Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Plasmonic phenomena in molecular junctions: principles and applications

Abstract

Molecular junctions are building blocks for constructing future nanoelectronic devices that enable the investigation of a broad range of electronic transport properties within nanoscale regions. Crossing both the nanoscopic and mesoscopic length scales, plasmonics lies at the intersection of the macroscopic photonics and nanoelectronics, owing to their capability of confining light to dimensions far below the diffraction limit. Research activities on plasmonic phenomena in molecular electronics started around 2010, and feedback between plasmons and molecular junctions has increased over the past years. These efforts can provide new insights into the near-field interaction and the corresponding tunability in properties, as well as resultant plasmon-based molecular devices. This Review presents the latest advancements of plasmonic resonances in molecular junctions and details the progress in plasmon excitation and plasmon coupling. We also highlight emerging experimental approaches to unravel the mechanisms behind the various types of light–matter interactions at molecular length scales, where quantum effects come into play. Finally, we discuss the potential of these plasmonic–electronic hybrid systems across various future applications, including sensing, photocatalysis, molecular trapping and active control of molecular switches.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Interplay between plasmonics and molecular junctions.
Fig. 2: Different types of plasmon-induced charge transport processes across metal–molecule structures.
Fig. 3: Different coupling regimes in plasmon–exciton junctions.
Fig. 4: Illustration of plasmonic modes within point–point-shaped molecular junctions.
Fig. 5: Illustration of plasmonic modes and scattering spectra within molecular junctions in point–plane junctions.
Fig. 6: Typical plasmon excitation or detection by tunnelling electrons in STM-BJs.
Fig. 7: Measurements of different molecular–plasmon coupling schemes in plasmonic nanocavities.
Fig. 8: Typical structures and plasmon excitation in STJs.
Fig. 9: Selected examples of applications of plasmonic devices.

Similar content being viewed by others

References

  1. Wehner, M. et al. An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 536, 451–455 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. van de Burgt, Y., Melianas, A., Keene, S. T., Malliaras, G. & Salleo, A. Organic electronics for neuromorphic computing. Nat. Electron. 1, 386–397 (2018).

    Article  Google Scholar 

  3. Zhu, J., Zhang, T., Yang, Y. & Huang, R. A comprehensive review on emerging artificial neuromorphic devices. Appl. Phys. Rev. 7, 011312 (2020).

    Article  CAS  Google Scholar 

  4. Cramer, T. Learning with brain chemistry. Nat. Mater. 19, 934–935 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Goswami, S. et al. Charge disproportionate molecular redox for discrete memristive and memcapacitive switching. Nat. Nanotech. 15, 380–389 (2020).

    Article  CAS  Google Scholar 

  6. Han, Y. et al. Electric-field-driven dual-functional molecular switches in tunnel junctions. Nat. Mater. 19, 843–848 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Li, T. et al. Integrated molecular diode as 10 MHz half-wave rectifier based on an organic nanostructure heterojunction. Nat. Commun. 11, 3592 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Cuevas, J. C. & Scheer, E. Molecular Electronics: An Introduction to Theory and Experiment Vol. 15 (World Scientific, 2017). This book on molecular electronics covers many fundamental aspects of molecular junctions and their electronic transport behaviour.

  9. Aviram, A. & Ratner, M. A. Molecular rectifiers. Chem. Phys. Lett. 29, 277–283 (1974).

    Article  CAS  Google Scholar 

  10. Thompson, D., Barco, E. D. & Nijhuis, C. A. Design principles of dual-functional molecular switches in solid-state tunnel junctions. Appl. Phys. Lett. 117, 030502 (2020).

    Article  CAS  Google Scholar 

  11. Su, T. A., Neupane, M., Steigerwald, M. L., Venkataraman, L. & Nuckolls, C. Chemical principles of single-molecule electronics. Nat. Rev. Mater. 1, 16002 (2016). This work is a seminal review on structure–property relationships of the electrodes, anchoring groups and molecular bridge in a SMJ.

    Article  CAS  Google Scholar 

  12. Jeong, H., Kim, D., Xiang, D. & Lee, T. High-yield functional molecular electronic devices. ACS Nano 11, 6511–6548 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Xiang, D., Wang, X., Jia, C., Lee, T. & Guo, X. Molecular-scale electronics: from concept to function. Chem. Rev. 116, 4318–4440 (2016). This work is a comprehensive review covering the major concepts and applications in molecular electronics.

    Article  CAS  PubMed  Google Scholar 

  14. Gehring, P., Thijssen, J. M. & van der Zant, H. S. J. Single-molecule quantum-transport phenomena in break junctions. Nat. Rev. Phys. 1, 381–396 (2019). This work is a seminal review on quantum features characterized by various energy scales in break junctions.

    Article  Google Scholar 

  15. Xu, B. & Tao, N. J. Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 301, 1221–1223 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Venkataraman, L., Klare, J. E., Nuckolls, C., Hybertsen, M. S. & Steigerwald, M. L. Dependence of single-molecule junction conductance on molecular conformation. Nature 442, 904–907 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Reed, M. A., Zhou, C., Muller, C. J., Burgin, T. P. & Tour, J. M. Conductance of a molecular junction. Science 278, 252 (1997).

    Article  CAS  Google Scholar 

  18. Wang, L., Wang, L., Zhang, L. & Xiang, D. Advance of mechanically controllable break junction for molecular electronics. Top. Curr. Chem. 375, 61 (2017).

    Article  Google Scholar 

  19. Park, H., Lim, A. K. L., Alivisatos, A. P., Park, J. & McEuen, P. L. Fabrication of metallic electrodes with nanometer separation by electromigration. Appl. Phys. Lett. 75, 301–303 (1999).

    Article  CAS  Google Scholar 

  20. Cui, L., Zhu, Y., Nordlander, P., Di Ventra, M. & Natelson, D. Thousand-fold increase in plasmonic light emission via combined electronic and optical excitations. Nano Lett. 21, 2658–2665 (2021).

    Article  CAS  PubMed  Google Scholar 

  21. Cui, L. et al. Electrically driven hot-carrier generation and above-threshold light emission in plasmonic tunnel junctions. Nano Lett. 20, 6067–6075 (2020).

    Article  CAS  PubMed  Google Scholar 

  22. Xu, B., Xiao, X. & Tao, N. J. Measurements of single-molecule electromechanical properties. J. Am. Chem. Soc. 125, 16164–16165 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Baumberg, J. J., Aizpurua, J., Mikkelsen, M. H. & Smith, D. R. Extreme nanophotonics from ultrathin metallic gaps. Nat. Mater. 18, 668–678 (2019). This work is a recent review on the plasmonic properties of NPoMJs.

    Article  CAS  PubMed  Google Scholar 

  24. Li, G.-C., Zhang, Q., Maier, S. A. & Lei, D. Plasmonic particle-on-film nanocavities: a versatile platform for plasmon-enhanced spectroscopy and photochemistry. Nanophotonics 7, 1865–1889 (2018).

    Article  CAS  Google Scholar 

  25. Akkerman, H. B., Blom, P. W., de Leeuw, D. M. & de Boer, B. Towards molecular electronics with large-area molecular junctions. Nature 441, 69–72 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Vilan, A., Aswal, D. & Cahen, D. Large-area, ensemble molecular electronics: motivation and challenges. Chem. Rev. 117, 4248–4286 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Morteza Najarian, A., Szeto, B., Tefashe, U. M. & McCreery, R. L. Robust all-carbon molecular junctions on flexible or semi-transparent substrates using “process-friendly” fabrication. ACS Nano 10, 8918–8928 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Najarian, A. M., Supur, M. & McCreery, R. L. Electrostatic redox reactions and charge storage in molecular electronic junctions. J. Phys. Chem. C. 124, 1739–1748 (2020).

    Article  CAS  Google Scholar 

  29. Lacroix, J. C. Electrochemistry does the impossible: robust and reliable large area molecular junctions. Curr. Opin. Electrochem. 7, 153–160 (2018).

    Article  CAS  Google Scholar 

  30. Jiang, N., Zhuo, X. & Wang, J. Active plasmonics: principles, structures, and applications. Chem. Rev. 118, 3054–3099 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. Amendola, V., Pilot, R., Frasconi, M., Maragò, O. M. & Iatì, M. A. Surface plasmon resonance in gold nanoparticles: a review. J. Phys. Condens. Matter 29, 203002 (2017).

    Article  PubMed  Google Scholar 

  32. Minamimoto, H., Oikawa, S., Li, X. & Murakoshi, K. Plasmonic fields focused to molecular size. ChemNanoMat 3, 843–856 (2017).

    Article  CAS  Google Scholar 

  33. Kildishev, A. V., Boltasseva, A. & Shalaev, V. M. Planar photonics with metasurfaces. Science 339, 1232009 (2013).

    Article  PubMed  Google Scholar 

  34. Yang, A., Wang, D., Wang, W. & Odom, T. W. Coherent light sources at the nanoscale. Annu. Rev. Phys. Chem. 68, 83–99 (2017).

    Article  CAS  PubMed  Google Scholar 

  35. Li, J. et al. Plasmon-induced resonance energy transfer for solar energy conversion. Nat. Photon. 9, 601–607 (2015).

    Article  CAS  Google Scholar 

  36. Roelli, P., Galland, C., Piro, N. & Kippenberg, T. J. Molecular cavity optomechanics as a theory of plasmon-enhanced Raman scattering. Nat. Nanotech. 11, 164–169 (2016).

    Article  CAS  Google Scholar 

  37. Zhu, W. et al. Quantum mechanical effects in plasmonic structures with subnanometre gaps. Nat. Commun. 7, 11495 (2016). This work is a seminal review on critical quantum effects in plasmonic nanogaps.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Arielly, R., Ofarim, A., Noy, G. & Selzer, Y. Accurate determination of plasmonic fields in molecular junctions by current rectification at optical frequencies. Nano Lett. 11, 2968–2972 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Duffin, T. J. et al. Cavity plasmonics in tunnel junctions: outcoupling and the role of surface roughness. Phys. Rev. Appl. 14, 044021 (2020).

    Article  CAS  Google Scholar 

  40. Makarenko, K. S. et al. Efficient surface plasmon polariton excitation and control over outcoupling mechanisms in metal–insulator–metal tunneling junctions. Adv. Sci. 7, 1900291 (2020).

    Article  CAS  Google Scholar 

  41. Lin, L. et al. Nanooptics of plasmonic nanomatryoshkas: shrinking the size of a core–shell junction to subnanometer. Nano Lett. 15, 6419–6428 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Aguirregabiria, G. et al. Role of electron tunneling in the nonlinear response of plasmonic nanogaps. Phys. Rev. B 97, 115430 (2018).

    Article  CAS  Google Scholar 

  43. Chikkaraddy, R. et al. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature 535, 127–130 (2016). This article reports the achievement of strong coupling in single-emitter devices at ambient conditions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tan, S. F. et al. Quantum plasmon resonances controlled by molecular tunnel junctions. Science 343, 1496–1499 (2014). This seminal paper demonstrates CTP modes in silver nanocube dimers.

    Article  CAS  PubMed  Google Scholar 

  45. Barbry, M. et al. Atomistic near-field nanoplasmonics: reaching atomic-scale resolution in nanooptics. Nano Lett. 15, 3410–3419 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Esteban, R. et al. A classical treatment of optical tunneling in plasmonic gaps: extending the quantum corrected model to practical situations. Faraday Discuss. 178, 151–183 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Wang, T. & Nijhuis, C. A. Molecular electronic plasmonics. Appl. Mater. Today 3, 73–86 (2016).

    Article  Google Scholar 

  48. Pal, P. P. et al. Plasmon-mediated electron transport in tip-enhanced Raman spectroscopic junctions. J. Phys. Chem. Lett. 6, 4210–4218 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Klimov, V. V. & Guzatov, D. V. Plasmonic atoms and plasmonic molecules. Appl. Phys. A 89, 305–314 (2007).

    Article  CAS  Google Scholar 

  50. Kim, Y. Photoswitching molecular junctions: platforms and electrical properties. ChemPhysChem 21, 2368–2383 (2020).

    Article  CAS  PubMed  Google Scholar 

  51. Galperin, M. & Nitzan, A. Molecular optoelectronics: the interaction of molecular conduction junctions with light. Phys. Chem. Chem. Phys. 14, 9421–9438 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Langer, J. et al. Present and future of surface-enhanced Raman scattering. ACS Nano 14, 28–117 (2020).

    Article  CAS  PubMed  Google Scholar 

  53. Lee, J., Jeon, D.-J. & Yeo, J.-S. Quantum plasmonics: energy transport through plasmonic gap. Adv. Mater. 33, e2006606 (2021). This work is a comprehensive review of the latest developments in quantum plasmonic resonators.

    Article  PubMed  Google Scholar 

  54. Sivan, Y., Un, I. W. & Dubi, Y. Assistance of metal nanoparticles in photocatalysis — nothing more than a classical heat source. Faraday Discuss. 214, 215–233 (2019).

    Article  CAS  PubMed  Google Scholar 

  55. Furube, A. & Hashimoto, S. Insight into plasmonic hot-electron transfer and plasmon molecular drive: new dimensions in energy conversion and nanofabrication. NPG Asia Mater. 9, e454 (2017).

    Article  CAS  Google Scholar 

  56. Wang, J. et al. Photothermal reshaping of gold nanoparticles in a plasmonic absorber. Opt. Express 19, 14726–14734 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Nitzan, A. Electron transmission through molecules and molecular interfaces. Annu. Rev. Phys. Chem. 52, 681–750 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Fung, E. D., Adak, O., Lovat, G., Scarabelli, D. & Venkataraman, L. Too hot for photon-assisted transport: hot-electrons dominate conductance enhancement in illuminated single-molecule junctions. Nano Lett. 17, 1255–1261 (2017).

    Article  CAS  PubMed  Google Scholar 

  59. Jauho, A.-P., Wingreen, N. S. & Meir, Y. Time-dependent transport in interacting and noninteracting resonant-tunneling systems. Phys. Rev. B 50, 5528–5544 (1994).

    Article  CAS  Google Scholar 

  60. Tien, P. K. & Gordon, J. P. Multiphoton process observed in the interaction of microwave fields with the tunneling between superconductor films. Phys. Rev. 129, 647–651 (1963).

    Article  Google Scholar 

  61. Tucker, J. Quantum limited detection in tunnel junction mixers. IEEE J. Quantum Electron. 15, 1234–1258 (1979).

    Article  Google Scholar 

  62. Ward, D. R., Hüser, F., Pauly, F., Cuevas, J. C. & Natelson, D. Optical rectification and field enhancement in a plasmonic nanogap. Nat. Nanotech 5, 732–736 (2010). This seminal paper discusses the physical origin of optical rectification in nanogaps.

    Article  CAS  Google Scholar 

  63. Noy, G., Ophir, A. & Selzer, Y. Response of molecular junctions to surface plasmon polaritons. Angew. Chem. Int. Ed. 49, 5734–5736 (2010).

    Article  CAS  Google Scholar 

  64. Vadai, M. et al. Plasmon-induced conductance enhancement in single-molecule junctions. J. Phys. Chem. Lett. 4, 2811–2816 (2013).

    Article  CAS  Google Scholar 

  65. Kos, D., Assumpcao, D. R., Guo, C. & Baumberg, J. J. Quantum tunneling induced optical rectification and plasmon-enhanced photocurrent in nanocavity molecular junctions. ACS Nano 15, 14535–14543 (2021).

    Article  CAS  PubMed  Google Scholar 

  66. McFarland, E. W. & Tang, J. A photovoltaic device structure based on internal electron emission. Nature 421, 616–618 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Dubi, Y. & Sivan, Y. “Hot” electrons in metallic nanostructures — non-thermal carriers or heating? Light Sci. Appl. 8, 89 (2019). This work presents a mechanistic discrimination of hot electrons and thermal effects in plasmonic nanostructures.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Guo, Q., Ma, Z., Zhou, C., Ren, Z. & Yang, X. Single molecule photocatalysis on TiO2 surfaces. Chem. Rev. 119, 11020–11041 (2019).

    Article  CAS  PubMed  Google Scholar 

  69. Mahapatra, S., Schultz, J. F., Li, L., Zhang, X. & Jiang, N. Controlling localized plasmons via an atomistic approach: attainment of site-selective activation inside a single molecule. J. Am. Chem. Soc. 144, 2051–2055 (2022).

    Article  CAS  PubMed  Google Scholar 

  70. Nguyen, V.-Q., Ai, Y., Martin, P. & Lacroix, J.-C. Plasmon-induced nanolocalized reduction of diazonium salts. ACS Omega 2, 1947–1955 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Galperin, M., Nitzan, A. & Ratner, M. A. Molecular transport junctions: current from electronic excitations in the leads. Phys. Rev. Lett. 96, 166803 (2006).

    Article  PubMed  Google Scholar 

  72. Jou, D., Sellitto, A. & Cimmelli, V. A. Phonon temperature and electron temperature in thermoelectric coupling. J. Non-Equilib. Thermodyn. 38, 335–361 (2013).

    Article  Google Scholar 

  73. Pothier, H., Guéron, S., Birge, N. O., Esteve, D. & Devoret, M. H. Energy distribution function of quasiparticles in mesoscopic wires. Phys. Rev. Lett. 79, 3490–3493 (1997).

    Article  CAS  Google Scholar 

  74. Clavero, C. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat. Photon. 8, 95–103 (2014).

    Article  CAS  Google Scholar 

  75. Cvetko, D. et al. Ultrafast electron injection into photo-excited organic molecules. Phys. Chem. Chem. Phys. 18, 22140–22145 (2016).

    Article  CAS  PubMed  Google Scholar 

  76. Yoshida, K., Shibata, K. & Hirakawa, K. Terahertz field enhancement and photon-assisted tunneling in single-molecule transistors. Phys. Rev. Lett. 115, 138302 (2015).

    Article  PubMed  Google Scholar 

  77. Cocker, T. L., Peller, D., Yu, P., Repp, J. & Huber, R. Tracking the ultrafast motion of a single molecule by femtosecond orbital imaging. Nature 539, 263–267 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Washburn, S. & Webb, R. A. Aharonov–Bohm effect in normal metal quantum coherence and transport. Adv. Phys. 35, 375–422 (1986).

    Article  CAS  Google Scholar 

  79. Hattori, Y. et al. Phonon-assisted hot carrier generation in plasmonic semiconductor systems. Nano Lett. 21, 1083–1089 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sivan, Y. & Dubi, Y. Recent developments in plasmon-assisted photocatalysis — a personal perspective. Appl. Phys. Lett. 117, 130501 (2020).

    Article  CAS  Google Scholar 

  81. Sivan, Y., Baraban, J., Un, I. W. & Dubi, Y. Comment on “Quantifying hot carrier and thermal contributions in plasmonic photocatalysis”. Science 364, eaaw9367 (2019).

    Article  CAS  PubMed  Google Scholar 

  82. Wang, J., Wang, X. & Mu, X. Plasmonic photocatalysts monitored by tip-enhanced Raman spectroscopy. Catalysts 9, 109 (2019).

    Article  Google Scholar 

  83. Kazuma, E., Jung, J., Ueba, H., Trenary, M. & Kim, Y. Real-space and real-time observation of a plasmon-induced chemical reaction of a single molecule. Science 360, 521–525 (2018). This study monitors a direct intramolecular plasmonic excitation to trigger a chemical reaction.

    Article  CAS  PubMed  Google Scholar 

  84. Boerigter, C., Aslam, U. & Linic, S. Mechanism of charge transfer from plasmonic nanostructures to chemically attached materials. ACS Nano 10, 6108–6115 (2016).

    Article  CAS  PubMed  Google Scholar 

  85. Olson, J. et al. Optical characterization of single plasmonic nanoparticles. Chem. Soc. Rev. 44, 40–57 (2015).

    Article  CAS  PubMed  Google Scholar 

  86. Foerster, B. et al. Chemical interface damping depends on electrons reaching the surface. ACS Nano 11, 2886–2893 (2017).

    Article  CAS  PubMed  Google Scholar 

  87. Hoggard, A. et al. Using the plasmon linewidth to calculate the time and efficiency of electron transfer between gold nanorods and graphene. ACS Nano 7, 11209–11217 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Juvé, V. et al. Size-dependent surface plasmon resonance broadening in nonspherical nanoparticles: single gold nanorods. Nano Lett. 13, 2234–2240 (2013).

    Article  PubMed  Google Scholar 

  89. Kazuma, E., Lee, M., Jung, J., Trenary, M. & Kim, Y. Single-molecule study of a plasmon-induced reaction for a strongly chemisorbed molecule. Angew. Chem. Int. Ed. 59, 7960–7966 (2020).

    Article  CAS  Google Scholar 

  90. Linic, S., Christopher, P. & Ingram, D. B. Plasmonic–metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 10, 911–921 (2011).

    Article  CAS  PubMed  Google Scholar 

  91. Xiang, B., Li, Y., Pham, C. H., Paesani, F. & Xiong, W. Ultrafast direct electron transfer at organic semiconductor and metal interfaces. Sci. Adv. 3, e1701508 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Ayzner, A. L., Nordlund, D., Kim, D.-H., Bao, Z. & Toney, M. F. Ultrafast electron transfer at organic semiconductor interfaces: importance of molecular orientation. J. Phys. Chem. Lett. 6, 6–12 (2015).

    Article  CAS  PubMed  Google Scholar 

  93. Zhang, W. et al. Atomic switches of metallic point contacts by plasmonic heating. Light. Sci. Appl. 8, 34 (2019). This work presents a direct observation of conductance switching owing to thermal expansion of metallic electrodes.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Grafström, S., Schuller, P., Kowalski, J. & Neumann, R. Thermal expansion of scanning tunneling microscopy tips under laser illumination. J. Appl. Phys. 83, 3453–3460 (1998).

    Article  Google Scholar 

  95. Boneberg, J., Tresp, M., Ochmann, M., Münzer, H. J. & Leiderer, P. Time-resolved measurements of the response of a STM tip upon illumination with a nanosecond laser pulse. Appl. Phys. A 66, 615–619 (1998).

    Article  CAS  Google Scholar 

  96. Boneberg, J., Münzer, H. J., Tresp, M., Ochmann, M. & Leiderer, P. The mechanism of nanostructuring upon nanosecond laser irradiation of a STM tip. Appl. Phys. A. 67, 381–384 (1998).

    Article  CAS  Google Scholar 

  97. Benner, D. et al. Transmission of surface plasmon polaritons through atomic-size constrictions. New J. Phys. 15, 113014 (2013).

    Article  Google Scholar 

  98. Benner, D. et al. Lateral and temporal dependence of the transport through an atomic gold contact under light irradiation: signature of propagating surface plasmon polaritons. Nano Lett. 14, 5218–5223 (2014).

    Article  CAS  PubMed  Google Scholar 

  99. Zhang, S. et al. In-situ control of on-chip angstrom gaps, atomic switches, and molecular junctions by light irradiation. Nano Today 39, 101226 (2021).

    Article  CAS  Google Scholar 

  100. Cui, L. et al. Thermal conductance of single-molecule junctions. Nature 572, 628–633 (2019). This seminal paper determines thermal electronic transport by STM-BJs.

    Article  CAS  PubMed  Google Scholar 

  101. Wang, K., Meyhofer, E. & Reddy, P. Thermal and thermoelectric properties of molecular junctions. Adv. Funct. Mater. 30, 1904534 (2020).

    Article  CAS  Google Scholar 

  102. Scheinert, S. et al. Contact characterization by photoemission and device performance in P3HT based organic transistors. J. Appl. Phys. 111, 064502 (2012).

    Article  Google Scholar 

  103. Forati, E., Dill, T. J., Tao, A. R. & Sievenpiper, D. Photoemission-based microelectronic devices. Nat. Commun. 7, 13399 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Lambe, J. & McCarthy, S. L. Light emission from inelastic electron tunneling. Phys. Rev. Lett. 37, 923–925 (1976).

    Article  CAS  Google Scholar 

  105. Zhou, J., Wang, K., Xu, B. & Dubi, Y. Photoconductance from exciton binding in molecular junctions. J. Am. Chem. Soc. 140, 70–73 (2018).

    Article  CAS  PubMed  Google Scholar 

  106. Perrin, M. L. et al. Large tunable image-charge effects in single-molecule junctions. Nat. Nanotech. 8, 282–287 (2013).

    Article  CAS  Google Scholar 

  107. Cortese, E. et al. Excitons bound by photon exchange. Nat. Phys. 17, 31–35 (2021).

    Article  CAS  Google Scholar 

  108. Bjork, G., Machida, S., Yamamoto, Y. & Igeta, K. Modification of spontaneous emission rate in planar dielectric microcavity structures. Phys. Rev. A 44, 669–681 (1991).

    Article  CAS  PubMed  Google Scholar 

  109. Petoukhoff, C. E., Dani, K. M. & O’Carroll, D. M. Strong plasmon-exciton coupling in Ag nanoparticle-conjugated polymer core–shell hybrid nanostructures. Polymers 12, 2141 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  110. Pompa, P. P. et al. Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control. Nat. Nanotech. 1, 126–130 (2006).

    Article  CAS  Google Scholar 

  111. Kitajima, Y., Sakamoto, H. & Ueno, K. Coupled plasmonic systems: controlling the plasmon dynamics and spectral modulations for molecular detection. Nanoscale 13, 5187–5201 (2021).

    Article  CAS  PubMed  Google Scholar 

  112. Chen, H. et al. Plasmon–molecule interactions. Nano Today 5, 494–505 (2010).

    Article  CAS  Google Scholar 

  113. Rossi, T. P., Shegai, T., Erhart, P. & Antosiewicz, T. J. Strong plasmon–molecule coupling at the nanoscale revealed by first-principles modeling. Nat. Commun. 10, 3336 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Liu, W. et al. Understanding the different exciton–plasmon coupling regimes in two-dimensional semiconductors coupled with plasmonic lattices: a combined experimental and unified equation of motion approach. ACS Photonics 5, 192–204 (2018).

    Article  CAS  Google Scholar 

  115. Hugall, J. T., Singh, A. & van Hulst, N. F. Plasmonic cavity coupling. ACS Photonics 5, 43–53 (2018).

    Article  CAS  Google Scholar 

  116. Russell, K. J., Yeung, K. Y. M. & Hu, E. Measuring the mode volume of plasmonic nanocavities using coupled optical emitters. Phys. Rev. B 85, 245445 (2012).

    Article  Google Scholar 

  117. Martín-Jiménez, A. et al. Unveiling the radiative local density of optical states of a plasmonic nanocavity by STM. Nat. Commun. 11, 1021 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Cuartero-González, A. & Fernández-Domínguez, A. I. Dipolar and quadrupolar excitons coupled to a nanoparticle-on-mirror cavity. Phys. Rev. B 101, 035403 (2020).

    Article  Google Scholar 

  119. Li, Y. et al. Time-resolved photoluminescence spectroscopy of exciton–plasmon coupling dynamics. Plasmonics 10, 271–280 (2015).

    Article  CAS  Google Scholar 

  120. Zengin, G. et al. Evaluating conditions for strong coupling between nanoparticle plasmons and organic dyes using scattering and absorption spectroscopy. J. Phys. Chem. C 120, 20588–20596 (2016).

    Article  CAS  Google Scholar 

  121. Zhang, P., Jin, W. & Liang, W. Size-dependent optical properties of aluminum nanoparticles: from classical to quantum description. J. Phys. Chem. C 122, 10545–10551 (2018).

    Article  CAS  Google Scholar 

  122. Kang, E. S. H. et al. Strong plasmon–exciton coupling with directional absorption features in optically thin hybrid nanohole metasurfaces. ACS Photonics 5, 4046–4055 (2018).

    Article  CAS  Google Scholar 

  123. Shahbazyan, T. V. Transition to strong coupling regime in hybrid plasmonic systems: exciton-induced transparency and Fano interference. Nanophotonics 10, 20210246 (2021).

    Article  Google Scholar 

  124. Ridolfo, A., Di Stefano, O., Fina, N., Saija, R. & Savasta, S. Quantum plasmonics with quantum dot–metal nanoparticle molecules: influence of the Fano effect on photon statistics. Phys. Rev. Lett. 105, 263601 (2010).

    Article  CAS  PubMed  Google Scholar 

  125. Cacciola, A., Di Stefano, O., Stassi, R., Saija, R. & Savasta, S. Ultrastrong coupling of plasmons and excitons in a nanoshell. ACS Nano 8, 11483–11492 (2014).

    Article  CAS  PubMed  Google Scholar 

  126. Pelton, M., Storm, S. D. & Leng, H. Strong coupling of emitters to single plasmonic nanoparticles: exciton-induced transparency and Rabi splitting. Nanoscale 11, 14540–14552 (2019).

    Article  CAS  PubMed  Google Scholar 

  127. Zengin, G. et al. Approaching the strong coupling limit in single plasmonic nanorods interacting with J-aggregates. Sci. Rep. 3, 3074 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Barnes, W. L., Horsley, S. A. R. & Vos, W. L. Classical antennae, quantum emitters, and densities of optical states. J. Opt. https://doi.org/10.1088/2040-8986/ab7b01 (2020).

  129. Pelton, M. Modified spontaneous emission in nanophotonic structures. Nat. Photon. 9, 427–435 (2015).

    Article  CAS  Google Scholar 

  130. Bergfield, J. P. & Hendrickson, J. R. Signatures of plexcitonic states in molecular electroluminescence. Sci. Rep. 8, 2314 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Lu, X., Ye, G., Punj, D., Chiechi, R. C. & Orrit, M. Quantum yield limits for the detection of single-molecule fluorescence enhancement by a gold nanorod. ACS Photonics 7, 2498–2505 (2020).

    Article  CAS  Google Scholar 

  132. Grynberg, G., Aspect, A. & Fabre, C. Introduction to Quantum Optics: From the Semi-classical Approach to Quantized Light (Cambridge Univ. Press, 2010).

  133. Javanainen, J. Quantum optics: an introduction. Phys. Today 60, 74–75 (2007).

    Article  Google Scholar 

  134. Haran, G. & Chuntonov, L. Artificial plasmonic molecules and their interaction with real molecules. Chem. Rev. 118, 5539–5580 (2018).

    Article  CAS  PubMed  Google Scholar 

  135. Vilan, A. & Cahen, D. Chemical modification of semiconductor surfaces for molecular electronics. Chem. Rev. 117, 4624–4666 (2017).

    Article  CAS  PubMed  Google Scholar 

  136. Park, J.-E., Kim, J. & Nam, J.-M. Emerging plasmonic nanostructures for controlling and enhancing photoluminescence. Chem. Sci. 8, 4696–4704 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Linic, S., Chavez, S. & Elias, R. Flow and extraction of energy and charge carriers in hybrid plasmonic nanostructures. Nat. Mater. 20, 916–924 (2021).

    Article  CAS  PubMed  Google Scholar 

  138. Cunha, J. et al. Controlling light, heat, and vibrations in plasmonics and phononics. Adv. Opt. Mater. 8, 2001225 (2020).

    Article  CAS  Google Scholar 

  139. Aradhya, S. V., Frei, M., Hybertsen, M. S. & Venkataraman, L. Van der Waals interactions at metal/organic interfaces at the single-molecule level. Nat. Mater. 11, 872–876 (2012). This seminal paper discusses structure properties at the interface of metal electrodes and molecules.

    Article  CAS  PubMed  Google Scholar 

  140. Pérez-González, O. et al. Optical spectroscopy of conductive junctions in plasmonic cavities. Nano Lett. 10, 3090–3095 (2010).

    Article  PubMed  Google Scholar 

  141. Křápek, V. et al. Independent engineering of individual plasmon modes in plasmonic dimers with conductive and capacitive coupling. Nanophotonics 9, 623–632 (2020).

    Article  Google Scholar 

  142. Wu, L. et al. Charge transfer plasmon resonances across silver–molecule–silver junctions: estimating the terahertz conductance of molecules at near-infrared frequencies. RSC Adv. 6, 70884–70894 (2016).

    Article  CAS  Google Scholar 

  143. Gurlek, B., Sandoghdar, V. & Martín-Cano, D. Manipulation of quenching in nanoantenna–emitter systems enabled by external detuned cavities: a path to enhance strong-coupling. ACS Photonics 5, 456–461 (2018).

    Article  CAS  Google Scholar 

  144. Amin, R. et al. Active material, optical mode and cavity impact on nanoscale electro-optic modulation performance. Nanophotonics 7, 455–472 (2018).

    Article  CAS  Google Scholar 

  145. Vora, P. M. et al. Spin–cavity interactions between a quantum dot molecule and a photonic crystal cavity. Nat. Commun. 6, 7665 (2015).

    Article  CAS  PubMed  Google Scholar 

  146. Mokkath, J. H. & Henzie, J. An asymmetric aluminum active quantum plasmonic device. Phys. Chem. Chem. Phys. 22, 1416–1421 (2020).

    Article  CAS  PubMed  Google Scholar 

  147. Shibata, K., Fujii, S., Sun, Q., Miura, A. & Ueno, K. Further enhancement of the near-field on Au nanogap dimers using quasi-dark plasmon modes. J. Chem. Phys. 152, 104706 (2020).

    Article  CAS  PubMed  Google Scholar 

  148. Esteban, R., Borisov, A. G., Nordlander, P. & Aizpurua, J. Bridging quantum and classical plasmonics with a quantum-corrected model. Nat. Commun. 3, 825 (2012).

    Article  PubMed  Google Scholar 

  149. Brown, L. V., Sobhani, H., Lassiter, J. B., Nordlander, P. & Halas, N. J. Heterodimers: plasmonic properties of mismatched nanoparticle pairs. ACS Nano 4, 819–832 (2010).

    Article  CAS  PubMed  Google Scholar 

  150. Jeong, H.-H. et al. Arrays of plasmonic nanoparticle dimers with defined nanogap spacers. ACS Nano 13, 11453–11459 (2019).

    Article  CAS  PubMed  Google Scholar 

  151. Zohar, N., Chuntonov, L. & Haran, G. The simplest plasmonic molecules: metal nanoparticle dimers and trimers. J. Photochem. Photobiol. C. Photochem. Rev. 21, 26–39 (2014).

    Article  CAS  Google Scholar 

  152. Jain, P. K., Huang, W. & El-Sayed, M. A. On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation. Nano Lett. 7, 2080–2088 (2007).

    Article  CAS  Google Scholar 

  153. Wang, T. et al. Phonon–polaritonic bowtie nanoantennas: controlling infrared thermal radiation at the nanoscale. ACS Photonics 4, 1753–1760 (2017).

    Article  CAS  Google Scholar 

  154. Tsai, C.-Y. et al. Plasmonic coupling in gold nanoring dimers: observation of coupled bonding mode. Nano Lett. 12, 1648–1654 (2012).

    Article  CAS  PubMed  Google Scholar 

  155. Alkan, F. & Aikens, C. M. Understanding plasmon coupling in nanoparticle dimers using molecular orbitals and configuration interaction. Phys. Chem. Chem. Phys. 21, 23065–23075 (2019).

    Article  CAS  PubMed  Google Scholar 

  156. Merlein, J. et al. Nanomechanical control of an optical antenna. Nat. Photon. 2, 230–233 (2008).

    Article  CAS  Google Scholar 

  157. Marinica, D. C., Kazansky, A. K., Nordlander, P., Aizpurua, J. & Borisov, A. G. Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer. Nano Lett. 12, 1333–1339 (2012).

    Article  CAS  PubMed  Google Scholar 

  158. Nordlander, P., Oubre, C., Prodan, E., Li, K. & Stockman, M. I. Plasmon hybridization in nanoparticle dimers. Nano Lett. 4, 899–903 (2004).

    Article  CAS  Google Scholar 

  159. Zhang, Q. et al. Electron energy-loss spectroscopy of spatial nonlocality and quantum tunneling effects in the bright and dark plasmon modes of gold nanosphere dimers. Adv. Quantum Technol. 1, 1800016 (2018).

    Article  Google Scholar 

  160. Yu, H. et al. Near-field spectral properties of coupled plasmonic nanoparticle arrays. Opt. Express 25, 6883–6894 (2017).

    Article  PubMed  Google Scholar 

  161. Scholl, J. A., García-Etxarri, A., Koh, A. L. & Dionne, J. A. Observation of quantum tunneling between two plasmonic nanoparticles. Nano Lett. 13, 564–569 (2013).

    Article  CAS  PubMed  Google Scholar 

  162. Savage, K. J. et al. Revealing the quantum regime in tunnelling plasmonics. Nature 491, 574–577 (2012). This article reports direct experimental observation of CTP modes in point–point junctions.

    Article  CAS  PubMed  Google Scholar 

  163. Huang, Y., Zhou, Q., Hou, M., Ma, L. & Zhang, Z. Nanogap effects on near- and far-field plasmonic behaviors of metallic nanoparticle dimers. Phys. Chem. Chem. Phys. 17, 29293–29298 (2015).

    Article  CAS  PubMed  Google Scholar 

  164. Haq, S., Tesema, T. E., Patra, B., Gomez, E. & Habteyes, T. G. Tuning plasmonic coupling from capacitive to conductive regimes via atomic control of dielectric spacing. ACS Photonics 7, 622–629 (2020).

    Article  CAS  Google Scholar 

  165. Liu, P., Chulhai, D. V. & Jensen, L. Atomistic characterization of plasmonic dimers in the quantum size regime. J. Phys. Chem. C 123, 13900–13907 (2019).

    Article  CAS  Google Scholar 

  166. Sun, G., Khurgin, J. B. & Bratkovsky, A. Coupled-mode theory of field enhancement in complex metal nanostructures. Phys. Rev. B 84, 045415 (2011).

    Article  Google Scholar 

  167. Braun, K. et al. Active optical antennas driven by inelastic electron tunneling. Nanophotonics 7, 1503–1516 (2018).

    Article  CAS  Google Scholar 

  168. Sun, G. & Khurgin, J. B. Comparative study of field enhancement between isolated and coupled metal nanoparticles: an analytical approach. Appl. Phys. Lett. 97, 263110 (2010).

    Article  Google Scholar 

  169. Ahn, J. S. et al. Optical field enhancement of nanometer-sized gaps at near-infrared frequencies. Opt. Express 23, 4897–4907 (2015).

    Article  CAS  PubMed  Google Scholar 

  170. Chen, W. et al. Probing the limits of plasmonic enhancement using a two-dimensional atomic crystal probe. Light Sci. Appl. 7, 56 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Yu, Y. et al. Roadmap for single-molecule surface-enhanced Raman spectroscopy. Adv. Photonics 2, 014002 (2020).

    Article  CAS  Google Scholar 

  172. Kiguchi, M., Aiba, A., Fujii, S. & Kobayashi, S. Surface enhanced Raman scattering on molecule junction. Appl. Mater. Today 14, 76–83 (2019).

    Article  Google Scholar 

  173. Zhan, C. et al. From plasmon-enhanced molecular spectroscopy to plasmon-mediated chemical reactions. Nat. Rev. Chem. 2, 216–230 (2018).

    Article  Google Scholar 

  174. Ding, S.-Y. et al. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat. Rev. Mater. 1, 16021 (2016).

    Article  CAS  Google Scholar 

  175. Liu, N. & Liedl, T. DNA-assembled advanced plasmonic architectures. Chem. Rev. 118, 3032–3053 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Xu, L., Sun, M., Ma, W., Kuang, H. & Xu, C. Self-assembled nanoparticle dimers with contemporarily relevant properties and emerging applications. Mater. Today 19, 595–606 (2016).

    Article  CAS  Google Scholar 

  177. Thilagam, R. & Gnanamani, A. Preparation, characterization and stability assessment of keratin and albumin functionalized gold nanoparticles for biomedical applications. Appl. Nanosci. 10, 1879–1892 (2020).

    Article  CAS  Google Scholar 

  178. Dumur, F., Dumas, E. & Mayer, C. R. Functionalization of gold nanoparticles by inorganic entities. Nanomaterials 10, 548 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  179. Spampinato, V., Parracino, M. A., La Spina, R., Rossi, F. & Ceccone, G. Surface analysis of gold nanoparticles functionalized with thiol-modified glucose SAMs for biosensor applications. Front. Chem. 4, 8 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Lin, L. et al. Electron transport across plasmonic molecular nanogaps interrogated with surface-enhanced Raman scattering. ACS Nano 12, 6492–6503 (2018).

    Article  CAS  PubMed  Google Scholar 

  181. Koya, A. N. & Lin, J. Charge transfer plasmons: recent theoretical and experimental developments. Appl. Phys. Rev. 4, 021104 (2017).

    Article  Google Scholar 

  182. Lerch, S. & Reinhard, B. M. Effect of interstitial palladium on plasmon-driven charge transfer in nanoparticle dimers. Nat. Commun. 9, 1608 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Iwane, M., Fujii, S. & Kiguchi, M. Surface-enhanced Raman scattering in molecular junctions. Sensors 17, 1901 (2017).

    Article  PubMed Central  Google Scholar 

  184. Banerjee, P. et al. Plasmon-induced electrical conduction in molecular devices. ACS Nano 4, 1019–1025 (2010).

    Article  CAS  PubMed  Google Scholar 

  185. Benz, F. et al. Nanooptics of molecular-shunted plasmonic nanojunctions. Nano Lett. 15, 669–674 (2015).

    Article  CAS  PubMed  Google Scholar 

  186. Kadkhodazadeh, S. et al. Scaling of the surface plasmon resonance in gold and silver dimers probed by EELS. J. Phys. Chem. C 118, 5478–5485 (2014).

    Article  CAS  Google Scholar 

  187. Koh, A. L., Fernández-Domínguez, A. I., McComb, D. W., Maier, S. A. & Yang, J. K. W. High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures. Nano Lett. 11, 1323–1330 (2011).

    Article  CAS  PubMed  Google Scholar 

  188. Scholl, J. A., Koh, A. L. & Dionne, J. A. Quantum plasmon resonances of individual metallic nanoparticles. Nature 483, 421–427 (2012).

    Article  CAS  PubMed  Google Scholar 

  189. Raman, K., Konyar, M. & Çetin, E. in 2018 IEEE 13th Nanotechnology Materials and Devices Conference (NMDC) 1–4 (IEEE, 2018).

  190. Zhao, Z. et al. In situ photoconductivity measurements of imidazole in optical fiber break-junctions. Nanoscale Horiz. 6, 386–392 (2021).

    Article  CAS  PubMed  Google Scholar 

  191. Song, H. et al. Observation of molecular orbital gating. Nature 462, 1039–1043 (2009).

    Article  CAS  PubMed  Google Scholar 

  192. Martin, C. A., van Ruitenbeek, J. M. & van der Zant, H. S. J. Sandwich-type gated mechanical break junctions. Nanotechnology 21, 265201 (2010).

    Article  PubMed  Google Scholar 

  193. Xiang, D. et al. Three-terminal single-molecule junctions formed by mechanically controllable break junctions with side gating. Nano Lett. 13, 2809–2813 (2013).

    Article  CAS  PubMed  Google Scholar 

  194. Gruber, C. M. et al. Resonant optical antennas with atomic-sized tips and tunable gaps achieved by mechanical actuation and electrical control. Nano Lett. 20, 4346–4353 (2020).

    Article  CAS  PubMed  Google Scholar 

  195. Guo, C. et al. Molecular orbital gating surface-enhanced Raman scattering. ACS Nano 12, 11229–11235 (2018).

    Article  CAS  PubMed  Google Scholar 

  196. Zhao, Z. et al. Molecular devices: shaping the atomic-scale geometries of electrodes to control optical and electrical performance of molecular devices (Small 15/2018). Small 14, 1870066 (2018).

    Article  Google Scholar 

  197. Laible, F. et al. A flexible platform for controlled optical and electrical effects in tailored plasmonic break junctions. Nanophotonics 9, 1391 (2020).

    Article  Google Scholar 

  198. Li, Z. & Xu, H. Nanoantenna effect of surface-enhanced Raman scattering: managing light with plasmons at the nanometer scale. Adv. Phys. X 1, 492–521 (2016).

    CAS  Google Scholar 

  199. Dao, T. D. et al. Dark-field scattering and local SERS mapping from plasmonic aluminum bowtie antenna array. Micromachines 10, 468 (2019).

    Article  PubMed Central  Google Scholar 

  200. Baik, J. M., Lee, S. J. & Moskovits, M. Polarized surface-enhanced Raman spectroscopy from molecules adsorbed in nano-gaps produced by electromigration in silver nanowires. Nano Lett. 9, 672–676 (2009).

    Article  CAS  PubMed  Google Scholar 

  201. Mubeen, S. et al. Plasmonic properties of gold nanoparticles separated from a gold mirror by an ultrathin oxide. Nano Lett. 12, 2088–2094 (2012).

    Article  CAS  PubMed  Google Scholar 

  202. Wei, H. & Xu, H. Hot spots in different metal nanostructures for plasmon-enhanced Raman spectroscopy. Nanoscale 5, 10794–10805 (2013).

    Article  CAS  PubMed  Google Scholar 

  203. Zhang, S. & Xu, H. Tunable dark plasmons in a metallic nanocube dimer: toward ultimate sensitivity nanoplasmonic sensors. Nanoscale 8, 13722–13729 (2016).

    Article  CAS  PubMed  Google Scholar 

  204. Gao, Y., Zhou, N., Shi, Z., Guo, X. & Tong, L. Dark dimer mode excitation and strong coupling with a nanorod dipole. Photonics Res. 6, 887–892 (2018).

    Article  CAS  Google Scholar 

  205. Herzog, J. B. et al. Dark plasmons in hot spot generation and polarization in interelectrode nanoscale junctions. Nano Lett. 13, 1359–1364 (2013).

    Article  CAS  PubMed  Google Scholar 

  206. Zolotavin, P., Evans, C. & Natelson, D. Photothermoelectric effects and large photovoltages in plasmonic Au nanowires with nanogaps. J. Phys. Chem. Lett. 8, 1739–1744 (2017).

    Article  CAS  PubMed  Google Scholar 

  207. Liu, M., Hu, C., Campbell, J. C., Pan, Z. & Tashima, M. M. Reduce afterpulsing of single photon avalanche diodes using passive quenching with active reset. IEEE J. Quantum Electron. 44, 430–434 (2008).

    Article  CAS  Google Scholar 

  208. Wang, T., Boer-Duchemin, E., Zhang, Y., Comtet, G. & Dujardin, G. Excitation of propagating surface plasmons with a scanning tunnelling microscope. Nanotechnology 22, 175201 (2011).

    Article  CAS  PubMed  Google Scholar 

  209. Wang, K. & Xu, B. Modulation and control of charge transport through single-molecule junctions. Top. Curr. Chem. 375, 17 (2017).

    Article  Google Scholar 

  210. Inkpen, M. S. et al. New insights into single-molecule junctions using a robust, unsupervised approach to data collection and analysis. J. Am. Chem. Soc. 137, 9971–9981 (2015).

    Article  CAS  PubMed  Google Scholar 

  211. Kos, D. et al. Optical probes of molecules as nano-mechanical switches. Nat. Commun. 11, 5905 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Frederiksen, T. Bimetallic electrodes boost molecular junctions. Nat. Mater. 20, 577–578 (2021).

    Article  CAS  PubMed  Google Scholar 

  213. Tserkezis, C. et al. Hybridization of plasmonic antenna and cavity modes: extreme optics of nanoparticle-on-mirror nanogaps. Phys. Rev. A 92, 053811 (2015).

    Article  Google Scholar 

  214. Kongsuwan, N. et al. Plasmonic nanocavity modes: from near-field to far-field radiation. ACS Photonics 7, 463–471 (2020).

    Article  CAS  Google Scholar 

  215. Lalanne, P., Yan, W., Vynck, K., Sauvan, C. & Hugonin, J.-P. Light interaction with photonic and plasmonic resonances. Laser Photonics Rev. 12, 1700113 (2018).

    Article  Google Scholar 

  216. Ching, E. S. C. et al. Quasinormal-mode expansion for waves in open systems. Rev. Mod. Phys. 70, 1545–1554 (1998).

    Article  Google Scholar 

  217. Leung, P. T., Liu, S. Y. & Young, K. Completeness and time-independent perturbation of the quasinormal modes of an absorptive and leaky cavity. Phys. Rev. A 49, 3982–3989 (1994).

    Article  CAS  PubMed  Google Scholar 

  218. Tang, P. et al. Plasmonic particle-on-film nanocavity in tightly focused vector beam: a full-wave theoretical analysis from near-field enhancement to far-field radiation. Plasmonics 16, 215–225 (2021).

    Article  CAS  Google Scholar 

  219. Horton, M. J. et al. Nanoscopy through a plasmonic nanolens. Proc. Natl Acad. Sci. USA 117, 2275–2281 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Jiang, W., Hu, H., Deng, Q., Zhang, S. & Xu, H. Temperature-dependent dark-field scattering of single plasmonic nanocavity. Nanophotonics 9, 3347–3356 (2020).

    Article  CAS  Google Scholar 

  221. Chen, X. & Nijhuis, C. A. The unusual dielectric response of large area molecular tunnel junctions probed with impedance spectroscopy. Adv. Electron. Mater. 8, 2100495 (2022).

    Article  CAS  Google Scholar 

  222. Jiang, L., Sangeeth, C. S. S., Yuan, L., Thompson, D. & Nijhuis, C. A. One-nanometer thin monolayers remove the deleterious effect of substrate defects in molecular tunnel junctions. Nano Lett. 15, 6643–6649 (2015).

    Article  CAS  PubMed  Google Scholar 

  223. Cui, X. et al. Molecular tunnel junction-controlled high-order charge transfer plasmon and Fano resonances. ACS Nano 12, 12541–12550 (2018).

    Article  CAS  PubMed  Google Scholar 

  224. Zhang, Y. et al. Visualizing coherent intermolecular dipole–dipole coupling in real space. Nature 531, 623–627 (2016).

    Article  CAS  PubMed  Google Scholar 

  225. Luk’yanchuk, B. et al. The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 9, 707–715 (2010).

    Article  PubMed  Google Scholar 

  226. Vardi, Y., Cohen-Hoshen, E., Shalem, G. & Bar-Joseph, I. Fano resonance in an electrically driven plasmonic device. Nano Lett. 16, 748–752 (2016).

    Article  CAS  PubMed  Google Scholar 

  227. Sanders, A. et al. Understanding the plasmonics of nanostructured atomic force microscopy tips. Appl. Phys. Lett. 109, 153110 (2016).

    Article  Google Scholar 

  228. Gutzler, R., Garg, M., Ast, C. R., Kuhnke, K. & Kern, K. Light–matter interaction at atomic scales. Nat. Rev. Phys. 3, 441–453 (2021). This work is a comprehensive review of electromagnetic radiation on STM tunnelling junctions.

    Article  Google Scholar 

  229. Aizpurua, J., Apell, S. P. & Berndt, R. Role of tip shape in light emission from the scanning tunneling microscope. Phys. Rev. B 62, 2065–2073 (2000).

    Article  CAS  Google Scholar 

  230. Dong, Z. C. et al. Generation of molecular hot electroluminescence by resonant nanocavity plasmons. Nat. Photon. 4, 50–54 (2010).

    Article  CAS  Google Scholar 

  231. Taminiau, T. H., Moerland, R. J., Segerink, F. B., Kuipers, L. & van Hulst, N. F. λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence. Nano Lett. 7, 28–33 (2007).

    Article  CAS  PubMed  Google Scholar 

  232. Höppener, C. & Novotny, L. Antenna-based optical imaging of single Ca2+ transmembrane proteins in liquids. Nano Lett. 8, 642–646 (2008).

    Article  PubMed  Google Scholar 

  233. Böckmann, H. et al. Near-field manipulation in a scanning tunneling microscope junction with plasmonic Fabry–Pérot tips. Nano Lett. 19, 3597–3602 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  234. Reddy, H. et al. Determining plasmonic hot-carrier energy distributions via single-molecule transport measurements. Science 369, 423–426 (2020). This work is a detailed study on the conductance contribution of hot electrons by plasmonic excitation.

    Article  CAS  PubMed  Google Scholar 

  235. May, M. A. et al. Nano-cavity QED with tunable nano-tip interaction. Adv. Quantum Technol. 3, 1900087 (2020).

    Article  CAS  Google Scholar 

  236. Jaculbia, R. B. et al. Single-molecule resonance Raman effect in a plasmonic nanocavity. Nat. Nanotech 15, 105–110 (2020).

    Article  CAS  Google Scholar 

  237. Kumar, N., Weckhuysen, B. M., Wain, A. J. & Pollard, A. J. Nanoscale chemical imaging using tip-enhanced Raman spectroscopy. Nat. Protoc. 14, 1169–1193 (2019).

    Article  CAS  PubMed  Google Scholar 

  238. Ojambati, O. S. et al. Efficient generation of two-photon excited phosphorescence from molecules in plasmonic nanocavities. Nano Lett. 20, 4653–4658 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Große, C. et al. Dynamic control of plasmon generation by an individual quantum system. Nano Lett. 14, 5693–5697 (2014).

    Article  PubMed  Google Scholar 

  240. Rai, V. et al. Boosting light emission from single hydrogen phthalocyanine molecules by charging. Nano Lett. 20, 7600–7605 (2020).

    Article  CAS  PubMed  Google Scholar 

  241. Chong, M. C. et al. Ordinary and hot electroluminescence from single-molecule devices: controlling the emission color by chemical engineering. Nano Lett. 16, 6480–6484 (2016).

    Article  CAS  PubMed  Google Scholar 

  242. Doppagne, B. et al. Electrofluorochromism at the single-molecule level. Science 361, 251–255 (2018).

    Article  CAS  PubMed  Google Scholar 

  243. Zhu, S.-E. et al. Self-decoupled porphyrin with a tripodal anchor for molecular-scale electroluminescence. J. Am. Chem. Soc. 135, 15794–15800 (2013).

    Article  CAS  PubMed  Google Scholar 

  244. Xu, F., Holmqvist, C. & Belzig, W. Overbias light emission due to higher-order quantum noise in a tunnel junction. Phys. Rev. Lett. 113, 066801 (2014).

    Article  CAS  PubMed  Google Scholar 

  245. Schull, G., Néel, N., Johansson, P. & Berndt, R. Electron–plasmon and electron–electron interactions at a single atom contact. Phys. Rev. Lett. 102, 057401 (2009).

    Article  PubMed  Google Scholar 

  246. Kuhnke, K., Große, C., Merino, P. & Kern, K. Atomic-scale imaging and spectroscopy of electroluminescence at molecular interfaces. Chem. Rev. 117, 5174–5222 (2017).

    Article  CAS  PubMed  Google Scholar 

  247. Zhang, Y. et al. Sub-nanometre control of the coherent interaction between a single molecule and a plasmonic nanocavity. Nat. Commun. 8, 15225 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Böckmann, H. et al. Near-field spectral response of optically excited scanning tunneling microscope junctions probed by single-molecule action spectroscopy. J. Phys. Chem. Lett. 10, 2068–2074 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  249. Carnegie, C. et al. Room-temperature optical picocavities below 1 nm3 accessing single-atom geometries. J. Phys. Chem. Lett. 9, 7146–7151 (2018).

    Article  CAS  PubMed  Google Scholar 

  250. Benz, F. et al. Single-molecule optomechanics in “picocavities”. Science 354, 726–729 (2016).

    Article  CAS  PubMed  Google Scholar 

  251. Lindquist, N. C. & Brolo, A. G. Ultra-high-speed dynamics in surface-enhanced Raman scattering. J. Phys. Chem. C 125, 7523–7532 (2021).

    Article  CAS  Google Scholar 

  252. Lindquist, N. C., de Albuquerque, C. D. L., Sobral-Filho, R. G., Paci, I. & Brolo, A. G. High-speed imaging of surface-enhanced Raman scattering fluctuations from individual nanoparticles. Nat. Nanotech. 14, 981–987 (2019).

    Article  CAS  Google Scholar 

  253. Bido, A. T., Nordberg, B. G., Engevik, M. A., Lindquist, N. C. & Brolo, A. G. High-speed fluctuations in surface-enhanced Raman scattering intensities from various nanostructures. Appl. Spectrosc. 74, 1398–1406 (2020).

    Article  CAS  PubMed  Google Scholar 

  254. Kamp, M. et al. Cascaded nanooptics to probe microsecond atomic-scale phenomena. Proc. Natl. Acad. Sci. USA 117, 14819–14826 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Li, C.-Y. et al. Real-time detection of single-molecule reaction by plasmon-enhanced spectroscopy. Sci. Adv. 6, eaba6012 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Moerner, W. E., Shechtman, Y. & Wang, Q. Single-molecule spectroscopy and imaging over the decades. Faraday Discuss. 184, 9–36 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Huang, D. et al. Photoluminescence of a plasmonic molecule. ACS Nano 9, 7072–7079 (2015).

    Article  CAS  PubMed  Google Scholar 

  258. Carnegie, C. et al. Flickering nanometre-scale disorder in a crystal lattice tracked by plasmonic flare light emission. Nat. Commun. 11, 682 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Chen, W. et al. Intrinsic luminescence blinking from plasmonic nanojunctions. Nat. Commun. 12, 2731 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Chikkaraddy, R. et al. Mapping nanoscale hotspots with single-molecule emitters assembled into plasmonic nanocavities using DNA origami. Nano Lett. 18, 405–411 (2018).

    Article  CAS  PubMed  Google Scholar 

  261. Lombardi, A. et al. Pulsed molecular optomechanics in plasmonic nanocavities: from nonlinear vibrational instabilities to bond-breaking. Phys. Rev. X 8, 011016 (2018).

    CAS  Google Scholar 

  262. Ojambati, O. S. et al. Quantum electrodynamics at room temperature coupling a single vibrating molecule with a plasmonic nanocavity. Nat. Commun. 10, 1049 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  263. Choi, H.-K. et al. Metal-catalyzed chemical reaction of single molecules directly probed by vibrational spectroscopy. J. Am. Chem. Soc. 138, 4673–4684 (2016).

    Article  CAS  PubMed  Google Scholar 

  264. Li, L. et al. Metal oxide nanoparticle mediated enhanced Raman scattering and its use in direct monitoring of interfacial chemical reactions. Nano Lett. 12, 4242–4246 (2012).

    Article  CAS  PubMed  Google Scholar 

  265. Galego, J., Climent, C., Garcia-Vidal, F. J. & Feist, J. Cavity Casimir–Polder forces and their effects in ground-state chemical reactivity. Phys. Rev. X 9, 021057 (2019).

    CAS  Google Scholar 

  266. Kongsuwan, N. et al. Suppressed quenching and strong-coupling of Purcell-enhanced single-molecule emission in plasmonic nanocavities. ACS Photonics 5, 186–191 (2018).

    Article  CAS  Google Scholar 

  267. Akselrod, G. M. et al. Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas. Nat. Photon. 8, 835–840 (2014).

    Article  CAS  Google Scholar 

  268. Yang, B. et al. Sub-nanometre resolution in single-molecule photoluminescence imaging. Nat. Photon 14, 693–699 (2020).

    Article  CAS  Google Scholar 

  269. Sáez-Blázquez, R., Feist, J., Fernández-Domínguez, A. I. & García-Vidal, F. J. Enhancing photon correlations through plasmonic strong coupling. Optica 4, 1363–1367 (2017).

    Article  Google Scholar 

  270. Sáez-Blázquez, R., Feist, J., García-Vidal, F. J. & Fernández-Domínguez, A. I. Photon statistics in collective strong coupling: nanocavities and microcavities. Phys. Rev. A. 98, 013839 (2018).

    Article  Google Scholar 

  271. Fernández-Domínguez, A. I., Bozhevolnyi, S. I. & Mortensen, N. A. Plasmon-enhanced generation of nonclassical light. ACS Photonics 5, 3447–3451 (2018).

    Article  Google Scholar 

  272. Maier, S. A. in Plasmonics: Fundamentals and Applications (ed. Maier, S. A.) 89–104 (Springer US, 2007).

  273. Barnes, W. L., Dereux, A. & Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 424, 824–830 (2003).

    Article  CAS  PubMed  Google Scholar 

  274. Sital, S. Surface plasmon modes of dielectric–metal–dielectric waveguides and applications. IOSR J. Electr. Electron. Eng. 12, 08–19 (2017).

    Google Scholar 

  275. Valmorra, F. et al. Strong coupling between surface plasmon polariton and laser dye rhodamine 800. Appl. Phys. Lett. 99, 051110 (2011).

    Article  Google Scholar 

  276. Cade, N. I., Ritman-Meer, T. & Richards, D. Strong coupling of localized plasmons and molecular excitons in nanostructured silver films. Phys. Rev. B 79, 241404 (2009).

    Article  Google Scholar 

  277. Smolyaninov, I. I., Hung, Y.-J. & Davis, C. C. Surface plasmon dielectric waveguides. Appl. Phys. Lett. 87, 241106 (2005).

    Article  Google Scholar 

  278. Ditlbacher, H. et al. Coupling dielectric waveguide modes to surface plasmon polaritons. Opt. Express 16, 10455–10464 (2008).

    Article  CAS  PubMed  Google Scholar 

  279. Ahmed Ammar, R. & LEMERINI, M. Surface plasmon polariton in metal–insulator–metal configuration. Int. J. Nanoelectronics Mater. 10, 185–194 (2017).

    Google Scholar 

  280. Wang, T., Du, W., Tomczak, N., Wang, L. & Nijhuis, C. A. In operando characterization and control over intermittent light emission from molecular tunnel junctions via molecular backbone rigidity. Adv. Sci. 6, 1900390 (2019).

    Article  CAS  Google Scholar 

  281. Tefashe, U. M., Van Dyck, C., Saxena, S. K., Lacroix, J.-C. & McCreery, R. L. Unipolar injection and bipolar transport in electroluminescent Ru-centered molecular electronic junctions. J. Phys. Chem. C. 123, 29162–29172 (2019).

    Article  CAS  Google Scholar 

  282. van Nguyen, Q. et al. Molecular signature and activationless transport in cobalt-terpyridine-based molecular junctions. Adv. Electron. Mater. 6, 1901416 (2020).

    Article  Google Scholar 

  283. Supur, M., Saxena, S. K. & McCreery, R. L. Ion-assisted resonant injection and charge storage in carbon-based molecular junctions. J. Am. Chem. Soc. 142, 11658–11662 (2020).

    Article  CAS  PubMed  Google Scholar 

  284. Hwang, W.-T., Jang, Y., Song, M., Xiang, D. & Lee, T. Large-area molecular monolayer-based electronic junctions with transferred top electrodes. Jpn. J. Appl. Phys. 59, SD0803 (2020).

    Article  CAS  Google Scholar 

  285. Jeong, H. et al. Redox-induced asymmetric electrical characteristics of ferrocene-alkanethiolate molecular devices on rigid and flexible substrates. Adv. Funct. Mater. 24, 2472–2480 (2014).

    Article  CAS  Google Scholar 

  286. Koo, J. et al. Unidirectional real-time photoswitching of diarylethene molecular monolayer junctions with multilayer graphene electrodes. ACS Appl. Mater. Inter. 11, 11645–11653 (2019).

    Article  CAS  Google Scholar 

  287. Nijhuis, C. A., Reus, W. F., Barber, J. R. & Whitesides, G. M. Comparison of SAM-based junctions with Ga2O3/EGaIn top electrodes to other large-area tunneling junctions. J. Phys. Chem. C 116, 14139–14150 (2012).

    Article  CAS  Google Scholar 

  288. Fereiro, J. A., Kondratenko, M., Bergren, A. J. & McCreery, R. L. Internal photoemission in molecular junctions: parameters for interfacial barrier determinations. J. Am. Chem. Soc. 137, 1296–1304 (2015).

    Article  CAS  PubMed  Google Scholar 

  289. Du, W. et al. On-chip molecular electronic plasmon sources based on self-assembled monolayer tunnel junctions. Nat. Photon. 10, 274–280 (2016).

    Article  CAS  Google Scholar 

  290. Han, Y. & Nijhuis, C. A. Functional redox-active molecular tunnel junctions. Chem. Asian J. 15, 3752–3770 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Du, W. et al. Directional excitation of surface plasmon polaritons via molecular through-bond tunneling across double-barrier tunnel junctions. Nano Lett. 19, 4634–4640 (2019).

    Article  CAS  PubMed  Google Scholar 

  292. Selzer, Y. Elucidating the contributions of plasmon-induced excitons and hot carriers to the photocurrent of molecular junctions. J. Phys. Chem. C 124, 8680–8688 (2020).

    Article  CAS  Google Scholar 

  293. Furuya, R., Omagari, S., Tan, Q., Lokstein, H. & Vacha, M. Enhancement of the photocurrent of a single photosystem I complex by the localized plasmon of a gold nanorod. J. Am. Chem. Soc. 143, 13167–13174 (2021).

    Article  CAS  PubMed  Google Scholar 

  294. Conklin, D. et al. Exploiting plasmon-induced hot electrons in molecular electronic devices. ACS Nano 7, 4479–4486 (2013).

    Article  CAS  PubMed  Google Scholar 

  295. Zhang, J. et al. Enhanced photoresponse of conductive polymer nanowires embedded with Au nanoparticles. Adv. Mater. 28, 2978–2982 (2016).

    Article  CAS  PubMed  Google Scholar 

  296. Ai, Y., Nguyen, V. Q., Ghilane, J., Lacaze, P.-C. & Lacroix, J.-C. Plasmon-induced conductance switching of an electroactive conjugated polymer nanojunction. ACS Appl. Mater. Inter. 9, 27817–27824 (2017).

    Article  CAS  Google Scholar 

  297. de Nijs, B. et al. Plasmonic tunnel junctions for single-molecule redox chemistry. Nat. Commun. 8, 994 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  298. Zheng, J. et al. Electrical and SERS detection of disulfide-mediated dimerization in single-molecule benzene-1,4-dithiol junctions. Chem. Sci. 9, 5033–5038 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Guo, J. et al. Monitoring the dynamic process of formation of plasmonic molecular junctions during single nanoparticle collisions. Small 14, 1704164 (2018).

    Article  Google Scholar 

  300. Punj, D. et al. Plasmonic antennas and zero-mode waveguides to enhance single molecule fluorescence detection and fluorescence correlation spectroscopy toward physiological concentrations. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 6, 268–282 (2014).

    Article  CAS  PubMed  Google Scholar 

  301. Puchkova, A. et al. DNA origami nanoantennas with over 5000-fold fluorescence enhancement and single-molecule detection at 25 μM. Nano Lett. 15, 8354–8359 (2015).

    Article  CAS  PubMed  Google Scholar 

  302. Acuna, G. P. et al. Fluorescence enhancement at docking sites of DNA-directed self-assembled nanoantennas. Science 338, 506–510 (2012).

    Article  CAS  PubMed  Google Scholar 

  303. Nusz, G. J. et al. Label-free plasmonic detection of biomolecular binding by a single gold nanorod. Anal. Chem. 80, 984–989 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  304. Li, X., Tang, B., Wu, B., Hsu, C. & Wang, X. Highly sensitive diffraction grating of hydrogels as sensors for carbon dioxide detection. Ind. Eng. Chem. Res. 60, 4639–4649 (2021).

    Article  CAS  Google Scholar 

  305. Taylor, A. B. & Zijlstra, P. Single-molecule plasmon sensing: current status and future prospects. ACS Sens. 2, 1103–1122 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Yang, Y. et al. Roadmap for single-molecule surface-enhanced Raman spectroscopy. Adv. Photonics 2, 014002 (2020).

    Google Scholar 

  307. Kim, J.-M. et al. Synthesis, assembly, optical properties, and sensing applications of plasmonic gap nanostructures. Adv. Mater. 33, 2006966 (2021).

    Article  CAS  Google Scholar 

  308. Bouloumis, T. D. & Nic Chormaic, S. From far-field to near-field micro- and nanoparticle optical trapping. Appl. Sci. 10, 1375 (2020).

    Article  Google Scholar 

  309. Zhang, Y. et al. Plasmonic tweezers: for nanoscale optical trapping and beyond. Light Sci. Appl. 10, 59 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  310. Huang, J.-A. et al. SERS discrimination of single DNA bases in single oligonucleotides by electro-plasmonic trapping. Nat. Commun. 10, 5321 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  311. Kitahama, Y., Funaoka, M. & Ozaki, Y. Plasmon-enhanced optical tweezers for single molecules on and near a colloidal silver nanoaggregate. J. Phys. Chem. C. 123, 18001–18006 (2019).

    Article  CAS  Google Scholar 

  312. Belkin, M., Chao, S.-H., Jonsson, M. P., Dekker, C. & Aksimentiev, A. Plasmonic nanopores for trapping, controlling displacement, and sequencing of DNA. ACS Nano 9, 10598–10611 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  313. Zhan, C. et al. Single-molecule plasmonic optical trapping. Matter 3, 1350–1360 (2020).

    Article  Google Scholar 

  314. Aragonès, A. C. & Domke, K. F. Nearfield trapping increases lifetime of single-molecule junction by one order of magnitude. Cell Rep. Phys. Sci. 2, 100389 (2021).

    Article  Google Scholar 

  315. Qian, H. et al. Efficient light generation from enhanced inelastic electron tunnelling. Nat. Photon. 12, 485–488 (2018).

    Article  CAS  Google Scholar 

  316. Kern, J. et al. Electrically driven optical antennas. Nat. Photon. 9, 582–586 (2015).

    Article  CAS  Google Scholar 

  317. Huang, J. et al. Plasmon-induced trap state emission from single quantum dots. Phys. Rev. Lett. 126, 047402 (2021).

    Article  CAS  PubMed  Google Scholar 

  318. Zhang, W., Caldarola, M., Lu, X. & Orrit, M. Plasmonic enhancement of two-photon-excited luminescence of single quantum dots by individual gold nanorods. ACS Photonics 5, 2960–2968 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  319. Shen, Q., Hoang, T. B., Yang, G., Wheeler, V. D. & Mikkelsen, M. H. Probing the origin of highly-efficient third-harmonic generation in plasmonic nanogaps. Opt. Express 26, 20718–20725 (2018).

    Article  CAS  PubMed  Google Scholar 

  320. Kauranen, M. & Zayats, A. V. Nonlinear plasmonics. Nat. Photon. 6, 737–748 (2012).

    Article  CAS  Google Scholar 

  321. Zhu, Y., Cui, L. & Natelson, D. Hot-carrier enhanced light emission: the origin of above-threshold photons from electrically driven plasmonic tunnel junctions. J. Appl. Phys. 128, 233105 (2020).

    Article  CAS  Google Scholar 

  322. Buret, M. et al. Spontaneous hot-electron light emission from electron-fed optical antennas. Nano Lett. 15, 5811–5818 (2015).

    Article  CAS  PubMed  Google Scholar 

  323. Malinowski, T., Klein, H. R., Iazykov, M. & Dumas, P. Infrared light emission from nano hot electron gas created in atomic point contacts. EPL 114, 57002 (2016).

    Article  Google Scholar 

  324. Wu, X., Wang, R., Zhang, Y., Song, B. & Yam, C. Controllable single-molecule light emission by selective charge injection in scanning tunneling microscopy. J. Phys. Chem. C 123, 15761–15768 (2019).

    Article  CAS  Google Scholar 

  325. Li, Y. et al. Gate controlling of quantum interference and direct observation of anti-resonances in single molecule charge transport. Nat. Mater. 18, 357–363 (2019).

    Article  CAS  PubMed  Google Scholar 

  326. Giguère, A., Ernzerhof, M. & Mayou, D. Surface plasmon polariton-controlled molecular switch. J. Phys. Chem. C 122, 20083–20089 (2018).

    Article  Google Scholar 

  327. Chen, S., Liu, J., Lu, H. & Zhu, Y. All-optical strong coupling switches based on a coupled meta-atom and MIM nanocavity configuration. Plasmonics 8, 1439–1444 (2013).

    Article  CAS  Google Scholar 

  328. Wu, Y. et al. Double-wavelength nanolaser based on strong coupling of localized and propagating surface plasmon. J. Phys. D Appl. Phys. 53, 135108 (2020).

    Article  CAS  Google Scholar 

  329. Urban, A. S. et al. Optical trapping and manipulation of plasmonic nanoparticles: fundamentals, applications, and perspectives. Nanoscale 6, 4458–4474 (2014).

    Article  CAS  PubMed  Google Scholar 

  330. Mejía, L., Kleinekathoefer, U. & Franco, I. Coherent and incoherent contributions to molecular electron transport. J. Chem. Phys. 156, 094302 (2022).

    Article  PubMed  Google Scholar 

  331. Saxena, S. K., Smith, S. R., Supur, M. & McCreery, R. L. Light-stimulated charge transport in bilayer molecular junctions for photodetection. Adv. Optical Mater. 7, 1901053 (2019).

    Article  CAS  Google Scholar 

  332. Ament, I., Prasad, J., Henkel, A., Schmachtel, S. & Soennichsen, C. Single unlabeled protein detection on individual plasmonic nanoparticles. Nano Lett. 12, 1092–1095 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank J. J. Baumberg, J. Aizpurua, P. Leiderer, J. Boneberg, J. C. Cuevas, F. Pauly, H. Liu and T. Huhn for fruitful discussions. They acknowledge financial support from the National Key R&D Program of China (2021YFA1200103), National Natural Science Foundation of China (91950116, 61571242, 62071318), Natural Science Foundation of Tianjin (19JCZDJC31000, 19JCYBJC16500) and National Research Foundation of Korea (NRF) grants (No. 2021R1A2C3004783 and NRF-2021R1C1C1010266). The authors acknowledge the National Research Foundation (NRF) for supporting this research under the Prime Minister’s Office, Singapore, under its Medium-Sized Centre Programme and the Competitive Research Programme (NRF-CRP17-2017-08), as well as the Deutsche Forschungsgemeinschaft (DFG) through SFB 767 (project number 32152442).

Author information

Authors and Affiliations

Authors

Contributions

T.L., D.X. and C.A.N conceived the outline. M.W., T.W., O.S.O., T.J.D., E.S. and K.K. wrote the manuscript. All authors contributed to discussions, editing and corrections. E.S., D.X. and C.A.N revised the manuscript before the final submission.

Corresponding authors

Correspondence to Takhee Lee, Elke Scheer, Dong Xiang or Christian A. Nijhuis.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review infomation

Nature Reviews Chemistry thanks J. Baumberg, A. Dhawan, Z.-C. Dong, and J.-C. Lacroix for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Molecular junctions

Molecular monolayers or single molecules sandwiched between two (metal) electrodes.

Mechanically controllable break junctions

(MCBJs). Adjustable nanogap widths with sub-angstrom precision can be obtained in MCBJs by mechanically controlled bending of the substrate, which effectively stretches the suspended nanowire on top of the substrate until the nanowire breaks.

Electromigration break junctions

(EBJs). Stable nanogaps as small as 1–3 nm in EBJs are made by increasing the current density in a thin metal wire, leading to precisely controlled electromigration of metal atoms and eventual breakage of the wire.

Surface plasmons

Coherent, collective oscillations of free electrons at dielectric–metal interfaces.

Floquet states

Eigenstates of electrons in time-periodic fields, equivalent to Bloch states in spatially periodic fields.

Excitons

Excitons can form when a molecule emitter absorbs photons where the frequency is in or close to resonance with the HOMO–LUMO gap. This process excites an electron from the HOMO into the LUMO, consequently resulting in the Coulomb attraction between the electron in the LUMO and the positive hole left behind. An exciton is such a bound state. When an exciton recombines radiatively, a photon is emitted.

Fano interference

Generally speaking, Fano resonances occur when a discrete state and a continuous quantum mechanical state interfere. As a result, the line shape of their coupled resonance is altered: depending on the relative amplitude and phase of the two interfering states, the line shape may split up or change its shape to an anti-resonance. In the special case here, the two interfering states are the emission of the molecule in the junction and the continuum-like state of the plasmonic nanocavity.

Rabi splitting

When the coupling strength exceeds the dissipation rates of the coupled system of the emitter and cavity plasmons, new hybrid polariton modes can form. The new hybrid modes can appear as two distinct peaks in either scattering or emission spectra and the separation between the two peaks is proportional to the coupling strength g. This characteristic feature is called Rabi splitting.

Electron energy-loss spectroscopy

(EELS). An analysis tool to measure and map the energy of the inelastically scattered electrons in the low-loss region of 0.5–3.5 eV.

Internal photoemission

Unlike external photoemission, the photoenergy of the internal photoemission process is lower than the electrodes’ work function but high enough to lead to a measurable current across the junction.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Wang, T., Ojambati, O.S. et al. Plasmonic phenomena in molecular junctions: principles and applications. Nat Rev Chem 6, 681–704 (2022). https://doi.org/10.1038/s41570-022-00423-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-022-00423-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing