Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Beneficial autoimmunity improves cancer prognosis

Abstract

Many tumour antigens that do not arise from cancer cell-specific mutations are targets of humoral and cellular immunity despite their expression on non-malignant cells. Thus, in addition to the expected ability to detect mutations and stress-associated shifts in the immunoproteome and immunopeptidome (the sum of MHC class I-bound peptides) unique to malignant cells, the immune system also recognizes antigens expressed in non-malignant cells, which can result in autoimmune reactions against non-malignant cells from the tissue of origin. These autoimmune manifestations include, among others, vitiligo, thyroiditis and paraneoplastic syndromes, concurrent with melanoma, thyroid cancer and non-small-cell lung cancer, respectively. Importantly, despite the undesirable effects of these symptoms, such events can have prognostic value and correlate with favourable disease outcomes, suggesting ‘beneficial autoimmunity’. Similarly, the occurrence of dermal and endocrine autoimmune adverse events in patients receiving immune-checkpoint inhibitors can have a positive predictive value for therapeutic outcomes. Neoplasias derived from stem cells deemed ‘not essential’ for survival (such as melanocytes, thyroid cells and most cells in sex-specific organs) have a particularly good prognosis, perhaps because the host can tolerate autoimmune reactions that destroy tumour cells at some cost to non-malignant tissues. In this Perspective, we discuss examples of spontaneous as well as therapy-induced autoimmunity that correlate with favourable disease outcomes and make a strong case in favour of this ‘beneficial autoimmunity’ being important not only in patients with advanced-stage disease but also in cancer immunosurveillance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Hypothetical link between the immunosurveillance of non-malignant and malignant cells.
Fig. 2: Relationship between patient survival and the cancer cell of origin.
Fig. 3: Defining features of a curative response to cancer immunotherapies.

Similar content being viewed by others

References

  1. Kroemer, G. & Martinez, C. The fail-safe paradigm of immunological self-tolerance. Lancet 338, 1246–1249 (1991).

    Article  CAS  PubMed  Google Scholar 

  2. Taniuchi, I. CD4 helper and CD8 cytotoxic T cell differentiation. Annu. Rev. Immunol. 36, 579–601 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. Ovadya, Y. et al. Impaired immune surveillance accelerates accumulation of senescent cells and aging. Nat. Commun. 9, 5435 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kale, A., Sharma, A., Stolzing, A., Desprez, P. Y. & Campisi, J. Role of immune cells in the removal of deleterious senescent cells. Immun. Ageing 17, 16 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zindel, J. & Kubes, P. DAMPs, PAMPs, and LAMPs in Immunity and Sterile Inflammation. Annu. Rev. Pathol. 15, 493–518 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. Matzinger, P. The danger model: a renewed sense of self. Science 296, 301–305 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Gong, T., Liu, L., Jiang, W. & Zhou, R. DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nat. Rev. Immunol. 20, 95–112 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Galon, J. et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313, 1960–1964 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Fridman, W. H., Zitvogel, L., Sautes-Fridman, C. & Kroemer, G. The immune contexture in cancer prognosis and treatment. Nat. Rev. Clin. Oncol. 14, 717–734 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. Byrne, A. et al. Tissue-resident memory T cells in breast cancer control and immunotherapy responses. Nat. Rev. Clin. Oncol. 17, 341–348 (2020).

    Article  PubMed  Google Scholar 

  11. Shen, M., Wang, J. & Ren, X. New insights into tumor-infiltrating b lymphocytes in breast cancer: clinical impacts and regulatory mechanisms. Front. Immunol. 9, 470 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Petitprez, F. et al. B cells are associated with survival and immunotherapy response in sarcoma. Nature 577, 556–560 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. Schumacher, T. N. & Schreiber, R. D. Neoantigens in cancer immunotherapy. Science 348, 69–74 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Snyder, A. et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N. Engl. J. Med. 371, 2189–2199 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Hellmann, M. D. et al. Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden. N. Engl. J. Med. 378, 2093–2104 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gros, A. et al. Prospective identification of neoantigen-specific lymphocytes in the peripheral blood of melanoma patients. Nat. Med. 22, 433–438 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Stronen, E. et al. Targeting of cancer neoantigens with donor-derived T cell receptor repertoires. Science 352, 1337–1341 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. D’Alise, A. M. et al. Adenoviral vaccine targeting multiple neoantigens as strategy to eradicate large tumors combined with checkpoint blockade. Nat. Commun. 10, 2688 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Leko, V. & Rosenberg, S. A. Identifying and targeting human tumor antigens for T cell-based immunotherapy of solid tumors. Cancer Cell 38, 454–472 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dersh, D., Holly, J. & Yewdell, J. W. A few good peptides: MHC class I-based cancer immunosurveillance and immunoevasion. Nat. Rev. Immunol. 21, 116–128 (2021).

    Article  CAS  PubMed  Google Scholar 

  21. von Kobbe, C. Targeting senescent cells: approaches, opportunities, challenges. Aging 11, 12844–12861 (2019).

    Article  Google Scholar 

  22. Lopez-Otin, C. & Kroemer, G. Hallmarks of health. Cell 184, 33–63 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. Gasser, S., Orsulic, S., Brown, E. J. & Raulet, D. H. The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor. Nature 436, 1186–1190 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xue, W. et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445, 656–660 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Raulet, D. H. & Guerra, N. Oncogenic stress sensed by the immune system: role of natural killer cell receptors. Nat. Rev. Immunol. 9, 568–580 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Amor, C. et al. Senolytic CAR T cells reverse senescence-associated pathologies. Nature 583, 127–132 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Palucka, A. K. & Coussens, L. M. The basis of oncoimmunology. Cell 164, 1233–1247 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Galluzzi, L., Buque, A., Kepp, O., Zitvogel, L. & Kroemer, G. Immunogenic cell death in cancer and infectious disease. Nat. Rev. Immunol. 17, 97–111 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. Casares, N. et al. Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death. J. Exp. Med. 202, 1691–1701 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vacchelli, E. et al. Chemotherapy-induced antitumor immunity requires formyl peptide receptor 1. Science 350, 972–978 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Galluzzi, L., Humeau, J., Buque, A., Zitvogel, L. & Kroemer, G. Immunostimulation with chemotherapy in the era of immune checkpoint inhibitors. Nat. Rev. Clin. Oncol. 17, 725–741 (2020).

    Article  PubMed  Google Scholar 

  32. Frank, M. J. et al. Autologous tumor cell vaccine induces antitumor T cell immune responses in patients with mantle cell lymphoma: A phase I/II trial. J. Exp. Med. 217, e20191712 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lonial, S. et al. Belantamab mafodotin for relapsed or refractory multiple myeloma (DREAMM-2): a two-arm, randomised, open-label, phase 2 study. Lancet Oncol. 21, 207–221 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Kepp, O., Zitvogel, L. & Kroemer, G. Lurbinectedin: an FDA-approved inducer of immunogenic cell death for the treatment of small-cell lung cancer. Oncoimmunology 9, 1795995 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Buque, A. et al. Immunoprophylactic and immunotherapeutic control of hormone receptor-positive breast cancer. Nat. Commun. 11, 3819 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Roberti, M. P. et al. Chemotherapy-induced ileal crypt apoptosis and the ileal microbiome shape immunosurveillance and prognosis of proximal colon cancer. Nat. Med. 26, 919–931 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. Kooreman, N. G. et al. Autologous iPSC-based vaccines elicit anti-tumor responses in vivo. Cell Stem Cell 22, 501–513.e7 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fluckiger, A. et al. Cross-reactivity between tumor MHC class I-restricted antigens and an enterococcal bacteriophage. Science 369, 936–942 (2020).

    Article  CAS  PubMed  Google Scholar 

  39. Semeraro, M. et al. The ratio of CD8+/FOXP3 T lymphocytes infiltrating breast tissues predicts the relapse of ductal carcinoma in situ. Oncoimmunology 5, e1218106 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Datta, J. et al. Progressive loss of anti-HER2 CD4+ T-helper type 1 response in breast tumorigenesis and the potential for immune restoration. Oncoimmunology 4, e1022301 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Nocera, N. F., Lee, M. C., De La Cruz, L. M., Rosemblit, C. & Czerniecki, B. J. Restoring lost anti-HER-2 Th1 immunity in breast cancer: a crucial role for Th1 cytokines in therapy and prevention. Front. Pharmacol. 7, 356 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Sharma, A. et al. HER-2 pulsed dendritic cell vaccine can eliminate HER-2 expression and impact ductal carcinoma in situ. Cancer 118, 4354–4362 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. De La Cruz, L. M., Nocera, N. F. & Czerniecki, B. J. Restoring anti-oncodriver Th1 responses with dendritic cell vaccines in HER2/neu-positive breast cancer: progress and potential. Immunotherapy 8, 1219–1232 (2016).

    Article  CAS  Google Scholar 

  44. Mascaux, C. et al. Immune evasion before tumour invasion in early lung squamous carcinogenesis. Nature 571, 570–575 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Finn, O. J. The dawn of vaccines for cancer prevention. Nat. Rev. Immunol. 18, 183–194 (2018).

    Article  CAS  PubMed  Google Scholar 

  46. Jacqueline, C., Lee, A., Frey, N., Minden, J. S. & Finn, O. J. Inflammation-induced abnormal expression of self-molecules on epithelial cells: targets for tumor immunoprevention. Cancer Immunol. Res. 8, 1027–1038 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jacqueline, C. & Finn, O. J. Antibodies specific for disease-associated antigens (DAA) expressed in non-malignant diseases reveal potential new tumor-associated antigens (TAA) for immunotherapy or immunoprevention. Semin. Immunol. 47, 101394 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kvorjak, M. et al. Cross-talk between colon cells and macrophages increases ST6GALNAC1 and MUC1-sTn expression in ulcerative colitis and colitis-associated colon cancer. Cancer Immunol. Res. 8, 167–178 (2020).

    Article  CAS  PubMed  Google Scholar 

  49. Reits, E. A. et al. Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J. Exp. Med. 203, 1259–1271 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gravett, A. M., Trautwein, N., Stevanovic, S., Dalgleish, A. G. & Copier, J. Gemcitabine alters the proteasome composition and immunopeptidome of tumour cells. Oncoimmunology 7, e1438107 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Oh, C. Y. et al. ALK and RET inhibitors promote HLA Class I antigen presentation and unmask new antigens within the tumor immunopeptidome. Cancer Immunol. Res. 7, 1984–1997 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Stopfer, L. E., Mesfin, J. M., Joughin, B. A., Lauffenburger, D. A. & White, F. M. Multiplexed relative and absolute quantitative immunopeptidomics reveals MHC I repertoire alterations induced by CDK4/6 inhibition. Nat. Commun. 11, 2760 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Galon, J. & Bruni, D. Tumor immunology and tumor evolution: intertwined histories. Immunity 52, 55–81 (2020).

    Article  CAS  PubMed  Google Scholar 

  54. Pennycuick, A. et al. Immune surveillance in clinical regression of preinvasive squamous cell lung cancer. Cancer Discov. 10, 1489–1499 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Giacomini, P., Fisher, P. B., Duigou, G. J., Gambari, R. & Natali, P. G. Regulation of class II MHC gene expression by interferons: insights into the mechanism of action of interferon (review). Anticancer. Res. 8, 1153–1161 (1988).

    CAS  PubMed  Google Scholar 

  56. Muraro, E. et al. Fighting viral infections and virus-driven tumors with cytotoxic CD4+ T cells. Front. Immunol. 8, 197 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Oh, D. Y. et al. Intratumoral CD4+ T cells mediate anti-tumor cytotoxicity in human bladder cancer. Cell 181, 1612–1625.e13 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gencode Gene. Release 37 (GRCh38.p13). Gencode Gene https://www.gencodegenes.org/human (2020).

  59. Ingolia, N. T. Ribosome profiling: new views of translation, from single codons to genome scale. Nat. Rev. Genet. 15, 205–213 (2014).

    Article  CAS  PubMed  Google Scholar 

  60. Chen, J. et al. Pervasive functional translation of noncanonical human open reading frames. Science 367, 1140–1146 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Brunet, M. A. et al. OpenProt: a more comprehensive guide to explore eukaryotic coding potential and proteomes. Nucleic Acids Res. 47, D403–D410 (2019).

    CAS  PubMed  Google Scholar 

  62. Ouspenskaia, T. et al. Thousands of novel unannotated proteins expand the MHC I immunopeptidome in cancer. Preprint at bioRxiv https://doi.org/10.1101/2020.02.12.945840 (2020).

    Article  Google Scholar 

  63. Larouche, J. D. et al. Widespread and tissue-specific expression of endogenous retroelements in human somatic tissues. Genome Med. 12, 40 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Erhard, F., Dolken, L., Schilling, B. & Schlosser, A. Identification of the cryptic HLA-I immunopeptidome. Cancer Immunol. Res. 8, 1018–1026 (2020).

    Article  CAS  PubMed  Google Scholar 

  65. Laumont, C. M. et al. Global proteogenomic analysis of human MHC class I-associated peptides derived from non-canonical reading frames. Nat. Commun. 7, 10238 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Laumont, C. M. et al. Non-coding regions are the main source of targetable tumor-specific antigens. Sci. Transl Med. 10, eaau5516 (2018).

    Article  CAS  PubMed  Google Scholar 

  67. Chong, C. et al. Integrated proteogenomic deep sequencing and analytics accurately identify non-canonical peptides in tumor immunopeptidomes. Nat. Commun. 11, 1293 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Berlin, C. et al. Mapping the HLA ligandome landscape of acute myeloid leukemia: a targeted approach toward peptide-based immunotherapy. Leukemia 29, 647–659 (2015).

    Article  CAS  PubMed  Google Scholar 

  69. Bilich, T. et al. The HLA ligandome landscape of chronic myeloid leukemia delineates novel T-cell epitopes for immunotherapy. Blood 133, 550–565 (2019).

    Article  CAS  PubMed  Google Scholar 

  70. Nelde, A. et al. HLA ligandome analysis of primary chronic lymphocytic leukemia (CLL) cells under lenalidomide treatment confirms the suitability of lenalidomide for combination with T-cell-based immunotherapy. Oncoimmunology 7, e1316438 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Shao, W. et al. The SysteMHC Atlas project. Nucleic Acids Res. 46, D1237–D1247 (2018).

    Article  CAS  PubMed  Google Scholar 

  72. Lanoix, J. et al. Comparison of the MHC I immunopeptidome repertoir of B-cell lymphoblasts using two isolation methods. Proteomics 18, e1700251 (2018).

    Article  PubMed  CAS  Google Scholar 

  73. Pfammatter, S. et al. Extending the comprehensiveness of immunopeptidome analyses using isobaric peptide labeling. Anal. Chem. 92, 9194–9204 (2020).

    Article  CAS  PubMed  Google Scholar 

  74. Boegel, S. et al. HLA and proteasome expression body map. BMC Med. Genomics 11, 36 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Benhammadi, M. et al. IFN lambda enhances constitutive expression of MHC class I molecules on thymic epithelial cells. J. Immunol. 205, 1268–1280 (2020).

    Article  CAS  PubMed  Google Scholar 

  76. Hukelmann, J. L. et al. The cytotoxic T cell proteome and its shaping by the kinase mTOR. Nat. Immunol. 17, 104–112 (2016).

    Article  CAS  PubMed  Google Scholar 

  77. Nagaraj, N. et al. Deep proteome and transcriptome mapping of a human cancer cell line. Mol. Syst. Biol. 7, 548 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Pearson, H. et al. MHC class I-associated peptides derive from selective regions of the human genome. J. Clin. Invest. 126, 4690–4701 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Muller, M., Gfeller, D., Coukos, G. & Bassani-Sternberg, M. ‘Hotspots’ of antigen presentation revealed by human leukocyte antigen ligandomics for neoantigen prioritization. Front. Immunol. 8, 1367 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Caron, E. et al. The MHC I immunopeptidome conveys to the cell surface an integrative view of cellular regulation. Mol. Syst. Biol. 7, 533 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Yewdell, J. W. & Holly, J. DRiPs get molecular. Curr. Opin. Immunol. 64, 130–136 (2020).

    Article  CAS  PubMed  Google Scholar 

  82. Demmers, L. C. et al. Single-cell derived tumor organoids display diversity in HLA class I peptide presentation. Nat. Commun. 11, 5338 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. McGranahan, N. et al. Allele-specific HLA loss and immune escape in lung cancer evolution.Cell 171, 1259–1271.e11 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Garrido, F. MHC/HLA class I loss in cancer cells. Adv. Exp. Med. Biol. 1151, 15–78 (2019).

    Article  CAS  PubMed  Google Scholar 

  85. Dersh, D. et al. Genome-wide screens identify lineage- and tumor-specific genes modulating MHC-I- and MHC-II-restricted immunosurveillance of human lymphomas. Immunity 54, 116–131.e10 (2021).

    Article  CAS  PubMed  Google Scholar 

  86. Meunier, M. C. et al. T cells targeted against a single minor histocompatibility antigen can cure solid tumors. Nat. Med. 11, 1222–1229 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Kvistborg, P. et al. TIL therapy broadens the tumor-reactive CD8(+) T cell compartment in melanoma patients. Oncoimmunology 1, 409–418 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Scheper, W. et al. Low and variable tumor reactivity of the intratumoral TCR repertoire in human cancers. Nat. Med. 25, 89–94 (2019).

    Article  CAS  PubMed  Google Scholar 

  89. Simoni, Y. et al. Bystander CD8+ T cells are abundant and phenotypically distinct in human tumour infiltrates. Nature 557, 575–579 (2018).

    Article  CAS  PubMed  Google Scholar 

  90. Coulie, P. G., van den Eynde, B. J., van der Bruggen, P. & Boon, T. Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nat. Rev. Cancer 14, 135–146 (2014).

    Article  CAS  PubMed  Google Scholar 

  91. Tran, E., Robbins, P. F. & Rosenberg, S. A. ‘Final common pathway’ of human cancer immunotherapy: targeting random somatic mutations. Nat. Immunol. 18, 255–262 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Apavaloaei, A., Hardy, M. P., Thibault, P. & Perreault, C. The origin and immune recognition of tumor-specific antigens. Cancers 12, 2607 (2020).

  93. Löffler, M. W. et al. Multi-omics discovery of exome-derived neoantigens in hepatocellular carcinoma. Genome Med. 11, 1–16 (2019).

    Article  Google Scholar 

  94. Van den Eynden, J., Jimenez-Sanchez, A., Miller, M. L. & Larsson, E. Lack of detectable neoantigen depletion signals in the untreated cancer genome. Nat. Genet. 51, 1741–1748 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Murata, K. et al. Landscape mapping of shared antigenic epitopes and their cognate TCRs of tumor-infiltrating T lymphocytes in melanoma. eLife 9, e53244 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Zhao, Q. et al. Proteogenomics uncovers a vast repertoire of shared tumor-specific antigens in ovarian cancer. Cancer Immunol. Res. 8, 544–555 (2020).

    Article  CAS  PubMed  Google Scholar 

  97. Bezu, L. et al. Trial watch: Peptide-based vaccines in anticancer therapy. Oncoimmunology 7, e1511506 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Haen, S. P., Loffler, M. W., Rammensee, H. G. & Brossart, P. Towards new horizons: characterization, classification and implications of the tumour antigenic repertoire. Nat. Rev. Clin. Oncol. 17, 595–610 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Weinzierl, A. O. et al. Distorted relation between mRNA copy number and corresponding major histocompatibility complex ligand density on the cell surface. Mol. Cell Proteom. 6, 102–113 (2007).

    Article  CAS  Google Scholar 

  100. Kurts, C. et al. CD8 T cell ignorance or tolerance to islet antigens depends on antigen dose. Proc. Natl Acad. Sci. USA 96, 12703–12707 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Yu, W. et al. Clonal deletion prunes but does not eliminate self-specific alphabeta CD8+ T lymphocytes. Immunity 42, 929–941 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Richards, D. M., Kyewski, B. & Feuerer, M. Re-examining the nature and function of self-reactive T cells. Trends Immunol. 37, 114–125 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Delaney, J. R., Sykulev, Y., Eisen, H. N. & Tonegawa, S. Differences in the level of expression of class I major histocompatibility complex proteins on thymic epithelial and dendritic cells influence the decision of immature thymocytes between positive and negative selection. Proc. Natl Acad. Sci. USA 95, 5235–5240 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Malhotra, D. et al. Tolerance is established in polyclonal CD4+ T cells by distinct mechanisms, according to self-peptide expression patterns. Nat. Immunol. 17, 187–195 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Culina, S. et al. Islet-reactive CD8+ T cell frequencies in the pancreas, but not in blood, distinguish type 1 diabetic patients from healthy donors. Sci. Immunol. 3, eaao4013 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Klein, L., Kyewski, B., Allen, P. M. & Hogquist, K. A. Positive and negative selection of the T cell repertoire: what thymocytes see (and don’t see). Nat. Rev. Immunol. 14, 377–391 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Cloosen, S. et al. Expression of tumor-associated differentiation antigens, MUC1 glycoforms and CEA, in human thymic epithelial cells: implications for self-tolerance and tumor therapy. Cancer Res. 67, 3919–3926 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Wells, D. K. et al. Key parameters of tumor epitope immunogenicity revealed through a consortium approach improve neoantigen prediction. Cell 183, 818–834 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Krausgruber, T. et al. Structural cells are key regulators of organ-specific immune responses. Nature 583, 296–302 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Esfahani, K. et al. Moving towards personalized treatments of immune-related adverse events. Nat. Rev. Clin. Oncol. 17, 504–515 (2020).

    Article  CAS  PubMed  Google Scholar 

  111. Overwijk, W. W. et al. Vaccination with a recombinant vaccinia virus encoding a “self” antigen induces autoimmune vitiligo and tumor cell destruction in mice: requirement for CD4+ T lymphocytes. Proc. Natl Acad. Sci. USA 96, 2982–2987 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Steitz, J. et al. Genetic immunization of mice with human tyrosinase-related protein 2: implications for the immunotherapy of melanoma. Int. J. Cancer 86, 89–94 (2000).

    Article  CAS  PubMed  Google Scholar 

  113. Malik, B. T. et al. Resident memory T cells in the skin mediate durable immunity to melanoma. Sci. Immunol. 2, eaam6346 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Gonzalez Santiago, T. M., Wetter, D. A., Lowe, G. C. & Sciallis, G. F. Generalized discoid lupus erythematosus as the presenting sign of small cell lung carcinoma. Skinmed 15, 218–220 (2017).

    PubMed  Google Scholar 

  115. Gonzalez Amores, Y., Hernando Rebollar, S. & Casado Bernabeu, A. Lupus as a paraneoplastic manifestation of cholangiocarcinoma. Rev. Esp. Enferm. Dig. 108, 292 (2016).

    PubMed  Google Scholar 

  116. Maria, A. T. J. et al. Intriguing relationships between cancer and systemic sclerosis: role of the immune system and other contributors. Front. Immunol. 9, 3112 (2018).

    Article  CAS  PubMed  Google Scholar 

  117. Zerdes, I. et al. How can we effectively address the paraneoplastic dermatomyositis: diagnosis, risk factors and treatment options. J. BUON 22, 1073–1080 (2017).

    PubMed  Google Scholar 

  118. Graus, F. & Dalmau, J. Paraneoplastic neurological syndromes in the era of immune-checkpoint inhibitors. Nat. Rev. Clin. Oncol. 16, 535–548 (2019).

    Article  CAS  PubMed  Google Scholar 

  119. Soomro, Z. et al. Paraneoplastic syndromes in small cell lung cancer. J. Thorac. Dis. 12, 6253–6263 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Przezdziecka-Dolyk, J. et al. Ocular paraneoplastic syndromes. Biomedicines 8, 490 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  121. Cao, L. et al. Chronic lymphocytic leukemia-associated paraneoplastic pemphigus: potential cause and therapeutic strategies. Sci. Rep. 10, 16357 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Okamoto, A., Watanabe, T., Kamata, K., Minaga, K. & Kudo, M. Recent updates on the relationship between cancer and autoimmune pancreatitis. Intern. Med. 58, 1533–1539 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Sugiyama, T. et al. A case of high-grade pancreatic intraepithelial neoplasia concomitant with type 1 autoimmune pancreatitis: The process underlying both conditions. Pathol. Int. 69, 165–171 (2019).

    Article  CAS  PubMed  Google Scholar 

  124. Albert, M. L. et al. Tumor-specific killer cells in paraneoplastic cerebellar degeneration. Nat. Med. 4, 1321–1324 (1998).

    Article  CAS  PubMed  Google Scholar 

  125. Yshii, L. M., Hohlfeld, R. & Liblau, R. S. Inflammatory CNS disease caused by immune checkpoint inhibitors: status and perspectives. Nat. Rev. Neurol. 13, 755–763 (2017).

    Article  CAS  PubMed  Google Scholar 

  126. Vogrig, A. et al. Increased frequency of anti-Ma2 encephalitis associated with immune checkpoint inhibitors. Neurol. Neuroimmunol. Neuroinflamm. 6, e604 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Helmink, B. A. et al. B cells and tertiary lymphoid structures promote immunotherapy response. Nature 577, 549–555 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Evans, R. L., Pottala, J. V., Nagata, S. & Egland, K. A. Longitudinal autoantibody responses against tumor-associated antigens decrease in breast cancer patients according to treatment modality. BMC Cancer 18, 119 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Wang, S. et al. Using a panel of multiple tumor-associated antigens to enhance autoantibody detection for immunodiagnosis of gastric cancer. Oncoimmunology 7, e1452582 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Koziol, J. A., Imai, H., Dai, L., Zhang, J. Y. & Tan, E. M. Early detection of hepatocellular carcinoma using autoantibody profiles from a panel of tumor-associated antigens. Cancer Immunol. Immunother. 67, 835–841 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Li, P. et al. Evaluation of serum autoantibodies against tumor-associated antigens as biomarkers in lung cancer. Tumour Biol. 39, 1010428317711662 (2017).

    Article  PubMed  Google Scholar 

  132. Michels, J. et al. Multiplex bead-based measurement of humoral immune responses against tumor-associated antigens in stage II melanoma patients of the EORTC18961 trial. Oncoimmunology 7, e1428157 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Sun, H. et al. Serum autoantibodies against a panel of 15 tumor-associated antigens in the detection of ovarian cancer. Tumour Biol. 39, 1010428317699132 (2017).

    Article  PubMed  Google Scholar 

  134. Dieu-Nosjean, M. C. et al. Long-term survival for patients with non-small-cell lung cancer with intratumoral lymphoid structures. J. Clin. Oncol. 26, 4410–4417 (2008).

    Article  CAS  PubMed  Google Scholar 

  135. Sautes-Fridman, C., Petitprez, F., Calderaro, J. & Fridman, W. H. Tertiary lymphoid structures in the era of cancer immunotherapy. Nat. Rev. Cancer 19, 307–325 (2019).

    Article  CAS  PubMed  Google Scholar 

  136. Maoz, A., Dennis, M. & Greenson, J. K. The Crohn’s-like lymphoid reaction to colorectal cancer-tertiary lymphoid structures with immunologic and potentially therapeutic relevance in colorectal cancer. Front. Immunol. 10, 1884 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Myshunina, T. M., Guda, B. D., Bolgov, M. Y., Mikhailenko, N. I. & Tronko, N. D. Differentiated thyroid carcinomas associated with chronic thyroiditis: biological and clinical properties. Exp. Oncol. 40, 128–131 (2018).

    Article  CAS  PubMed  Google Scholar 

  138. Moon, S. et al. Associations between Hashimoto thyroiditis and clinical outcomes of papillary thyroid cancer: a meta-analysis of observational studies. Endocrinol. Metab. 33, 473–484 (2018).

    Article  Google Scholar 

  139. Gozzard, P., Chapman, C., Vincent, A., Lang, B. & Maddison, P. Novel humoral prognostic markers in small-cell lung carcinoma: a prospective study. PLoS ONE 10, e0143558 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Maddison, P., Gozzard, P., Grainge, M. J. & Lang, B. Long-term survival in paraneoplastic Lambert-Eaton myasthenic syndrome. Neurology 88, 1334–1339 (2017).

    Article  PubMed  Google Scholar 

  141. Motofei, I. G. Melanoma and autoimmunity: spontaneous regressions as a possible model for new therapeutic approaches. Melanoma Res. 29, 231–236 (2019).

    Article  PubMed  Google Scholar 

  142. Paradisi, A. et al. Markedly reduced incidence of melanoma and nonmelanoma skin cancer in a nonconcurrent cohort of 10,040 patients with vitiligo. J. Am. Acad. Dermatol. 71, 1110–1116 (2014).

    Article  PubMed  Google Scholar 

  143. Bae, J. M. et al. Markedly reduced risk of internal malignancies in patients with vitiligo: a nationwide population-based cohort study. J. Clin. Oncol. 37, 903–911 (2019).

    Article  CAS  PubMed  Google Scholar 

  144. Teulings, H. E. et al. Vitiligo-like depigmentation in patients with stage III-IV melanoma receiving immunotherapy and its association with survival: a systematic review and meta-analysis. J. Clin. Oncol. 33, 773–781 (2015).

    Article  CAS  PubMed  Google Scholar 

  145. Zhou, X. et al. Are immune-related adverse events associated with the efficacy of immune checkpoint inhibitors in patients with cancer? A systematic review and meta-analysis. BMC Med. 18, 87 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. De Angelis, R. et al. Cancer survival in Europe 1999-2007 by country and age: results of EUROCARE–5-a population-based study. Lancet Oncol. 15, 23–34 (2014).

    Article  PubMed  Google Scholar 

  147. Montesion, M. et al. Somatic HLA class I loss is a widespread mechanism of immune evasion which refines the use of tumor mutational burden as a biomarker of checkpoint inhibitor response. Cancer Discov. 11, 282–292 (2021).

    Article  CAS  PubMed  Google Scholar 

  148. Nakamura, Y. et al. Nivolumab therapy for treatment-related vitiligo in a patient with relapsed metastatic melanoma. JAMA Dermatol. 153, 942–944 (2017).

    Article  PubMed  Google Scholar 

  149. Nardin, C., Pelletier, F., Puzenat, E. & Aubin, F. Vitiligo repigmentation with melanoma progression during pembrolizumab treatment. Acta Derm. Venereol. 99, 913–914 (2019).

    Article  PubMed  Google Scholar 

  150. Babai, S., Voisin, A. L., Bertin, C., Gouverneur, A. & Le-Louet, H. Occurrences and outcomes of immune checkpoint inhibitors-induced vitiligo in cancer patients: a retrospective cohort study. Drug. Saf. 43, 111–117 (2020).

    Article  CAS  PubMed  Google Scholar 

  151. Suresh, K. et al. Impact of checkpoint inhibitor pneumonitis on survival in NSCLC patients receiving immune checkpoint immunotherapy. J. Thorac. Oncol. 14, 494–502 (2019).

    Article  CAS  PubMed  Google Scholar 

  152. Fukihara, J. et al. Prognostic Impact and risk factors of immune-related pneumonitis in patients with non-small-cell lung cancer who received programmed death 1 inhibitors. Clin. Lung Cancer 20, 442–450.e4 (2019).

    Article  CAS  PubMed  Google Scholar 

  153. Lei, M., Michael, A., Patel, S. & Wang, D. Evaluation of the impact of thyroiditis development in patients receiving immunotherapy with programmed cell death-1 inhibitors. J. Oncol. Pharm. Pract. 25, 1402–1411 (2019).

    Article  CAS  PubMed  Google Scholar 

  154. Patel, V. et al. Acute interstitial nephritis, a potential predictor of response to immune checkpoint inhibitors in renal cell carcinoma. J. Immunother. Cancer 8, e001198 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Bulik-Sullivan, B. et al. Deep learning using tumor HLA peptide mass spectrometry datasets improves neoantigen identification. Nat. Biotechnol. 37, 55–63 (2019).

    Article  CAS  Google Scholar 

  156. Qian, S. B. et al. Tight linkage between translation and MHC class I peptide ligand generation implies specialized antigen processing for defective ribosomal products. J. Immunol. 177, 227–233 (2006).

    Article  CAS  PubMed  Google Scholar 

  157. Abelin, J. G. et al. Mass spectrometry profiling of HLA-associated peptidomes in mono-allelic cells enables more accurate epitope prediction. Immunity 46, 315–326 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Martins, R. P. et al. Nuclear processing of nascent transcripts determines synthesis of full-length proteins and antigenic peptides. Nucleic Acids Res. 47, 3086–3100 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Apcher, S. et al. Translation of pre-spliced RNAs in the nuclear compartment generates peptides for the MHC class I pathway. Proc. Natl Acad. Sci. USA 110, 17951–17956 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Wei, J. et al. Ribosomal proteins regulate MHC class I peptide generation for immunosurveillance. Mol. Cell 73, 1162–1173.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Yewdell, J. W., Dersh, D. & Fahraeus, R. Peptide channeling: the key to MHC class I immunosurveillance? Trends Cell Biol. 29, 929–939 (2019).

    Article  CAS  PubMed  Google Scholar 

  162. Wei, J. et al. Varied role of ubiquitylation in generating MHC class i peptide ligands. J. Immunol. 198, 3835–3845 (2017).

    Article  CAS  PubMed  Google Scholar 

  163. Bassani-Sternberg, M., Pletscher-Frankild, S., Jensen, L. J. & Mann, M. Mass spectrometry of human leukocyte antigen class I peptidomes reveals strong effects of protein abundance and turnover on antigen presentation. Mol. Cell Proteom. 14, 658–673 (2015).

    Article  CAS  Google Scholar 

  164. Forlani, G. et al. CIITA-transduced glioblastoma cells uncover a rich repertoire of clinically relevant tumor-associated HLA-II antigens. Mol. Cell Proteomics 20, 100032 (2020).

    Article  Google Scholar 

  165. de Verteuil, D. et al. Deletion of immunoproteasome subunits imprints on the transcriptome and has a broad impact on peptides presented by major histocompatibility complex I molecules. Mol. Cell Proteom. 9, 2034–2047 (2010).

    Article  Google Scholar 

  166. Vigneron, N. & Van den Eynde, B. J. Proteasome subtypes and the processing of tumor antigens: increasing antigenic diversity. Curr. Opin. Immunol. 24, 84–91 (2012).

    Article  CAS  PubMed  Google Scholar 

  167. Granados, D. P. et al. ER stress affects processing of MHC class I-associated peptides. BMC Immunol. 10, 10 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Wahl, A., Schafer, F., Bardet, W. & Hildebrand, W. H. HLA class I molecules reflect an altered host proteome after influenza virus infection. Hum. Immunol. 71, 14–22 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Jaeger, A. M. et al. Rebalancing protein homeostasis enhances tumor antigen presentation. Clin. Cancer Res. 25, 6392–6405 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Bloy, N. et al. Immunogenic stress and death of cancer cells: contribution of antigenicity vs adjuvanticity to immunosurveillance. Immunol. Rev. 280, 165–174 (2017).

    Article  CAS  PubMed  Google Scholar 

  171. Rozek, L. S. et al. Tumor-infiltrating lymphocytes, Crohn’s-like lymphoid reaction, and survival from colorectal cancer. J. Natl Cancer Inst. 108, djw027 (2016).

    Article  PubMed Central  Google Scholar 

  172. Quaglino, P. et al. Vitiligo is an independent favourable prognostic factor in stage III and IV metastatic melanoma patients: results from a single-institution hospital-based observational cohort study. Ann. Oncol. 21, 409–414 (2010).

    Article  CAS  PubMed  Google Scholar 

  173. Turajlic, S. et al. Insertion-and-deletion-derived tumour-specific neoantigens and the immunogenic phenotype: a pan-cancer analysis. Lancet Oncol. 18, 1009–1021 (2017).

    Article  CAS  PubMed  Google Scholar 

  174. Liu, P. et al. Immunosuppression by mutated calreticulin released from malignant cells. Mol. Cell 77, 748–760.e9 (2020).

    Article  CAS  PubMed  Google Scholar 

  175. Laumont, C. M. et al. Noncoding regions are the main source of targetable tumor-specific antigens. Sci. Transl Med. 10, eaau5516 (2018).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank V. Carbonnier (Centre de Recherche des Cordeliers, Paris, France) for help in preparing Fig. 2. L.Z. and G.K. receive support from the Agence National de la Recherche (ANR) – Projets blancs; AMMICa US23/CNRS UMS3655; Association pour la recherche sur le cancer (ARC); Association “Ruban Rose”; Cancéropôle Ile-de-France; Chancelerie des universités de Paris (Legs Poix), Fondation pour la Recherche Médicale (FRM); a donation by Elior; European Research Area Network on Cardiovascular Diseases (ERA-CVD, MINOTAUR); Gustave Roussy Odyssea, the European Union Horizon 2020 Project Oncobiome; Fondation Carrefour; High-end Foreign Expert Program in China (GDW20171100085); Inserm (HTE); Institut National du Cancer (INCa); Institut Universitaire de France; LeDucq Foundation; the LabEx Immuno-Oncology (ANR-18-IDEX-0001); Ligue contre le Cancer (équipe labellisée); RHU Torino Lumière; Seerave Foundation; SIRIC Stratified Oncology Cell DNA Repair and Tumour Immune Elimination (SOCRATE); and SIRIC Cancer Research and Personalized Medicine (CARPEM). This study contributes to the IdEx Université de Paris ANR-18-IDEX-0001. C.P. receives support from the Canadian Cancer Society (#705604) and the Canadian Institutes of Health Research (FDN 148400). O.J.F. receives support from the University of Pittsburgh Medical Center (UPMC) Immune Transplant and Therapy Center (ITTC) and the US National Cancer Institute (grant 5R35CA210039).

Author information

Authors and Affiliations

Authors

Contributions

G.K. researched data for the manuscript, L.Z. and G.K. wrote it with the input of C.P. and O.J.F., and all authors edited and reviewed the manuscript before submission.

Corresponding authors

Correspondence to Laurence Zitvogel or Guido Kroemer.

Ethics declarations

Competing interests

L.Z. and G.K. are founders of EverImmune. G.K. is a founder of Samsara Therapeutics and Therafast Bio. O.J.F. is a consultant for Biovelocita, GeoVax, Immodulon, Iaso Therapeutics and PDS Biotech. C.P. declares no competing interests.

Additional information

Peer review information

Nature Reviews Clinical Oncology thanks S. Karagiannis, R. Liblau, H-G. Rammensee and J. Yewdell for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Antigen spreading

Expansion of the immune response to secondary epitopes that were not part of the initial recognition process.

Danger-associate molecular patterns

(DAMPs). Protein exposed on the surface of stressed cells or metabolite or protein released from stressed or dying cells that alerts immune effectors.

Disease-associated antigens

Self-molecules that undergo changes in levels of expression and post-translational modifications in cells infected with pathogens, subjected to acute inflammation or during malignant transformation.

Immunopeptidome

Sum of peptides bound to MHC class I molecules that can be recognized by T cell receptors.

Immune-related adverse events

(irAEs). Undesired adverse events of immune-checkpoint inhibitors caused by excessive activation of autoimmune responses.

Lambert–Eaton myasthenic syndrome

Myasthenia-like condition in which an autoimmune response to the neuromuscular junctions causes progressive muscle weakness. Half of the diagnoses occur in patients with small-cell lung cancer.

Medullary thymic epithelial cells

(mTECs). Specialized cells that present self-antigens to induce clonal deletion of self-specific T lymphocytes, thus assuring central tolerance.

Melanocytes

Specialized cells found in the basal skin layer that produce melanin and transfer this pigment in the form of melanosomes into the cytoplasm of adjacent keratinocytes.

Paraneoplastic syndromes

Compendium of clinical signs provoked by a cancer at a distant location, generally as a result of autoimmune responses.

Senescence

Close-to-irreversible blockade of the cell cycle coupled to a major loss of cell function that occurs in response to injury or as a result of aging.

Thyrocyte

Thyroid epithelial cell producing thyroid hormones.

Tumour-associated antigens

Antigens that can be found on non-malignant cells but whose (over)expression on the surface of cancer cells enables the immune system to distinguish such cells from their non-transformed counterparts.

Tumour-specific antigens

Antigens that are uniquely present within or on a cancer cell. They can arise via both mutational (mutated tumour-specific antigens) and non-mutational (non-mutated tumour-specific antigens) mechanisms.

Vitiligo

Also known as leukoderma. White patches of the skin caused by the autoimmune destruction of melanocytes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zitvogel, L., Perreault, C., Finn, O.J. et al. Beneficial autoimmunity improves cancer prognosis. Nat Rev Clin Oncol 18, 591–602 (2021). https://doi.org/10.1038/s41571-021-00508-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-021-00508-x

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer