Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Anion chemistry in energy storage devices

Subjects

Abstract

Anions serve as an essential component of electrolytes, whose effects have long been ignored. However, since the 2010s, we have seen a considerable increase of anion chemistry research in a range of energy storage devices, and it is now understood that anions can be well tuned to effectively improve the electrochemical performance of such devices in many aspects. In this Review, we discuss the roles of anion chemistry across various energy storage devices and clarify the correlations between anion properties and their performance indexes. We highlight the effects of anions on surface and interface chemistry, mass transfer kinetics and solvation sheath structure. Finally, we conclude with a perspective on the challenges and opportunities of anion chemistry for enhancing specific capacity, output voltage, cycling stability and anti-self-discharge ability of energy storage devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The milestone studies of anion effects on various energy storage devices and the radii of typical cations and anions.
Fig. 2: The effects of anions on the electrochemical performance of supercapacitors.
Fig. 3: The influence of anions on the electrochemical performance of dual-ion batteries.
Fig. 4: The influence of anions on the electrochemical performance of cation rechargeable batteries and metal–oxygen and metal–sulfur batteries.
Fig. 5: The influence of anions on the surface-interface chemistry and mass transfer kinetics.
Fig. 6: The influence of anions on electrochemical stability window and the solvation sheath structure.

Similar content being viewed by others

References

  1. Yu, X. et al. Emergent pseudocapacitance of 2D nanomaterials. Adv. Energy Mater. 8, 1702930 (2018).

    Article  Google Scholar 

  2. Gund, G. S. et al. MXene/polymer hybrid materials for flexible AC-filtering electrochemical capacitors. Joule 3, 164–176 (2019).

    Article  CAS  Google Scholar 

  3. Placke, T. et al. Perspective on performance, cost, and technical challenges for practical dual-ion batteries. Joule 2, 2528–2550 (2018).

    Article  CAS  Google Scholar 

  4. Tan, J., Matz, J., Dong, P., Ye, M. & Shen, J. Appreciating the role of polysulfides in lithium-sulfur batteries and regulation strategies by electrolytes engineering. Energy Storage Mater. 42, 645–678 (2021).

    Article  Google Scholar 

  5. Dou, Q. et al. Emerging trends in anion storage materials for the capacitive and hybrid energy storage and beyond. Chem. Soc. Rev. 50, 6734–6789 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. Osaka, T., Naoi, K. & Ogano, S. Effect of polymerization anion on electrochemical properties of polypyrrole and on Li/LiClO4/polypyrrole battery performance. J. Electrochem. Soc. 135, 1071–1077 (1988).

    Article  CAS  Google Scholar 

  7. McCullough, F.P., Levine, C.A. & Snelgrove, R.V. Secondary battery. US Patent 4830938 (1989).

  8. Carlin, R. T. et al. Dual intercalating molten electrolyte batteries. Mater. Res. Soc. Symp. Proc. 393, 201–206 (1995).

    Article  CAS  Google Scholar 

  9. Chaumont, A. & Wipff, G. Halide anion solvation and recognition by a macrotricyclic tetraammonium host in an ionic liquid: a molecular dynamics study. New J. Chem. 30, 537–545 (2006).

    Article  CAS  Google Scholar 

  10. Lota, G. & Frackowiak, E. Electrochemistry communications striking capacitance of carbon/iodide interface. Electrochem. Commun. 11, 87–90 (2009).

    Article  CAS  Google Scholar 

  11. Reddy, M. A. & Fichtner, M. Batteries based on fluoride shuttle. J. Mater. Chem. 21, 17059–17062 (2011).

    Article  Google Scholar 

  12. Burke, C. M. et al. Enhancing electrochemical intermediate solvation through electrolyte anion selection to increase nonaqueous Li-O2 battery capacity. Proc. Natl Acad. Sci. USA 112, 9293–9298 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu, Z., Cui, T., Lu, T., Shapouri Ghazvini, M. & Endres, F. Anion effects on the solid/ionic liquid interface and the electrodeposition of zinc. J. Phys. Chem. C 120, 20224–20231 (2016).

    Article  CAS  Google Scholar 

  14. Smaran, K. S. et al. Anion-dependent potential precycling effects on lithium deposition/dissolution reaction studied by an electrochemical quartz crystal microbalance. J. Phys. Chem. Lett. 8, 5203–5208 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. Zhao, C. Z. et al. An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes. Proc. Natl Acad. Sci. USA 114, 11069–11074 (2017). This work shows that the anions in polymer electrolyte have important effects on transfer number of their charge carriers and mass transfer kinetics.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chao, D. & Fan, H. J. Intercalation pseudocapacitive behavior powers aqueous batteries. Chem 5, 1359–1361 (2019).

    Article  CAS  Google Scholar 

  17. Tansel, B. Significance of thermodynamic and physical characteristics on permeation of ions during membrane separation: hydrated radius, hydration free energy and viscous effects. Sep. Purif. Technol. 86, 119–126 (2012).

    Article  CAS  Google Scholar 

  18. Choi, C. et al. Achieving high energy density and high power density with pseudocapacitive materials. Nat. Rev. Mater. 5, 5–19 (2020).

    Article  Google Scholar 

  19. Aldama, I. et al. Contribution of cations and anions of aqueous electrolytes to the charge stored at the electric electrolyte/electrode interface of carbon-based supercapacitors. J. Phys. Chem. C 121, 12053–12062 (2017).

    Article  CAS  Google Scholar 

  20. Suleman, M., Kumar, Y. & Hashmi, S. A. Solid-state electric double layer capacitors fabricated with plastic crystal based flexible gel polymer electrolytes: effective role of electrolyte anions. Mater. Chem. Phys. 163, 161–171 (2015).

    Article  CAS  Google Scholar 

  21. Kato, K., Rodrigues, M. T. F., Babu, G. & Ajayan, P. M. Revealing anion chemistry above 3V in Li-ion capacitors. Electrochim. Acta 324, 134871 (2019).

    Article  CAS  Google Scholar 

  22. Huang, Z. et al. Manipulating anion intercalation enables a high-voltage aqueous dual ion battery. Nat. Commun. 12, 3106 (2021). This work demonstrates that the output voltage of dual-ion batteries can be manipulated by the solvation energy of anions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li, J. et al. Anion and cation substitution in transition-metal oxides nanosheets for high-performance hybrid supercapacitors. Nano Energy 57, 22–33 (2019).

    Article  Google Scholar 

  24. Sivakumar, P. et al. Ultrafast and reversible anion storage of spinel nanoarchitecture for high-performance alkaline zinc full cells. Appl. Phys. Rev. 8, 021408 (2021).

    Article  CAS  Google Scholar 

  25. Shao, H., Wu, Y. C., Lin, Z., Taberna, P. L. & Simon, P. Nanoporous carbon for electrochemical capacitive energy storage. Chem. Soc. Rev. 49, 3005–3039 (2020).

    Article  CAS  PubMed  Google Scholar 

  26. Jin, H. et al. Heteroatom-doped porous carbon materials with unprecedented high volumetric capacitive performance. Angew. Chem. Int. Ed. 131, 2419–2423 (2019).

    Article  Google Scholar 

  27. Feng, D. et al. Robust and conductive two-dimensional metal–organic frameworks with exceptionally high volumetric and areal capacitance. Nat. Energy 3, 30–36 (2018).

    Article  CAS  Google Scholar 

  28. Li, B. et al. Electrolytic-anion-redox adsorption pseudocapacitance in nanosized lithium-free transition metal oxides as cathode materials for Li-ion batteries. Nano Energy 72, 104727 (2020).

    Article  CAS  Google Scholar 

  29. Boisset, A. et al. Comparative performances of birnessite and cryptomelane MnO2 as electrode material in neutral aqueous lithium salt for supercapacitor application. J. Phys. Chem. C 117, 7408–7422 (2013).

    Article  CAS  Google Scholar 

  30. Mefford, J. T. et al. Anion charge storage through oxygen intercalation in LaMnO3 perovskite pseudocapacitor electrodes. Nat. Mater. 13, 726–732 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Liu, Y. et al. Design of perovskite oxides as anion-intercalation-type electrodes for supercapacitors: cation leaching effect. ACS Appl. Mater. Interfaces 8, 23774–23783 (2016).

    Article  CAS  PubMed  Google Scholar 

  32. Han, C. et al. Boost anion storage capacity using conductive polymer as a pseudocapacitive cathode for high-energy and flexible lithium ion capacitors. ACS Appl. Mater. Interfaces 12, 10479–10489 (2020).

    Article  CAS  PubMed  Google Scholar 

  33. Huang, Z. et al. Effects of anion carriers on capacitance and self-discharge behaviors of zinc ion capacitors. Angew. Chem. Int. Ed. 60, 1011–1021 (2021). This work proposes that the anti-self-discharge ability of supercapacitor is determined by the stability of adsorbed structure of anions and cathode materials.

    Article  CAS  Google Scholar 

  34. Qin, W. et al. Mini-review on the redox additives in aqueous electrolyte for high performance supercapacitors. ACS Omega 5, 3801–3808 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sun, K. et al. A simple and high-performance supercapacitor based on nitrogen-doped porous carbon in redox-mediated sodium molybdate electrolyte. Electrochim. Acta 158, 361–367 (2015).

    Article  CAS  Google Scholar 

  36. Jayaramulu, K. et al. Ultrathin hierarchical porous carbon nanosheets for high-performance supercapacitors and redox electrolyte energy storage. Adv. Mater. 30, 1705789 (2018).

    Article  Google Scholar 

  37. Roldán, S. et al. Towards a further generation of high-energy carbon-based capacitors by using redox-active electrolytes. Angew. Chem. Int. Ed. 50, 1699–1701 (2011).

    Article  Google Scholar 

  38. Skunik-Nuckowska, M., Węgrzyn, K., Dyjak, S., Wisińska, N. H. & Kulesza, P. J. Polyoxometalate/hydroquinone dual redox electrolyte for hybrid energy storage systems. Energy Storage Mater. 21, 427–438 (2019).

    Article  Google Scholar 

  39. Mourad, E. et al. Biredox ionic liquids with solid-like redox density in the liquid state for high-energy supercapacitors. Nat. Mater. 16, 446–454 (2017). This work demonstrates that tethering redox groups to ionic liquids can greatly increase the specific energy and maintain the fast redox kinetics of supercapacitor.

    Article  CAS  PubMed  Google Scholar 

  40. Schmuelling, G. et al. X-ray diffraction studies of the electrochemical intercalation of bis(trifluoromethanesulfonyl)imide anions into graphite for dual-ion cells. J. Power Sources 239, 563–571 (2013).

    Article  CAS  Google Scholar 

  41. Wang, Y. et al. Ultrafast charging and stable cycling dual-ion batteries enabled via an artificial cathode–electrolyte interface. Adv. Funct. Mater. 31, 2102360 (2021).

    Article  CAS  Google Scholar 

  42. Xiang, L. et al. Highly concentrated electrolyte towards enhanced energy density and cycling life of dual-ion battery. Angew. Chem. Int. Ed. 59, 17924–17930 (2020).

    Article  CAS  Google Scholar 

  43. Xu, X. et al. Quasi-solid-state dual-ion sodium metal batteries for low-cost energy storage. Chem 6, 902–918 (2020).

    Article  CAS  Google Scholar 

  44. Yang, K. et al. Locally ordered graphitized carbon cathodes for high‐capacity dual‐ion batteries. Angew. Chem. Int. Ed. 133, 6396–6402 (2021).

    Article  Google Scholar 

  45. Wang, M. et al. Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage. Nat. Chem. 10, 667–672 (2018).

    Article  CAS  PubMed  Google Scholar 

  46. Kravchyk, K. V., Seno, C. & Kovalenko, M. V. Limitations of chloroaluminate ionic liquid anolytes for aluminum-graphite dual-ion batteries. ACS Energy Lett. 5, 545–549 (2020).

    Article  CAS  Google Scholar 

  47. Wang, G. et al. A high-voltage, dendrite-free, and durable Zn–graphite battery. Adv. Mater. 32, 1905681 (2020).

    Article  CAS  Google Scholar 

  48. Zhang, X., Tang, Y., Zhang, F. & Lee, C. S. A novel aluminum–graphite dual-ion battery. Adv. Energy Mater. 6, 1502588 (2016).

    Article  Google Scholar 

  49. Tong, X. et al. Carbon-coated porous aluminum foil anode for high-rate, long-term cycling stability, and high energy density dual-ion batteries. Adv. Mater. 28, 9979–9985 (2016).

    Article  CAS  PubMed  Google Scholar 

  50. Li, C. et al. Preparation of Si-graphite dual-ion batteries by tailoring the voltage window of pretreated Si-anodes. Mater. Today Energy 8, 174–181 (2018).

    Article  Google Scholar 

  51. Jiang, C. et al. Flexible interface design for stress regulation of a silicon anode toward highly stable dual-ion batteries. Adv. Mater. 32, 1908470 (2020).

    Article  CAS  Google Scholar 

  52. Yu, M. et al. Interlayer gap widened α-phase molybdenum trioxide as high-rate anodes for dual-ion-intercalation energy storage devices. Nat. Commun. 11, 1348 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sheng, M., Zhang, F., Ji, B., Tong, X. & Tang, Y. A novel tin-graphite dual-ion battery based on sodium-ion electrolyte with high energy density. Adv. Energy Mater. 7, 1601963 (2017).

    Article  Google Scholar 

  54. Ji, B., Zhang, F., Song, X. & Tang, Y. A novel potassium-ion-based dual-ion battery. Adv. Mater. 29, 1700519 (2017).

    Article  Google Scholar 

  55. Gao, J., Yoshio, M., Qi, L. & Wang, H. Solvation effect on intercalation behaviour of tetrafluoroborate into graphite electrode. J. Power Sources 278, 452–457 (2015).

    Article  CAS  Google Scholar 

  56. Kravchyk, K. V. et al. High-energy-density dual-ion battery for stationary storage of electricity using concentrated potassium fluorosulfonylimide. Nat. Commun. 9, 4469 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Chen, Z. et al. Anion solvation reconfiguration enables high-voltage carbonate electrolytes for stable Zn/graphite cells. Angew. Chem. Int. Ed. 59, 21769–21777 (2020).

    Article  CAS  Google Scholar 

  58. Chen, Z. et al. Fast anion intercalation into graphite cathode enabling high-rate rechargeable zinc batteries. J. Power Sources 457, 227994 (2020).

    Article  CAS  Google Scholar 

  59. Meister, P. et al. Dual-ion cells based on the electrochemical intercalation of asymmetric fluorosulfonyl-(trifluoromethanesulfonyl) imide anions into graphite. Electrochim. Acta 130, 625–633 (2014).

    Article  CAS  Google Scholar 

  60. Wang, D. Y. et al. Advanced rechargeable aluminium ion battery with a high-quality natural graphite cathode. Nat. Commun. 8, 14283 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wang, S. et al. A novel dual-graphite aluminum-ion battery. Energy Storage Mater. 12, 119–127 (2018).

    Article  Google Scholar 

  62. Wrogemann, J. M. et al. Development of safe and sustainable dual-ion batteries through hybrid aqueous/nonaqueous electrolytes. Adv. Energy Mater. 10, 1902709 (2020).

    Article  CAS  Google Scholar 

  63. Zhu, J. et al. Hybrid aqueous/nonaqueous water-in-bisalt electrolyte enables safe dual ion batteries. Small 16, 1905838 (2020).

    Article  CAS  Google Scholar 

  64. Kim, K. et al. [LiCl2] superhalide: a new charge carrier for graphite cathode of dual-ion batteries. Adv. Funct. Mater. 32, 2112709 (2022).

    Article  CAS  Google Scholar 

  65. Zhang, H., Liu, X., Qin, B. & Passerini, S. Electrochemical intercalation of anions in graphite for high-voltage aqueous zinc battery. J. Power Sources 449, 227594 (2020).

    Article  CAS  Google Scholar 

  66. Guo, Q. et al. A high-potential anion-insertion carbon cathode for aqueous zinc dual-ion battery. Adv. Funct. Mater. 30, 2002825 (2020).

    Article  CAS  Google Scholar 

  67. Aubrey, M. L. & Long, J. R. A dual-ion battery cathode via oxidative insertion of anions in a metal–organic framework. J. Am. Chem. Soc. 137, 13594–13602 (2015).

    Article  CAS  PubMed  Google Scholar 

  68. Rodríguez-Pérez, I. A. et al. A hydrocarbon cathode for dual-ion batteries. ACS Energy Lett. 1, 719–723 (2016).

    Article  Google Scholar 

  69. Fan, L., Liu, Q., Xu, Z. & Lu, B. An organic cathode for potassium dual-ion full battery. ACS Energy Lett. 2, 1614–1620 (2017).

    Article  CAS  Google Scholar 

  70. Walter, M., Kravchyk, K. V., Böfer, C., Widmer, R. & Kovalenko, M. V. Polypyrenes as high-performance cathode materials for aluminum batteries. Adv. Mater. 30, 1705644 (2018).

    Article  Google Scholar 

  71. Huang, H. et al. Design and construction of few-layer graphene cathode for ultrafast and high-capacity aluminum-ion batteries. Energy Storage Mater. 27, 396–404 (2020).

    Article  Google Scholar 

  72. Li, C. et al. Dual-ion battery with MoS2 cathode. Energy Storage Mater. 32, 159–166 (2020).

    Article  CAS  Google Scholar 

  73. Chen, F. et al. A dual-ion electrochemistry deionization system based on AgCl-Na0.44MnO2 electrodes. Nanoscale 9, 10101–10108 (2017).

    Article  CAS  PubMed  Google Scholar 

  74. Zhao, W. et al. Ultrahigh-desalination-capacity dual-ion electrochemical deionization device based on Na3V2(PO4)3@C-AgCl electrodes. ACS Appl. Mater. Interfaces 10, 40540–40548 (2018).

    Article  CAS  PubMed  Google Scholar 

  75. Pasta, M. et al. A desalination battery. Nano Lett. 12, 839–843 (2012).

    Article  CAS  PubMed  Google Scholar 

  76. Zhao, W. et al. Dual-ion electrochemical deionization system with binder-free aerogel electrodes. Small 15, 1805505 (2019).

    Article  Google Scholar 

  77. Chen, F. et al. Dual-ions electrochemical deionization: a desalination generator. Energy Environ. Sci. 10, 2081–2089 (2017).

    Article  CAS  Google Scholar 

  78. Kong, H. et al. Polypyrrole as a novel chloride-storage electrode for seawater desalination. Energy Technol. 7, 1900835 (2019).

    Article  CAS  Google Scholar 

  79. Wu, X. et al. Reverse dual-ion battery via a ZnCl2 water-in-salt electrolyte. J. Am. Chem. Soc. 141, 6338–6344 (2019).

    Article  CAS  PubMed  Google Scholar 

  80. Wang, G., Yu, M. & Feng, X. Carbon materials for ion-intercalation involved rechargeable battery technologies. Chem. Soc. Rev. 50, 2388–2443 (2021).

    Article  CAS  PubMed  Google Scholar 

  81. Kravchyk, K. V. & Kovalenko, M. V. Rechargeable dual-ion batteries with graphite as a cathode: key challenges and opportunities. Adv. Energy Mater. 9, 1901749 (2019).

    Article  Google Scholar 

  82. Rodríguez-Pérez, I. A. & Ji, X. Anion hosting cathodes in dual-ion batteries. ACS Energy Lett. 2, 1762–1770 (2017).

    Article  Google Scholar 

  83. Ji, X. A paradigm of storage batteries. Energy Environ. Sci. 12, 3203–3224 (2019).

    Article  CAS  Google Scholar 

  84. Ji, B., Yao, W. & Tang, Y. High-performance rechargeable zinc-based dual-ion batteries. Sustain. Energy Fuels 4, 101–107 (2019).

    Article  Google Scholar 

  85. Rodríguez-Pérez, I. A. et al. Enabling natural graphite in high-voltage aqueous graphite || Zn metal dual-ion batteries. Adv. Energy Mater. 10, 2001256 (2020).

    Article  Google Scholar 

  86. Zhang, L. et al. Large-sized few-layer graphene enables an ultrafast and long-life aluminum-ion battery. Adv. Energy Mater. 7, 1700034 (2017).

    Article  Google Scholar 

  87. Ko, S., Yamada, Y. & Yamada, A. An overlooked issue for high-voltage Li-ion batteries: suppressing the intercalation of anions into conductive carbon. Joule 5, 998–1009 (2021).

    Article  CAS  Google Scholar 

  88. Li, Q. et al. Both cationic and anionic Co-(de)intercalation into a metal-oxide material. Joule 2, 1134–1145 (2018). This work demonstrates that co-(de)intercalation of anions and cations could reach a capacity beyond the theoretical capacity for conventional metal oxides with only cationic (de)intercalation.

    Article  CAS  Google Scholar 

  89. Wang, S. et al. Regulating fast anionic redox for high-voltage aqueous hydrogen-ion-based energy storage. Angew. Chem. Int. Ed. 58, 205–210 (2019).

    Article  CAS  Google Scholar 

  90. Zeng, X. et al. Toward a reversible Mn4+/Mn2+ redox reaction and dendrite-free Zn anode in near-neutral aqueous Zn/MnO2 batteries via salt anion chemistry. Adv. Energy Mater. 10, 1904163 (2020).

    Article  CAS  Google Scholar 

  91. Bitenc, J. et al. Effect of Cl and TFSI anions on dual electrolyte systems in a hybrid Mg/Li4Ti5O12 battery. Electrochem. Commun. 76, 29–33 (2017).

    Article  CAS  Google Scholar 

  92. Tezel, A. O. et al. Effect of a boron based anion receptor on graphite and LiFePO4 electrodes. J. Electrochem. Soc. 167, 020525 (2020).

    Article  CAS  Google Scholar 

  93. Xu, H. et al. Strong anion receptor-assisted boron-based Mg electrolyte with wide electrochemical window and non-nucleophilic characteristic. Electrochem. Commun. 83, 72–76 (2017).

    Article  CAS  Google Scholar 

  94. Li, Y. et al. Hexagonal boron nitride induces anion trapping in a polyethylene oxide based solid polymer electrolyte for lithium dendrite inhibition. J. Mater. Chem. A 8, 9579–9589 (2020).

    Article  CAS  Google Scholar 

  95. Lutz, L. et al. Role of electrolyte anions in the Na-O2 battery: implications for NaO2 solvation and the stability of the sodium solid electrolyte interphase in Glyme ethers. Chem. Mater. 29, 6066–6075 (2017).

    Article  CAS  Google Scholar 

  96. Sankarasubramanian, S., Kahky, J. & Ramani, V. Tuning anion solvation energetics enhances potassium–oxygen battery performance. Proc. Natl Acad. Sci. USA 116, 14899–14904 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Leverick, G. et al. Solvent- and anion-dependent Li+-O2-coupling strength and implications on the thermodynamics and kinetics of Li-O2 batteries. J. Phys. Chem. C 124, 4953–4967 (2020).

    Article  CAS  Google Scholar 

  98. Chu, H. et al. Achieving three-dimensional lithium sulfide growth in lithium–sulfur batteries using high-donor-number anions. Nat. Commun. 10, 188 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Chu, H. et al. Unraveling the dual functionality of high-donor-number anion in lean-electrolyte lithium–sulfur batteries. Adv. Energy Mater. 10, 2000493 (2020).

    Article  CAS  Google Scholar 

  100. Yang, B. et al. Critical role of anion donicity in Li2S deposition and sulfur utilization in Li-S batteries. ACS Appl. Mater. Interfaces 11, 25940–25948 (2019).

    Article  CAS  PubMed  Google Scholar 

  101. Han, K. S. et al. Effects of anion mobility on electrochemical behaviors of lithium–sulfur batteries. Chem. Mater. 29, 9023–9029 (2017).

    Article  CAS  Google Scholar 

  102. Cao, R. et al. Effect of the anion activity on the stability of Li metal anodes in lithium–sulfur batteries. Adv. Funct. Mater. 26, 3059–3066 (2016).

    Article  CAS  Google Scholar 

  103. Nowroozi, M. A. et al. Fluoride ion batteries — past, present, and future. J. Mater. Chem. A 9, 5980–6012 (2021).

    Article  CAS  Google Scholar 

  104. Okazaki, K. I. et al. Charge–discharge behavior of bismuth in a liquid electrolyte for rechargeable batteries based on a fluoride shuttle. ACS Energy Lett. 2, 1460–1464 (2017).

    Article  CAS  Google Scholar 

  105. Davis, V. K. et al. Room-temperature cycling of metal fluoride electrodes: liquid electrolytes for high-energy fluoride ion cells. Science 362, 1144–1148 (2018).

    Article  CAS  PubMed  Google Scholar 

  106. Li, X. et al. Initiating a room-temperature rechargeable aqueous fluoride-ion battery with long lifespan through a rational buffering phase design. Adv. Energy Mater. 11, 2003714 (2021).

    Article  CAS  Google Scholar 

  107. Konishi, H. et al. Triphenylboroxine and triphenylborane as anion acceptors for electrolyte in fluoride shuttle batteries. Chem. Lett. 47, 1346–1349 (2018).

    Article  CAS  Google Scholar 

  108. Konishi, H. et al. Effect of anion acceptor added to the electrolyte on the electrochemical performance of bismuth(III) fluoride in a fluoride shuttle battery. Chem. Phys. Lett. 755, 137785 (2020).

    Article  CAS  Google Scholar 

  109. Liu, Q. et al. Rechargeable anion-shuttle batteries for low-cost energy storage. Chem 7, 1993–2021 (2021).

    Article  CAS  Google Scholar 

  110. Gschwind, F., Euchner, H. & Rodriguez-Garcia, G. Chloride ion battery review: theoretical calculations, state of the art, safety, toxicity, and an outlook towards future developments. Eur. J. Inorg. Chem. 2017, 2784–2799 (2017).

    Article  CAS  Google Scholar 

  111. Zhao, X., Zhao-Karger, Z., Fichtner, M. & Shen, X. Halide-based materials and chemistry for rechargeable batteries. Angew. Chem. Int. Ed. 59, 5902–5949 (2020).

    Article  CAS  Google Scholar 

  112. Gao, P. et al. VOCl as a cathode for rechargeable chloride ion batteries. Angew. Chem. Int. Ed. 128, 4357–4362 (2016).

    Article  Google Scholar 

  113. Chen, F., Leong, Z. Y. & Yang, H. Y. An aqueous rechargeable chloride ion battery. Energy Storage Mater. 7, 189–194 (2017).

    Article  Google Scholar 

  114. Liang, G. et al. Commencing mild Ag–Zn batteries with long-term stability and ultra-flat voltage platform. Energy Storage Mater. 25, 86–92 (2020).

    Article  Google Scholar 

  115. Wu, L., Chen, Z. & Ma, X. Chloride ion conducting polymer electrolytes based on cross-linked PMMA-PP14Cl-PP14TFSI ion gels for chloride ion batteries. Int. J. Electrochem. Sci. 14, 2414–2421 (2019).

    Article  CAS  Google Scholar 

  116. Zhao, X. et al. Chloride ion battery: a new member in the rechargeable battery family. J. Power Sources 245, 706–711 (2014).

    Article  CAS  Google Scholar 

  117. Zhao, X. et al. Carbon incorporation effects and reaction mechanism of FeOCl cathode materials for chloride ion batteries. Sci. Rep. 6, 19448 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Yu, T., Zhao, X., Ma, L. & Shen, X. Intercalation and electrochemical behaviors of layered FeOCl cathode material in chloride ion battery. Mater. Res. Bull. 96, 485–490 (2017).

    Article  CAS  Google Scholar 

  119. Yu, T. et al. Nanoconfined iron oxychloride material as a high-performance cathode for rechargeable chloride ion batteries. ACS Energy Lett. 2, 2341–2348 (2017).

    Article  CAS  Google Scholar 

  120. Lakshmi, K. P., Janas, K. J. & Shaijumon, M. M. Antimony oxychloride embedded graphene nanocomposite as efficient cathode material for chloride ion batteries. J. Power Sources 433, 126685 (2019).

    Article  CAS  Google Scholar 

  121. Hu, X. et al. Electrochemical performance of Sb4O5Cl2 as a new anode material in aqueous chloride-ion battery. ACS Appl. Mater. Interfaces 11, 9144–9148 (2019).

    Article  CAS  PubMed  Google Scholar 

  122. Yin, Q. et al. CoFe–Cl layered double hydroxide: a new cathode material for high-performance chloride ion batteries. Adv. Funct. Mater. 29, 1900983 (2019).

    Article  Google Scholar 

  123. Yin, Q. et al. A new family of rechargeable batteries based on halide ions shuttling. Chem. Eng. J. 389, 124376 (2020).

    Article  CAS  Google Scholar 

  124. Zhao, X. et al. Developing polymer cathode material for the chloride ion battery. ACS Appl. Mater. Interfaces 9, 2535–2540 (2017).

    Article  CAS  PubMed  Google Scholar 

  125. Yang, R., Yu, T. & Zhao, X. Polypyrrole-coated iron oxychloride cathode material with improved cycling stability for chloride ion batteries. J. Alloy. Compd. 788, 407–412 (2019).

    Article  CAS  Google Scholar 

  126. Yu, T. et al. Polyaniline-intercalated FeOCl cathode material for chloride-ion batteries. ChemElectroChem 6, 1761–1767 (2019).

    Article  CAS  Google Scholar 

  127. Cadiou, V. et al. Pairing cross-linked polyviologen with aromatic amine host structure for anion shuttle rechargeable batteries. ChemSusChem 13, 2345–2353 (2020).

    Article  CAS  PubMed  Google Scholar 

  128. Yamaguchi, K. et al. Influence of the structure of the anion in an ionic liquid electrolyte on the electrochemical performance of a silicon negative electrode for a lithium-ion battery. J. Power Sources 338, 103–107 (2017).

    Article  CAS  Google Scholar 

  129. Eshetu, G. G. et al. Impact of the electrolyte salt anion on the solid electrolyte interphase formation in sodium ion batteries. Nano Energy 55, 327–340 (2019).

    Article  CAS  Google Scholar 

  130. Wang, H. et al. Efficient lithium metal cycling over a wide range of pressures from an anion-derived solid-electrolyte interphase framework. ACS Energy Lett. 6, 816–825 (2021).

    Article  CAS  Google Scholar 

  131. Wang, Z. et al. An anion-tuned solid electrolyte interphase with fast ion transfer kinetics for stable lithium anodes. Adv. Energy Mater. 10, 1903843 (2020).

    Article  CAS  Google Scholar 

  132. Wang, Z. et al. Highly concentrated dual-anion electrolyte for non-flammable high-voltage Li-metal batteries. Energy Storage Mater. 30, 228–237 (2020).

    Article  Google Scholar 

  133. Yao, Y. et al. Regulating interfacial chemistry in lithium‐ion batteries by a weakly solvating electrolyte. Angew. Chem. Int. Ed. 133, 4136–4143 (2021).

    Article  Google Scholar 

  134. Ding, J. F. et al. Non-solvating and low-dielectricity cosolvent for anion-derived solid electrolyte interphases in lithium metal batteries. Angew. Chem. Int. Ed. 60, 11442–11447 (2021).

    Article  CAS  Google Scholar 

  135. Yan, C. et al. Nucleation and growth mechanism of anion‐derived solid electrolyte interphase in rechargeable batteries. Angew. Chem. Int. Ed. 133, 8602–8606 (2021). This work reveals the nucleation and growth mechanism of anion-derived solid electrolyte interphase film.

    Article  Google Scholar 

  136. Tang, K. et al. A novel regulation strategy of solid electrolyte interphase based on anion-solvent coordination for magnesium metal anode. Small 16, 2005424 (2020).

    Article  CAS  Google Scholar 

  137. Tang, K. et al. A stable solid electrolyte interphase for magnesium metal anode evolved from a bulky anion lithium salt. Adv. Mater. 32, 1904987 (2020).

    Article  CAS  Google Scholar 

  138. Attias, R. et al. Anion effects on cathode electrochemical activity in rechargeable magnesium batteries: a case study of V2O5. ACS Energy Lett. 4, 209–214 (2019).

    Article  CAS  Google Scholar 

  139. Zhang, W. et al. A ‘cation–anion regulation’ synergistic anode host for dendrite-free lithium metal batteries. Sci. Adv. 4, eaar4410 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Connell, J. G. et al. Anion association strength as a unifying descriptor for the reversibility of divalent metal deposition in nonaqueous electrolytes. ACS Appl. Mater. Interfaces 12, 36137–36147 (2020).

    Article  CAS  PubMed  Google Scholar 

  141. Tuerxun, F. et al. Effect of interaction among magnesium ions, anion, and solvent on kinetics of the magnesium deposition process. J. Phys. Chem. C 124, 28510–28519 (2020).

    Article  CAS  Google Scholar 

  142. Huang, Z. et al. Ni3S2/Ni nanosheet arrays for high-performance flexible zinc hybrid batteries with evident two-stage charge and discharge processes. J. Mater. Chem. A 7, 18915–18924 (2019).

    Article  CAS  Google Scholar 

  143. Li, X. et al. Activating the I/I+ redox couple in an aqueous I2-Zn battery to achieve a high voltage plateau. Energy Environ. Sci. 14, 407–413 (2021).

    Article  CAS  Google Scholar 

  144. Yang, Q. et al. Hydrogen-substituted graphdiyne ion tunnels directing concentration redistribution for commercial-grade dendrite-free zinc anodes. Adv. Mater. 32, 2001755 (2020).

    Article  CAS  Google Scholar 

  145. Yuan, D. et al. Anion texturing towards dendrite‐free Zn anode for aqueous rechargeable batteries. Angew. Chem. Int. Ed. 133, 7289–7295 (2021). This work demonstrates the important role of anions on the induced deposition of metal ions.

    Article  Google Scholar 

  146. Niu, C. et al. Anion-regulated solid polymer electrolyte enhances the stable deposition of lithium ion for lithium metal batteries. J. Power Sources 417, 70–75 (2019).

    Article  CAS  Google Scholar 

  147. Ma, C. et al. A borate decorated anion-immobilized solid polymer electrolyte for dendrite-free, long-life Li metal batteries. J. Mater. Chem. A 7, 19970–19976 (2019).

    Article  CAS  Google Scholar 

  148. Hu, J. et al. The role of anions on the Helmholtz plane for the solid–liquid interface in aqueous rechargeable lithium batteries. Nano Energy 74, 104864 (2020).

    Article  CAS  Google Scholar 

  149. Von Wald Cresce, A. et al. Anion solvation in carbonate-based electrolytes. J. Phys. Chem. C 119, 27255–27264 (2015).

    Article  Google Scholar 

  150. Peng, J. et al. Multinuclear magnetic resonance investigation of cation–anion and anion–solvent interactions in carbonate electrolytes. J. Power Sources 399, 215–222 (2018).

    Article  CAS  Google Scholar 

  151. Lau, K.-C. et al. Widening electrochemical window of Mg salt by weakly coordinating perfluoroalkoxyaluminate anion for Mg battery electrolyte. J. Electrochem. Soc. 166, A1510–A1519 (2019).

    Article  CAS  Google Scholar 

  152. Fadel, E. R. et al. Role of solvent–anion charge transfer in oxidative degradation of battery electrolytes. Nat. Commun. 10, 3360 (2019). This work demonstrates that the solvation behaviours of anions greatly affect the electrochemical stability of electrolyte.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Yu, D. et al. Anion solvation regulation enables long cycle stability of graphite cathodes. ACS Energy Lett. 6, 949–958 (2021).

    Article  CAS  Google Scholar 

  154. Jiang, B. et al. The anion effect on Li+ ion coordination structure in ethylene carbonate solutions. J. Phys. Chem. Lett. 7, 3554–3559 (2016).

    Article  CAS  PubMed  Google Scholar 

  155. Zhang, X. Q. et al. Regulating anions in the solvation sheath of lithium ions for stable lithium metal batteries. ACS Energy Lett. 4, 411–416 (2019).

    Article  CAS  Google Scholar 

  156. Yu, Z. et al. Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries. Nat. Energy 5, 526–533 (2020).

    Article  CAS  Google Scholar 

  157. Jiang, C. et al. Batteries regulating the solvation sheath of Li ions by using hydrogen bonds for highly stable lithium–metal anodes research articles. Angew. Chem. Int. Ed. 60, 2–11 (2021).

    Google Scholar 

  158. Suo, L. et al. ‘Water-in-salt’ electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350, 938–943 (2015).

    Article  CAS  PubMed  Google Scholar 

  159. Chang, Z. et al. Environmental science beyond the concentrated electrolyte: further depleting solvent molecules within a Li+ solvation sheath to stabilize high-energy-density lithium. Energy Environ. Sci. 13, 4122–4131 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the InnoHK Project (Project 1.3 — Flexible and Stretchable Technologies (FAST) for monitoring of CVD risk factors: sensing and applications and Project 1.4 — Flexible and Stretchable Technologies (FAST) for monitoring of CVD risk factors: soft battery and self-powered, flexible medical devices) at the Hong Kong Centre for Cerebro-cardiovascular Health Engineering (COCHE). X.J. thanks the US National Science Foundation for the financial support with the award no. DMR 2221645.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the preparation and reviewing of this manuscript.

Corresponding authors

Correspondence to Xiulei Ji or Chunyi Zhi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks Ho Seok Park and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Z., Li, X., Chen, Z. et al. Anion chemistry in energy storage devices. Nat Rev Chem 7, 616–631 (2023). https://doi.org/10.1038/s41570-023-00506-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-023-00506-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing