adv. 4, 1082–1092 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mehta-Shah, N. et al. Baseline and interim functional imaging with PET effectively risk stratifies patients with peripheral T-cell lymphoma. Blood Adv. 3, 187–197 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Meignan, M. Quantitative FDG-PET: a new biomarker in PMBCL. Blood 126, 924–926 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. NCCN. Clinical Practice Guidelines in Oncology. B-cell lymphomas, v.4.2023 – Annual – 06/2/23. nccn.org, https://www.nccn.org/professionals/physician_gls/pdf/b-cell.pdf (2023).

  26. Weiler-Sagie, M., Kagna, O., Dann, E. J., Ben-Barak, A. & Israel, O. Characterizing bone marrow involvement in Hodgkin’s lymphoma by FDG-PET/CT. Eur. J. Nucl. Med. Mol. Imaging 41, 1133–1140 (2014).

    Article  PubMed  Google Scholar 

  27. Nakajima, R. et al. Baseline FDG-PET/CT detects bone marrow involvement in follicular lymphoma and provides relevant prognostic information. Blood Adv. 4, 1812–1823 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Voltin, C. A. et al. Value of bone marrow biopsy in Hodgkin lymphoma patients staged by FDG PET: results from the German Hodgkin Study Group trials HD16, HD17, and HD18. Ann. Oncol. 29, 1926–1931 (2018).

    Article  PubMed  Google Scholar 

  29. El-Galaly, T. C. et al. Routine bone marrow biopsy has little or no therapeutic consequence for positron emission tomography/computed tomography-staged treatment-naive patients with Hodgkin lymphoma. J. Clin. Oncol. 30, 4508–4514 (2012).

    Article  PubMed  Google Scholar 

  30. Berthet, L. et al. In newly diagnosed diffuse large B-cell lymphoma, determination of bone marrow involvement with 18F-FDG PET/CT provides better diagnostic performance and prognostic stratification than does biopsy. J. Nucl. Med. 54, 1244–1250 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Zwarthoed, C. et al. Prognostic value of bone marrow tracer uptake pattern in baseline PET scans in Hodgkin lymphoma: results from an international collaborative study. J. Nucl. Med. 58, 1249–1254 (2017).

    Article  CAS  PubMed  Google Scholar 

  32. Khan, A. B. et al. PET-CT staging of DLBCL accurately identifies and provides new insight into the clinical significance of bone marrow involvement. Blood 122, 61–67 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. El-Najjar, I. et al. The value of semiquantitative analysis in identifying diffuse bone marrow involvement in follicular lymphoma. Nucl. Med. Commun. 35, 311–315 (2014).

    Article  PubMed  Google Scholar 

  34. Ricard, F. et al. Application of the Lugano classification for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the PRoLoG consensus initiative (Part 1-Clinical). J. Nucl. Med. 64, 102–108 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Itti, E. et al. An international confirmatory study of the prognostic value of early PET/CT in diffuse large B-cell lymphoma: comparison between Deauville criteria and ΔSUVmax. Eur. J. Nucl. Med. Mol. Imaging 40, 1312–1320 (2013).

    Article  PubMed  Google Scholar 

  36. Zijlstra, J. M., Burggraaff, C. N., Kersten, M. J. & Barrington, S. F. FDG-PET as a biomarker for early response in diffuse large B-cell lymphoma as well as in Hodgkin lymphoma? Ready for implementation in clinical practice? Haematologica 101, 1279–1283 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Barrington, S. F. & Kluge, R. FDG PET for therapy monitoring in Hodgkin and non-Hodgkin lymphomas. Eur. J. Nucl. Med. Mol. Imaging 44, 97–110 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  38. LaCasce, A. S. et al. Positron emission tomography-adapted therapy in bulky stage I/II classic Hodgkin lymphoma: CALGB 50801 (Alliance). J. Clin. Oncol. 41, 1023–1034 (2023).

    Article  CAS  PubMed  Google Scholar 

  39. Straus, D. J. et al. CALGB 50604: risk-adapted treatment of nonbulky early-stage Hodgkin lymphoma based on interim PET. Blood 132, 1013–1021 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Stephens, D. M. et al. Five-year follow-up of SWOG S0816: limitations and values of a PET-adapted approach with stage III/IV Hodgkin lymphoma. Blood 134, 1238–1246 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Cheson, B. D. et al. Refinement of the Lugano classification lymphoma response criteria in the era of immunomodulatory therapy. Blood 128, 2489–2496 (2016).

    Article  CAS  PubMed  Google Scholar 

  42. Cheson, B. D. & Meignan, M. Current role of functional imaging in the management of lymphoma. Curr. Oncol. Rep. 23, 144 (2021).

    Article  PubMed  Google Scholar 

  43. Albano, D. et al. Clinical and prognostic role of interim 18F-FDG PET/CT in elderly Hodgkin lymphoma: a dual-center experience. Leuk. Lymphoma 61, 3209–3216 (2020).

    Article  CAS  PubMed  Google Scholar 

  44. Johnson, P. et al. Adapted treatment guided by interim PET-CT scan in advanced Hodgkin’s lymphoma. N. Engl. J. Med. 374, 2419–2429 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Gallamini, A. et al. Early chemotherapy intensification with escalated BEACOPP in patients with advanced-stage Hodgkin lymphoma with a positive interim positron emission tomography/computed tomography scan after two ABVD cycles: long-term results of the GITIL/FIL HD 0607 trial. J. Clin. Oncol. 36, 454–462 (2018).

    Article  CAS  PubMed  Google Scholar 

  46. Dores, G. M., Curtis, R. E., Dalal, N. H., Linet, M. S. & Morton, L. M. Cause-specific mortality following initial chemotherapy in a population-based cohort of patients with classical Hodgkin lymphoma, 2000-2016. J. Clin. Oncol. 38, 4149–4162 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gallamini, A. et al. Consolidation radiotherapy could be safely omitted in advanced Hodgkin lymphoma with large nodal mass in complete metabolic response after ABVD: final analysis of the randomized GITIL/FIL HD0607 trial. J. Clin. Oncol. 38, 3905–3913 (2020).

    Article  CAS  PubMed  Google Scholar 

  48. Borchmann, P. et al. PET-guided omission of radiotherapy in early-stage unfavourable Hodgkin lymphoma (GHSG HD17): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 22, 223–234 (2021).

    Article  CAS  PubMed  Google Scholar 

  49. Casasnovas, R. O. et al. PET-adapted treatment for newly diagnosed advanced Hodgkin lymphoma (AHL2011): a randomised, multicentre, non-inferiority, phase 3 study. Lancet Oncol. 20, 202–215 (2019).

    Article  PubMed  Google Scholar 

  50. Radford, J. et al. Results of a trial of PET-directed therapy for early-stage Hodgkin’s lymphoma. N. Engl. J. Med. 372, 1598–1607 (2015).

    Article  CAS  PubMed  Google Scholar 

  51. Illidge, T. M. et al. Maximum tumor diameter is associated with event-free survival in PET-negative patients with stage I/IIA Hodgkin lymphoma. Blood Adv. 4, 203–206 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Gallamini, A. et al. Early interim 2-[18F]fluoro-2-deoxy-D-glucose positron emission tomography is prognostically superior to international prognostic score in advanced-stage Hodgkin’s lymphoma: a report from a joint Italian-Danish study. J. Clin. Oncol. 25, 3746–3752 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Hutchings, M. et al. FDG-PET after two cycles of chemotherapy predicts treatment failure and progression-free survival in Hodgkin lymphoma. Blood 107, 52–59 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Kobe, C. et al. Outcome-based interpretation of early interim PET in advanced-stage Hodgkin lymphoma. Blood 132, 2273–2279 (2018).

    Article  CAS  PubMed  Google Scholar 

  55. Seam, P., Juweid, M. E. & Cheson, B. D. The role of FDG-PET scans in patients with lymphoma. Blood 110, 3507–3516 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Chen, A. et al. Early 18F-FDG PET/CT response predicts survival in relapsed or refractory Hodgkin lymphoma treated with nivolumab. J. Nucl. Med. 61, 649–654 (2020).

    Article  CAS  PubMed  Google Scholar 

  57. Borchmann, P. et al. Progression-free survival of early interim PET-positive patients with advanced stage Hodgkin’s lymphoma treated with BEACOPP(escalated) alone or in combination with rituximab (HD18): an open-label, international, randomised phase 3 study by the German Hodgkin Study Group. Lancet Oncol. 18, 454–463 (2017).

    Article  CAS  PubMed  Google Scholar 

  58. Kreissl, S. et al. PET-guided eBEACOPP treatment of advanced-stage Hodgkin lymphoma (HD18): follow-up analysis of an international, open-label, randomised, phase 3 trial. Lancet Haematol. 8, e398–e409 (2021).

    Article  CAS  PubMed  Google Scholar 

  59. NCCN. Clinical Practice Guidelines in Oncology. Hodgkin lymphoma, v. A. J., 2023. nccn.org, https://www.nccn.org/professionals/physician_gls/pdf/hodgkins.pdf (2023).

  60. Lynch, R. C. et al. Concurrent pembrolizumab with AVD for untreated classic Hodgkin lymphoma. Blood 141, 2576–2586 (2023).

    CAS  PubMed  Google Scholar 

  61. Dührsen, U. et al. Positron emission tomography-guided therapy of aggressive non-Hodgkin lymphomas (PETAL): a multicenter, randomized phase III trial. J. Clin. Oncol. 36, 2024–2034 (2018).

    Article  PubMed  Google Scholar 

  62. Moskowitz, C. H. et al. Risk-adapted dose-dense immunochemotherapy determined by interim FDG-PET in advanced-stage diffuse large B-cell lymphoma. J. Clin. Oncol. 28, 1896–1903 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Persky, D. O. et al. Positron emission tomography-directed therapy for patients with limited-stage diffuse large B-cell lymphoma: results of intergroup national clinical trials network study S1001. J. Clin. Oncol. 38, 3003–3011 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Kurch, L. et al. Interim PET in diffuse large B-cell lymphoma. J. Nucl. Med. 62, 1068–1074 (2021).

    Article  CAS  PubMed  Google Scholar 

  65. Lin, C. et al. Early 18F-FDG PET for prediction of prognosis in patients with diffuse large B-cell lymphoma: SUV-based assessment versus visual analysis. J. Nucl. Med. 48, 1626–1632 (2007).

    Article  PubMed  Google Scholar 

  66. Schöder, H. et al. Prognostic value of interim FDG-PET in diffuse large cell lymphoma: results from the CALGB 50303 clinical trial. Blood 135, 2224–2234 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Casasnovas, R. O. et al. SUVmax reduction improves early prognosis value of interim positron emission tomography scans in diffuse large B-cell lymphoma. Blood 118, 37–43 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Michaud, L. et al. Prognostic value of 18F-FDG PET/CT in diffuse large B-cell lymphoma treated with a risk-adapted immunochemotherapy regimen. J. Nucl. Med. https://doi.org/10.2967/jnumed.122.264740 (2022).

    Article  PubMed  Google Scholar 

  69. Eertink, J. J. et al. Optimal timing and criteria of interim PET in DLBCL: a comparative study of 1692 patients. Blood Adv. 5, 2375–2384 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Chamuleau, M. E. D. et al. Treatment of patients with MYC rearrangement positive large B-cell lymphoma with R-CHOP plus lenalidomide: results of a multicenter HOVON phase II trial. Haematologica 105, 2805–2812 (2020).

    Article  CAS  PubMed  Google Scholar 

  71. Eertink, J. J. et al. Aberrant patterns of PET response during treatment for DLBCL patients with MYC gene rearrangements. Eur. J. Nucl. Med. Mol. Imaging 49, 943–952 (2022).

    Article  CAS  PubMed  Google Scholar 

  72. Dunleavy, K. et al. Dose-adjusted EPOCH-R (etoposide, prednisone, vincristine, cyclophosphamide, doxorubicin, and rituximab) in untreated aggressive diffuse large B-cell lymphoma with MYC rearrangement: a prospective, multicentre, single-arm phase 2 study. Lancet Haematol. 5, e609–e617 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Kostakoglu, L. et al. End-of-treatment PET/CT predicts PFS and OS in DLBCL after first-line treatment: results from GOYA. Blood Adv. 5, 1283–1290 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Melani, C. et al. End-of-treatment and serial PET imaging in primary mediastinal B-cell lymphoma following dose-adjusted EPOCH-R: a paradigm shift in clinical decision making. Haematologica 103, 1337–1344 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Giulino-Roth, L. et al. Outcomes of adults and children with primary mediastinal B-cell lymphoma treated with dose-adjusted EPOCH-R. Br. J. Haematol. 179, 739–747 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Martelli, M. et al. [18F]fluorodeoxyglucose positron emission tomography predicts survival after chemoimmunotherapy for primary mediastinal large B-cell lymphoma: results of the International Extranodal Lymphoma Study Group IELSG-26 Study. J. Clin. Oncol. 32, 1769–1775 (2014).

    Article  PubMed  Google Scholar 

  77. Hayden, A. R. et al. Outcome of primary mediastinal large B-cell lymphoma using R-CHOP: impact of a PET-adapted approach. Blood 136, 2803–2811 (2020).

    Article  CAS  PubMed  Google Scholar 

  78. Bartlett, N. L. et al. Dose-adjusted EPOCH-R compared with R-CHOP as frontline therapy for diffuse large B-cell lymphoma: clinical outcomes of the phase III intergroup trial alliance/CALGB 50303. J. Clin. Oncol. 37, 1790–1799 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Martelli, M. et al. Omission of Radiotherapy in Primary Mediastinal B-cell Lymphoma Patients Following Complete Metabolic Response to Standard Immunochemotherapy: Results of the IELSG37 Randomised Trial (NCT01599559) https://library.ehaweb.org/eha/2023/eha2023-congress/387801/maurizio.martelli.omission.of.radiotherapy.in.primary.mediastinal.b-cell.html?f=menu%3D16%2Abrowseby%3D8%2Asortby%3D2%2Ace_id%3D2489%2Atrend%3D4016%2Amarker%3D4174 (2023).

  80. Shah, N. N. et al. Is autologous transplant in relapsed DLBCL patients achieving only a PET+ PR appropriate in the CAR T-cell era. Blood 137, 1416–1423 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Sauter, C. S. et al. Prognostic value of FDG-PET prior to autologous stem cell transplantation for relapsed and refractory diffuse large B-cell lymphoma. Blood 125, 2579–2581 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Galtier, J. et al. Positron emission tomography-imaging assessment for guiding strategy in patients with relapsed/refractory large B-cell lymphoma receiving CAR T cells. Haematologica 108, 171–180 (2023).

    Article  PubMed  Google Scholar 

  83. Kuhnl, A. et al. Early FDG-PET response predicts CAR-T failure in large B-cell lymphoma. Blood Adv. 6, 321–326 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Al Zaki, A. et al. Day 30 SUVmax predicts progression in patients with lymphoma achieving PR/SD after CAR T-cell therapy. Blood Adv. 6, 2867–2871 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Georgi, T. W. et al. Prognostic value of baseline and early response FDG-PET/CT in patients with refractory and relapsed aggressive B-cell lymphoma undergoing CAR-T cell therapy. J. Cancer Res. Clin. Oncol. https://doi.org/10.1007/s00432-023-04587-4 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Spiegel, J. Y. et al. Outcomes of patients with large B-cell lymphoma progressing after axicabtagene ciloleucel. Ther. Blood 137, 1832–1835 (2021).

    CAS  Google Scholar 

  87. Tychyj-Pinel, C. et al. PET/CT assessment in follicular lymphoma using standardized criteria: central review in the PRIMA study. Eur. J. Nucl. Med. Mol. Imaging 41, 408–415 (2014).

    Article  PubMed  Google Scholar 

  88. Strati, P. et al. Pre-treatment maximum standardized uptake value predicts outcome after frontline therapy in patients with advanced stage follicular lymphoma. Haematologica 105, 1907–1913 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Schöder, H. et al. Intensity of 18fluorodeoxyglucose uptake in positron emission tomography distinguishes between indolent and aggressive non-Hodgkin’s lymphoma. J. Clin. Oncol. 23, 4643–4651 (2005).

    Article  PubMed  Google Scholar 

  90. Noy, A. et al. The majority of transformed lymphomas have high standardized uptake values (SUVs) on positron emission tomography (PET) scanning similar to diffuse large B-cell lymphoma (DLBCL). Ann. Oncol. 20, 508–512 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Mir, F. et al. Baseline SUVmax did not predict histological transformation in follicular lymphoma in the phase 3 GALLIUM study. Blood 135, 1214–1218 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Dupuis, J. et al. Impact of [18F]Fluorodeoxyglucose positron emission tomography response evaluation in patients with high-tumor burden follicular lymphoma treated with immunochemotherapy: a prospective study from the Groupe d’Etudes des Lymphomes de l’Adulte and GOELAMS. J. Clin. Oncol. 30, 4317–4322 (2012).

    Article  CAS  PubMed  Google Scholar 

  93. Trotman, J. et al. Prognostic value of PET-CT after first-line therapy in patients with follicular lymphoma: a pooled analysis of central scan review in three multicentre studies. Lancet Haematol. 1, e17–e27 (2014).

    Article  PubMed  Google Scholar 

  94. Trotman, J. et al. Positron emission tomography-computed tomography (PET-CT) after induction therapy is highly predictive of patient outcome in follicular lymphoma: analysis of PET-CT in a subset of PRIMA trial participants. J. Clin. Oncol. 29, 3194–3200 (2011).

    Article  PubMed  Google Scholar 

  95. Trotman, J. et al. Prognostic value of end-of-induction PET response after first-line immunochemotherapy for follicular lymphoma (GALLIUM): secondary analysis of a randomised, phase 3 trial. Lancet Oncol. 19, 1530–1542 (2018).

    Article  CAS  PubMed  Google Scholar 

  96. Luminari, S. et al. Response-adapted postinduction strategy in patients with advanced-stage follicular lymphoma: the FOLL12 study. J. Clin. Oncol. 40, 729–739 (2022).

    Article  CAS  PubMed  Google Scholar 

  97. Ballman, K. V. Biomarker: predictive or prognostic. J. Clin. Oncol. 33, 3968–3971 (2015).

    Article  CAS  PubMed  Google Scholar 

  98. Henry, N. L. & Hayes, D. F. Cancer biomarkers. Mol. Oncol. 6, 140–146 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Bera, K., Braman, N., Gupta, A., Velcheti, V. & Madabhushi, A. Predicting cancer outcomes with radiomics and artificial intelligence in radiology. Nat. Rev. Clin. Oncol. 19, 132–146 (2022).

    Article  CAS  PubMed  Google Scholar 

  100. Verdaguer, H., Saurí, T. & Macarulla, T. Predictive and prognostic biomarkers in personalized gastrointestinal cancer treatment. J. Gastrointest. Oncol. 8, 405–417 (2016).

    Article  Google Scholar 

  101. Moskowitz, A. J. et al. Prognostic significance of baseline metabolic tumor volume in relapsed and refractory Hodgkin lymphoma. Blood 130, 2196–2203 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Meignan, M. et al. Baseline metabolic tumor volume predicts outcome in high-tumor-burden follicular lymphoma: a pooled analysis of three multicenter studies. J. Clin. Oncol. 34, 3618–3626 (2016).

    Article  PubMed  Google Scholar 

  103. McDonald, J. E. et al. Assessment of total Lesion Glycolysis by 18F FDG PET/CT significantly improves prognostic value of GEP and ISS in myeloma. Clin. Cancer Res. 23, 1981–1987 (2017).

    Article  CAS  PubMed  Google Scholar 

  104. Schöder, H. & Moskowitz, C. Metabolic tumor volume in lymphoma: hype or hope? J. Clin. Oncol. 34, 3591–3594 (2016).

    Article  PubMed  Google Scholar 

  105. Driessen, J. et al. The impact of semiautomatic segmentation methods on metabolic tumor volume, intensity, and dissemination radiomics in 18F-FDG PET scans of patients with classical Hodgkin lymphoma. J. Nucl. Med. 63, 1424–1430 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Thieblemont, C. et al. A tumor volume and performance status model to predict outcome before treatment in diffuse large B-cell lymphoma. Blood Adv. 6, 5995–6004 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Cottereau, A. S. et al. Molecular profile and FDG-PET/CT total metabolic tumor volume improve risk classification at diagnosis for patients with diffuse large B-cell lymphoma. Clin. Cancer Res. 22, 3801–3809 (2016).

    Article  CAS  PubMed  Google Scholar 

  108. Voltin, C. A. et al. Early response to first-line anti-PD-1 treatment in Hodgkin lymphoma: a PET-based analysis from the prospective, randomized phase II NIVAHL trial. Clin. Cancer Res. 27, 402–407 (2021).

    Article  CAS  PubMed  Google Scholar 

  109. Burggraaff, C. N. et al. 18F-FDG PET improves baseline clinical predictors of response in diffuse large B-cell lymphoma: the HOVON-84 study.J. Nucl. Med. 63, 1001–1007 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Driessen, J. et al. Prognostic value of TARC and quantitative PET parameters in relapsed or refractory Hodgkin lymphoma patients treated with brentuximab vedotin and DHAP. Leukemia 36, 2853–2862 (2022).

    Article  CAS  PubMed  Google Scholar 

  111. Mikhaeel, N. G. et al. Proposed new dynamic prognostic index for diffuse large B-cell lymphoma: international metabolic prognostic index. J. Clin. Oncol. 40, 2352–2360 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ilyas, H. et al. Is there an optimal method for measuring baseline metabolic tumor volume in diffuse large B cell lymphoma. Eur. J. Nucl. Med. Mol. Imaging 46, 520–521 (2019).

    Article  PubMed  Google Scholar 

  113. Barrington, S. F. et al. Automated segmentation of baseline metabolic total tumor burden in diffuse large B-cell lymphoma: which method is most successful? A study on behalf of the PETRA consortium. J. Nucl. Med. 62, 332–337 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Burggraaff, C. N. et al. Optimizing workflows for fast and reliable metabolic tumor volume measurements in diffuse large B cell lymphoma. Mol. Imaging Biol. 22, 1102–1110 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ceriani, L. et al. Utility of baseline 18FDG-PET/CT functional parameters in defining prognosis of primary mediastinal (thymic) large B-cell lymphoma. Blood 126, 950–956 (2015).

    Article  CAS  PubMed  Google Scholar 

  116. Kostakoglu, L. et al. Total metabolic tumor volume as a survival predictor for patients with diffuse large B-cell lymphoma in the GOYA study. Haematologica 107, 1633–1642 (2021).

    Article  PubMed Central  Google Scholar 

  117. Gormsen, L. C. et al. A comparative study of standardized quantitative and visual assessment for predicting tumor volume and outcome in newly diagnosed diffuse large B-cell lymphoma staged with 18F-FDG PET/CT. EJNMMI Res. 9, 36 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Albano, D. et al. Prognostic role of baseline 18F-FDG PET/CT metabolic parameters in elderly HL: a two-center experience in 123 patients. Ann. Hematol. 99, 1321–1330 (2020).

    Article  PubMed  Google Scholar 

  119. Delfau-Larue, M. H. et al. Total metabolic tumor volume, circulating tumor cells, cell-free DNA: distinct prognostic value in follicular lymphoma. Blood Adv. 2, 807–816 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Cottereau, A.-S. et al. Prognostic value of baseline metabolic tumor volume in early-stage Hodgkin lymphoma in the standard arm of the H10 trial. Blood 131, 1456–1463 (2018).

    Article  CAS  PubMed  Google Scholar 

  121. Camp, R. L., Dolled-Filhart, M. & Rimm, D. L. X-Tile: a new bio-informatics tool for biomarker assessment and outcome-based cut-point optimization. Clin. Cancer Res. 10, 7252–7259 (2004).

    Article  CAS  PubMed  Google Scholar 

  122. Lue, K. H., Chen, Y. H., Wu, Y. F. & Liu, S. H. Influence of the methodological aspects of the dichotomization of total metabolic tumor volume measured through baseline fluorine-18 fluorodeoxyglucose PET on survival prediction in lymphoma. Nucl. Med. Commun. 44, 74–80 (2023).

    Article  CAS  PubMed  Google Scholar 

  123. Schmitz, C. et al. Dynamic risk assessment based on positron emission tomography scanning in diffuse large B-cell lymphoma: post-hoc analysis from the PETAL trial. Eur. J. Cancer 124, 25–36 (2020).

    Article  CAS  PubMed  Google Scholar 

  124. Kumar, A. et al. Definition of bulky disease in early stage Hodgkin lymphoma in computed tomography era: prognostic significance of measurements in the coronal and transverse planes. Haematologica 101, 1237–1243 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Nguyen, V. T. et al. Early stage, bulky Hodgkin lymphoma patients have a favorable outcome when treated with or without consolidative radiotherapy: potential role of PET scan in treatment planning. Br. J. Haematol. 179, 674–676 (2017).

    Article  PubMed  Google Scholar 

  126. Vercellino, L. et al. Predictive factors of early progression after CAR T-cell therapy in relapsed/refractory diffuse large B-cell lymphoma. Blood Adv. 4, 5607–5615 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Stuver, R. et al. Brentuximab vedotin combined with chemotherapy in newly diagnosed, early-stage, unfavorable-risk Hodgkin lymphoma: extended follow-up with evaluation of baseline metabolic tumor volume and PET2. Blood 140, 1756–1758 (2022).

    Article  Google Scholar 

  128. Akhtari, M. et al. Reclassifying patients with early-stage Hodgkin lymphoma based on functional radiographic markers at presentation. Blood 131, 84–94 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Mettler, J. et al. Metabolic tumour volume for response prediction in advanced-stage Hodgkin lymphoma. J. Nucl. Med. 60, 207–211 (2018).

    Article  PubMed  Google Scholar 

  130. Bollard, C. M. et al. Cytotoxic T lymphocyte therapy for Epstein-Barr virus+ Hodgkin’s disease. J. Exp. Med. 200, 1623–1633 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Ruella, M. et al. Overcoming the immunosuppressive tumor microenvironment of Hodgkin lymphoma using chimeric antigen receptor T cells. Cancer Discov. 7, 1154–1167 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Ho, C., Ruella, M., Levine, B. L. & Svoboda, J. Adoptive T-cell therapy for Hodgkin lymphoma. Blood Adv. 5, 4291–4302 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Ramos, C. A. et al. Anti-CD30 CAR-T cell therapy in relapsed and refractory Hodgkin lymphoma. J. Clin. Oncol. 38, 3794–3804 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Genta, S. et al. Integration of baseline metabolic parameters and mutational profiles predicts long-term response to first-line therapy in DLBCL patients: a post hoc analysis of the SAKK38/07 study. Cancers https://doi.org/10.3390/cancers14041018 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Shagera, Q. A. et al. Prognostic value of metabolic tumour volume on baseline 18F-FDG PET/CT in addition to NCCN-IPI in patients with diffuse large B-cell lymphoma: further stratification of the group with a high-risk NCCN-IPI. Eur. J. Nucl. Med. Mol. Imaging 46, 1417–1427 (2019).

    Article  CAS  PubMed  Google Scholar 

  136. Locke, F. L. et al. Association of metabolic tumor volume (MTV) and clinical outcomes in second-line (2L) relapsed/refractory (R/R) large B-cell lymphoma (LBCL) following axicabtagene ciloleucel (Axi-Cel) versus standard-of-care (SOC) therapy in ZUMA-7. Blood 140, 638–640 (2022).

    Article  Google Scholar 

  137. Pinnix, C. C. et al. Positron emission tomography-computed tomography predictors of progression after DA-R-EPOCH for PMBCL. Blood Adv. 2, 1334–1343 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Ceriani, L. et al. Prognostic models for primary mediastinal (thymic) B-cell lymphoma derived from 18-FDG PET/CT quantitative parameters in the International Extranodal Lymphoma Study Group (IELSG) 26 study. Br. J. Haematol. 178, 588–591 (2017).

    Article  PubMed  Google Scholar 

  139. Barrington, S. F. et al. Baseline PET-derived metabolic tumor volume metrics did not predict outcomes in follicular lymphoma patients treated with first-line immunochemotherapy and antibody maintenance in the phase III GALLIUM study. Blood 132, 2882–2882 (2018).

    Article  Google Scholar 

  140. Jain, M. D. et al. Tumor interferon signaling and suppressive myeloid cells are associated with CAR T-cell failure in large B-cell lymphoma. Blood 137, 2621–2633 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Locke, F. L. et al. Tumor burden, inflammation, and product attributes determine outcomes of axicabtagene ciloleucel in large B-cell lymphoma. Blood Adv. 4, 4898–4911 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Senjo, H. et al. Serum level of soluble interleukin-2 receptor is positively correlated with metabolic tumor volume on 18F-FDG PET/CT in newly diagnosed patients with diffuse large B-cell lymphoma. Cancer Med. 8, 953–962 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Choy, G. et al. Current applications and future impact of machine learning in radiology. Radiology 288, 318–328 (2018).

    Article  PubMed  Google Scholar 

  144. Hosny, A., Parmar, C., Quackenbush, J., Schwartz, L. H. & Aerts, H. Artificial intelligence in radiology. Nat. Rev. Cancer 18, 500–510 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Ker, J., Wang, L., Rao, J. & Lim, T. Deep learning applications in medical image analysis. IEEE Access. 6, 9375–9389 (2018).

    Article  Google Scholar 

  146. Cheng, P. M. et al. Deep learning: an update for radiologists. Radiographics 41, 1427–1445 (2021).

    Article  PubMed  Google Scholar 

  147. Weisman, A. J. et al. Automated quantification of baseline imaging PET metrics on FDG PET/CT images of pediatric Hodgkin lymphoma patients. EJNMMI Phys. 7, 76 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Kuker, R. A. et al. A deep learning-aided automated method for calculating metabolic tumor volume in diffuse large B-cell lymphoma. Cancers https://doi.org/10.3390/cancers14215221 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Pinochet, P. et al. Evaluation of an automatic classification algorithm using convolutional neural networks in oncological positron emission tomography. Front. Med. 8, 628179 (2021).

    Article  Google Scholar 

  150. Weisman, A. J. et al. Convolutional neural networks for automated PET/CT detection of diseased lymph node burden in patients with lymphoma. Radiol. Artif. Intell. 2, e200016 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Annunziata, S. et al. The prognostic role of end-of-treatment FDG-PET/CT in diffuse large B cell lymphoma: a pilot study application of neural networks to predict time-to-event. Ann. Nucl. Med. 35, 102–110 (2021).

    Article  PubMed  Google Scholar 

  152. Capobianco, N. et al. Deep-learning 18F-FDG uptake classification enables total metabolic tumor volume estimation in diffuse large B-cell lymphoma. J. Nucl. Med. 62, 30–36 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Sadaghiani, M. S., Rowe, S. P. & Sheikhbahaei, S. Applications of artificial intelligence in oncologic 18F-FDG PET/CT imaging: a systematic review. Ann. Transl. Med. 9, 823 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Jemaa, S. et al. Full automation of total metabolic tumor volume from FDG-PET/CT in DLBCL for baseline risk assessments. Cancer Imaging 22, 39 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Revailler, W. et al. Deep learning approach to automatize TMTV calculations regardless of segmentation methodology for major FDG-avid lymphomas. Diagnostics https://doi.org/10.3390/diagnostics12020417 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Weisman, A. J. et al. Comparison of 11 automated PET segmentation methods in lymphoma. Phys. Med. Biol. 65, 235019 (2020).

    Article  CAS  PubMed  Google Scholar 

  157. Jiang, C. et al. Deep learning-based tumour segmentation and total metabolic tumour volume prediction in the prognosis of diffuse large B-cell lymphoma patients in 3D FDG-PET images. Eur. Radiol. 32, 4801–4812 (2022).

    Article  CAS  PubMed  Google Scholar 

  158. Blanc-Durand, P. et al. Fully automatic segmentation of diffuse large B cell lymphoma lesions on 3D FDG-PET/CT for total metabolic tumour volume prediction using a convolutional neural network. Eur. J. Nucl. Med. Mol. Imaging 48, 1362–1370 (2021).

    Article  CAS  PubMed  Google Scholar 

  159. Jemaa, S. et al. Tumor segmentation and feature extraction from whole-body FDG-PET/CT using cascaded 2D and 3D convolutional neural networks. J. Digit. Imaging 33, 888–894 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Li, K., Zhang, R. & Cai, W. Deep learning convolutional neural network (DLCNN): unleashing the potential of 18F-FDG PET/CT in lymphoma. Am. J. Nucl. Med. Mol. Imaging 11, 327–331 (2021).

    PubMed  PubMed Central  Google Scholar 

  161. Jha, A. K. et al. Nuclear medicine and artificial intelligence: best practices for evaluation (the RELAINCE Guidelines). J. Nucl. Med. 63, 1288–1299 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Bradshaw, T. J. et al. Nuclear medicine and artificial intelligence: best practices for algorithm development. J. Nucl. Med. 63, 500–510 (2022).

    Article  PubMed  Google Scholar 

  163. Aerts, H. J. W. L. et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun. 5, 4006 (2014).

    Article  CAS  PubMed  Google Scholar 

  164. Johnson, P. B. et al. Quantitative imaging: correlating image features with the segmentation accuracy of PET based tumor contours in the lung. Radiother. Oncol. 123, 257–262 (2017).

    Article  PubMed  Google Scholar 

  165. Yang, F., Young, L. & Yang, Y. Quantitative imaging: erring patterns in manual delineation of PET-imaged lung lesions. Radiother. Oncol. 141, 78–85 (2019).

    Article  CAS  PubMed  Google Scholar 

  166. Yang, F., Young, L. A. & Johnson, P. B. Quantitative radiomics: validating image textural features for oncological PET in lung cancer. Radiother. Oncol. 129, 209–217 (2018).

    Article  PubMed  Google Scholar 

  167. Shur, J. D. et al. Radiomics in oncology: a practical guide. Radiographics 41, 1717–1732 (2021).

    Article  PubMed  Google Scholar 

  168. Huang, E. P. et al. Criteria for the translation of radiomics into clinically useful tests. Nat. Rev. Clin. Oncol. 20, 69–82 (2023).

    Article  PubMed  Google Scholar 

  169. Eertink, J. J. et al. Quantitative radiomics features in diffuse large B-cell lymphoma: does segmentation method matter. J. Nucl. Med. 63, 389–395 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Khan, S. et al. Radiogenomics and its role in lymphoma. Curr. Hematol. Malig. Rep. 15, 211–224 (2020).

    Article  PubMed  Google Scholar 

  171. Shui, L. et al. The era of radiogenomics in precision medicine: an emerging approach to support diagnosis, treatment decisions, and prognostication in oncology. Front. Oncol. 10, 570465 (2020).

    Article  PubMed  Google Scholar 

  172. Haebe, S. et al. Single-cell analysis can define distinct evolution of tumor sites in follicular lymphoma. Blood 137, 2869–2880 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Roider, T. et al. Dissecting intratumour heterogeneity of nodal B-cell lymphomas at the transcriptional, genetic and drug-response levels. Nat. Cell Biol. 22, 896–906 (2020).

    Article  CAS  PubMed  Google Scholar 

  174. Eertink, J. J. et al. 18F-FDG PET baseline radiomics features improve the prediction of treatment outcome in diffuse large B-cell lymphoma.Eur. J. Nucl. Med. Mol. Imaging. 49, 932–942 (2022).

    Article  PubMed  Google Scholar 

  175. Senjo, H. et al. High metabolic heterogeneity on baseline 18FDG-PET/CT scan as a poor prognostic factor for newly diagnosed diffuse large B-cell lymphoma. Blood Adv. 4, 2286–2296 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Eertink, J. J. et al. Baseline radiomics features and MYC rearrangement status predict progression in aggressive B-cell lymphoma. Blood Adv. https://doi.org/10.1182/bloodadvances.2022008629 (2022).

    Article  PubMed Central  Google Scholar 

  177. Ceriani, L. et al. Metabolic heterogeneity on baseline 18FDG-PET/CT scan is a predictor of outcome in primary mediastinal B-cell lymphoma. Blood 132, 179–186 (2018).

    Article  CAS  PubMed  Google Scholar 

  178. Albano, D. et al. 18F-FDG PET/CT maximum tumor dissemination (Dmax) in lymphoma: a new prognostic factor? Cancers https://doi.org/10.3390/cancers15092494 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Cottereau, A. S. et al. 18F-FDG PET dissemination features in diffuse large B-cell lymphoma are predictive of outcome.J. Nucl. Med. 61, 40–45 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Cottereau, A. S. et al. New approaches in characterization of lesions dissemination in DLBCL patients on baseline PET/CT. Cancers https://doi.org/10.3390/cancers13163998 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Gallamini, A. et al. Lesion dissemination in baseline PET/CT (D-MAX) and IPS score predict ABVD treatment outcome in PET-2 negative advanced-stage Hodgkin lymphoma patients enrolled in the prospective GITIL/FIL HD0607 trial. Blood 138, 2443–2443 (2021).

    Article  Google Scholar 

  182. Durmo, R. et al. Prognostic value of lesion dissemination in doxorubicin, bleomycin, vinblastine, and dacarbazine-treated, interimPET-negative classical Hodgkin Lymphoma patients: a radio-genomic study. Hematol. Oncol. 40, 645–657 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Osthus, R. C. et al. Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc. J. Biol. Chem. 275, 21797–21800 (2000).

    Article  CAS  PubMed  Google Scholar 

  184. Broecker-Preuss, M., Becher-Boveleth, N., Bockisch, A., Dührsen, U. & Müller, S. Regulation of glucose uptake in lymphoma cell lines by c-MYC- and PI3K-dependent signaling pathways and impact of glycolytic pathways on cell viability. J. Transl. Med. 15, 158 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Lugtenburg, P. J. et al. Rituximab-CHOP with early rituximab intensification for diffuse large B-cell lymphoma: a randomized phase III trial of the HOVON and the Nordic Lymphoma Group (HOVON-84).J. Clin. Oncol. 38, 3377–3387 (2020).

    Article  CAS  PubMed  Google Scholar 

  186. Eertink, J. J. et al. Baseline PET radiomics outperform the IPI risk score for prediction of outcome in diffuse large B-cell lymphoma. Blood https://doi.org/10.1182/blood.2022018558 (2023).

    Article  PubMed  Google Scholar 

  187. Winkelmann, M. et al. Prognostic value of the International Metabolic Prognostic Index for lymphoma patients receiving chimeric antigen receptor T-cell therapy. Eur. J. Nucl. Med. Mol. Imaging https://doi.org/10.1007/s00259-022-06075-2 (2022).

    Article  PubMed  Google Scholar 

  188. Fisher, R., Pusztai, L. & Swanton, C. Cancer heterogeneity: implications for targeted therapeutics. Br. J. Cancer 108, 479–485 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Pugachev, A. et al. Dependence of FDG uptake on tumor microenvironment. Int. J. Radiat. Oncol. Biol. Phys. 62, 545–553 (2005).

    Article  CAS  PubMed  Google Scholar 

  190. Hatt, M. et al. 18F-FDG PET uptake characterization through texture analysis: investigating the complementary nature of heterogeneity and functional tumor volume in a multi-cancer site patient cohort. J. Nucl. Med. 56, 38–44 (2015).

    Article  CAS  PubMed  Google Scholar 

  191. van Velden, F. H. et al. Evaluation of a cumulative SUV-volume histogram method for parameterizing heterogeneous intratumoural FDG uptake in non-small cell lung cancer PET studies. Eur. J. Nucl. Med. Mol. Imaging 38, 1636–1647 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Cottereau, A. S. et al. Prognostic model for high-tumor-burden follicular lymphoma integrating baseline and end-induction PET: a LYSA/FIL study. Blood 131, 2449–2453 (2018).

    Article  CAS  PubMed  Google Scholar 

  193. Yhim, H. Y. et al. Risk stratification for relapsed/refractory classical Hodgkin lymphoma integrating pretransplant Deauville score and residual metabolic tumor volume. Am. J. Hematol. 97, 583–591 (2022).

    Article  CAS  PubMed  Google Scholar 

  194. Hu, C. & Dignam, J. J. Biomarker-driven oncology clinical trials: key design elements, types, features, and practical considerations. JCO Precis. Oncol. https://doi.org/10.1200/PO.19.00086 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Nowakowski, G. S. et al. Lenalidomide combined with R-CHOP overcomes negative prognostic impact of non-germinal center B-cell phenotype in newly diagnosed diffuse large B-cell lymphoma: a phase II study. J. Clin. Oncol. 33, 251–257 (2015).

    Article  CAS  PubMed  Google Scholar 

  196. Wilson, W. H. et al. Targeting B cell receptor signaling with ibrutinib in diffuse large B cell lymphoma. Nat. Med. 21, 922–926 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Younes, A. et al. Randomized phase III trial of ibrutinib and rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone in non-germinal center B-cell diffuse large B-cell lymphoma. J. Clin. Oncol. 37, 1285–1295 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Nowakowski, G. S. et al. ROBUST: a phase III study of lenalidomide plus R-CHOP versus placebo plus R-CHOP in previously untreated patients with ABC-type diffuse large B-cell lymphoma. J. Clin. Oncol. 39, 1317–1328 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Morschhauser, F. et al. Tazemetostat for patients with relapsed or refractory follicular lymphoma: an open-label, single-arm, multicentre, phase 2 trial. Lancet Oncol. 21, 1433–1442 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Caimi, P. F. et al. Loncastuximab tesirine in relapsed or refractory diffuse large B-cell lymphoma (LOTIS-2): a multicentre, open-label, single-arm, phase 2 trial. Lancet Oncol. 22, 790–800 (2021).

    Article  CAS  PubMed  Google Scholar 

  201. Chen, R. et al. Phase II study of the efficacy and safety of pembrolizumab for relapsed/refractory classic Hodgkin lymphoma. J. Clin. Oncol. 35, 2125–2132 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Armand, P. et al. Nivolumab for relapsed/refractory classic Hodgkin lymphoma after failure of autologous hematopoietic cell transplantation: extended follow-up of the multicohort single-arm phase II CheckMate 205 trial. J. Clin. Oncol. 36, 1428–1439 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Nastoupil, L. J. et al. Standard-of-care axicabtagene ciloleucel for relapsed or refractory large B-cell lymphoma: results from the US lymphoma CAR T Consortium. J. Clin. Oncol. 38, 3119–3128 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Abramson, J. S. et al. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study. Lancet 396, 839–852 (2020).

    Article  PubMed  Google Scholar 

  205. Buyse, M., Sargent, D. J., Grothey, A., Matheson, A. & de Gramont, A. Biomarkers and surrogate end points–the challenge of statistical validation. Nat. Rev. Clin. Oncol. 7, 309–317 (2010).

    Article  PubMed  Google Scholar 

  206. Mandrekar, S. J. & Sargent, D. J. Clinical trial designs for predictive biomarker validation: theoretical considerations and practical challenges. J. Clin. Oncol. 27, 4027–4034 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Kurtz, D. M. et al. Circulating tumor DNA measurements as early outcome predictors in diffuse large B-cell lymphoma. J. Clin. Oncol. 36, 2845–2853 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Scherer, F. et al. Distinct biological subtypes and patterns of genome evolution in lymphoma revealed by circulating tumor DNA. Sci. Transl. Med. 8, 364ra155 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Esfahani, M. S. et al. Inferring gene expression from cell-free DNA fragmentation profiles. Nat. Biotechnol. 40, 585–597 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Spina, V. et al. Circulating tumor DNA reveals genetics, clonal evolution, and residual disease in classical Hodgkin lymphoma. Blood 131, 2413–2425 (2018).

    Article  CAS  PubMed  Google Scholar 

  211. Le Goff, E. et al. Baseline circulating tumour DNA and total metabolic tumour volume as early outcome predictors in aggressive large B-cell lymphoma. A real-world 112-patient cohort. Br. J. Haematol. https://doi.org/10.1111/bjh.18809 (2023).

    Article  PubMed  Google Scholar 

  212. Moskowitz, A. J. et al. Phase II trial of pembrolizumab plus gemcitabine, vinorelbine, and liposomal doxorubicin as second-line therapy for relapsed or refractory classical Hodgkin lymphoma. J. Clin. Oncol. 39, 3109–3117 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Polley, M. C. & Dignam, J. J. Statistical considerations in the evaluation of continuous biomarkers. J. Nucl. Med. 62, 605–611 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Orlhac, F. et al. A guide to ComBat harmonization of imaging biomarkers in multicenter studies. J. Nucl. Med. 63, 172–179 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Kinahan, P. E. et al. The QIBA profile for FDG PET/CT as an imaging biomarker measuring response to cancer therapy. Radiology 294, 647–657 (2020).

    Article  PubMed  Google Scholar 

  216. Akamatsu, G. et al. A review of harmonization strategies for quantitative PET. Ann. Nucl. Med. 37, 71–88 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  217. Weber, M. et al. Evaluation of 18F-FDG PET/CT images acquired with a reduced scan time duration in lymphoma patients using the digital biograph vision. BMC Cancer 21, 62 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Surti, S. et al. Benefit of improved performance with state-of-the art digital PET/CT for lesion detection in oncology. J. Nucl. Med. 61, 1684–1690 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  219. van Sluis, J., Bellido, M., Glaudemans, A. & Slart, R. Long axial field-of-view PET for ultra-low-dose imaging of non-Hodgkin lymphoma during pregnancy. Diagnostics https://doi.org/10.3390/diagnostics13010028 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  220. Daube-Witherspoon, M. E., Pantel, A. R., Pryma, D. A. & Karp, J. S. Total-body PET: a new paradigm for molecular imaging. Br. J. Radiol. 95, 20220357 (2022).

    Article  PubMed  Google Scholar 

  221. Yu, H. et al. Expert consensus on oncological [(18)F]FDG total-body PET/CT imaging (version 1). Eur. Radiol. 33, 615–626 (2023).

    Article  PubMed  Google Scholar 

  222. Katal, S., Eibschutz, L. S., Saboury, B., Gholamrezanezhad, A. & Alavi, A. Advantages and applications of total-body PET scanning. Diagnostics https://doi.org/10.3390/diagnostics12020426 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Fu, F. et al. Total-body dynamic PET/CT of micro-metastatic lymph node in a patient with lung cancer. Eur. J. Nucl. Med. Mol. Imaging 48, 1678–1679 (2021).

    Article  PubMed  Google Scholar 

  224. Wei, W. et al. ImmunoPET: concept, design, and applications. Chem. Rev. 120, 3787–3851 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Peinelt, A. et al. Monitoring of circulating CAR T cells: validation of a flow cytometric assay, cellular kinetics, and phenotype analysis following tisagenlecleucel. Front. Immunol. 13, 830773 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Wada, F. et al. T-cell counts in peripheral blood at leukapheresis predict responses to subsequent CAR-T cell therapy. Sci. Rep. 12, 18696 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Shah, N. N. et al. Clonal expansion of CAR T cells harboring lentivector integration in the CBL gene following anti-CD22 CAR T-cell therapy. Blood Adv. 3, 2317–2322 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  228. Simonetta, F. et al. Molecular imaging of chimeric antigen receptor T cells by ICOS-ImmunoPET. Clin. Cancer Res. 27, 1058–1068 (2021).

    Article  CAS  PubMed  Google Scholar 

  229. Minn, I. et al. Imaging CAR T cell therapy with PSMA-targeted positron emission tomography. Sci. Adv. 5, eaaw5096 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Muylle, K. et al. Tumour targeting and radiation dose of radioimmunotherapy with 90Y-rituximab in CD20+ B-cell lymphoma as predicted by 89Zr-rituximab immuno-PET: impact of preloading with unlabelled rituximab. Eur. J. Nucl. Med. Mol. Imaging 42, 1304–1314 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Jauw, Y. W. et al. Performance of 89Zr-Labeled-Rituximab-PET as an imaging biomarker to assess CD20 targeting: a pilot study in patients with relapsed/refractory diffuse large B cell lymphoma. PLoS One 12, e0169828 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  232. Triumbari, E. K. A. et al. Clinical applications of immuno-PET in lymphoma: a systematic review. Cancers https://doi.org/10.3390/cancers14143488 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  233. Chen, Z. et al. CXCR4-directed PET/CT with [68Ga]Pentixafor in central nervous system lymphoma: a comparison with [18F]FDG PET/CT. Mol. Imaging Biol. 24, 416–424 (2022).

    Article  CAS  PubMed  Google Scholar 

  234. Mayerhoefer, M. E. et al. CXCR4 PET imaging of mantle cell lymphoma using [68Ga]Pentixafor: comparison with [18F]FDG-PET. Theranostics 11, 567–578 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Albano, D., Dondi, F., Bertagna, F. & Treglia, G. The role of [68Ga]Ga-Pentixafor PET/CT or PET/MRI in lymphoma: a systematic review. Cancers https://doi.org/10.3390/cancers14153814 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  236. Hutchings, M. et al. CD8 presence and dynamics in glofitamab-treated patients with relapsed/refractory B-cell non-Hodgkin lymphoma using the CD8-specific PET tracer 89Zr-crefmirlimab berdoxam. Blood 140, 10733–10735 (2022).

    Article  Google Scholar 

  237. Duell, J. et al. Improved primary staging of marginal-zone lymphoma by addition of CXCR4-directed PET/CT. J. Nucl. Med. 62, 1415–1421 (2021).

    Article  CAS  PubMed  Google Scholar 

  238. Luo, Y. et al. 68Ga-Pentixafor PET/CT for imaging of chemokine receptor 4 expression in Waldenström Macroglobulinemia/Lymphoplasmacytic Lymphoma: comparison to 18F-FDG PET/CT. J. Nucl. Med. 60, 1724–1729 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Jin, X. et al. Detecting fibroblast activation proteins in lymphoma using 68Ga-FAPI PET/CT. J. Nucl. Med. 63, 212–217 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Zhang, Y., Cai, J., Lin, Z., Yao, S. & Miao, W. Primary central nervous system lymphoma revealed by 68Ga-FAPI and 18F-FDG PET/CT. Clin. Nucl. Med. 46, e421–e423 (2021).

    Article  PubMed  Google Scholar 

  241. Royston, P., Altman, D. G. & Sauerbrei, W. Dichotomizing continuous predictors in multiple regression: a bad idea. Stat. Med. 25, 127–141 (2006).

    Article  PubMed  Google Scholar 

  242. Naggara, O. et al. Analysis by categorizing or dichotomizing continuous variables is inadvisable: an example from the natural history of unruptured aneurysms. Am. J. Neuroradiol. 32, 437–440 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Salles, G. et al. Rituximab maintenance for 2 years in patients with high tumour burden follicular lymphoma responding to rituximab plus chemotherapy (PRIMA): a phase 3, randomised controlled trial. Lancet 377, 42–51 (2011).

    Article  CAS  PubMed  Google Scholar 

  244. Federico, M. et al. R-CVP versus R-CHOP versus R-FM for the initial treatment of patients with advanced-stage follicular lymphoma: results of the FOLL05 trial conducted by the Fondazione Italiana Linfomi. J. Clin. Oncol. 31, 1506–1513 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The research of J.P.A., R.A.K., F.Y. and C.H.M. is supported by the National Cancer Institute core grant for the Sylvester Comprehensive Cancer Center P30CA240139. The work of J.P.A. is also supported by the Dwoskin Family Foundation, the Peykoff Initiative from the Lymphoma Research Foundation and the U.S. Department of Defense (grant CA220385).

Author information

Authors and Affiliations

Authors

Contributions

J.P.A. wrote the manuscript. All authors researched data, made substantial contributions to the discussion of content, and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Juan Pablo Alderuccio.

Ethics declarations

Competing interests

J.P.A. acts as a consultant for ADC Therapeutics and Genentech, receives research funding from ADC Therapeutics, and has an immediate family member who has served on the advisory boards of Agios Pharmaceuticals, Forma Therapeutics, Foundation Medicine, Inovio Pharmaceuticals, and Puma Biotechnology. C.H.M. is a member of the scientific advisory board for ADC Therapeutics, Incyte, and Kite and receives research funding from ADC Therapeutics, Beigene, Incyte, Merck, and Seattle Genetics. R.A.K. and F.Y. declare no competing interests.

Peer review

Peer review information

Nature Reviews Clinical Oncology thanks D. Albano, H. Schöder and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Disclaimer The content is solely the responsibility of the authors and does not necessarily represent the official views of the U.S. National Cancer Institute or U.S. Department of Defense.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alderuccio, J.P., Kuker, R.A., Yang, F. et al. Quantitative PET-based biomarkers in lymphoma: getting ready for primetime. Nat Rev Clin Oncol 20, 640–657 (2023). https://doi.org/10.1038/s41571-023-00799-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-023-00799-2

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer