Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immune checkpoints in cardiac physiology and pathology: therapeutic targets for heart failure

Abstract

Immune checkpoint molecules are physiological regulators of the adaptive immune response. Immune checkpoint inhibitors (ICIs), such as monoclonal antibodies targeting programmed cell death protein 1 or cytotoxic T lymphocyte-associated protein 4, have revolutionized cancer treatment and their clinical use is increasing. However, ICIs can cause various immune-related adverse events, including acute and chronic cardiotoxicity. Of these cardiovascular complications, ICI-induced acute fulminant myocarditis is the most studied, although emerging clinical and preclinical data are uncovering the importance of other ICI-related chronic cardiovascular complications, such as accelerated atherosclerosis and non-myocarditis-related heart failure. These complications could be more difficult to diagnose, given that they might only be present alongside other comorbidities. The occurrence of these complications suggests a potential role of immune checkpoint molecules in maintaining cardiovascular homeostasis, and disruption of physiological immune checkpoint signalling might thus lead to cardiac pathologies, including heart failure. Although inflammation is a long-known contributor to the development of heart failure, the therapeutic targeting of pro-inflammatory pathways has not been successful thus far. The increasingly recognized role of immune checkpoint molecules in the failing heart highlights their potential use as immunotherapeutic targets for heart failure. In this Review, we summarize the available data on ICI-induced cardiac dysfunction and heart failure, and discuss how immune checkpoint signalling is altered in the failing heart. Furthermore, we describe how pharmacological targeting of immune checkpoints could be used to treat heart failure.

Key points

  • Immune checkpoint inhibitors have revolutionized cancer treatment, but their use is associated with immune-related adverse events, including cardiovascular adverse effects.

  • Among the cardiovascular adverse events associated with immune checkpoint inhibitors, myocarditis is the most studied, but heart failure is increasingly being recognized.

  • Immune checkpoint signalling is involved in several physiological and pathological processes in the heart.

  • Modulation of immune checkpoint signalling can result in cardiac dysfunction or provide a target for therapeutic interventions in the failing heart, depending on the targeted checkpoint.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Immune checkpoint molecules in T cell co-inhibition and co-stimulation.
Fig. 2: Clinical presentations of early-onset and late-onset immune checkpoint inhibitor-induced cardiotoxicity.
Fig. 3: Potential mechanisms of immune checkpoint inhibitor-induced cardiac dysfunction and fulminant myocarditis.
Fig. 4: The potential of immune checkpoint-targeted drugs for the treatment of heart failure.
Fig. 5: Functional characterization of immune checkpoint expression patterns in the healthy and the failing heart.

Similar content being viewed by others

References

  1. Johnson, D. B. et al. Fulminant myocarditis with combination immune checkpoint blockade. N. Engl. J. Med. 375, 1749–1755 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Yousif, L. I., Tanja, A. A., de Boer, R. A., Teske, A. J. & Meijers, W. C. The role of immune checkpoints in cardiovascular disease. Front. Pharmacol. 13, 989431 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Heinzerling, L. et al. Cardiotoxicity associated with CTLA4 and PD1 blocking immunotherapy. J. Immunother. Cancer 4, 50 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Drobni, Z. D. et al. Association between immune checkpoint inhibitors with cardiovascular events and atherosclerotic plaque. Circulation 142, 2299–2311 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Suero-Abreu, G. A., Zanni, M. V. & Neilan, T. G. Atherosclerosis with immune checkpoint inhibitor therapy: evidence, diagnosis, and management: JACC: cardiooncology state-of-the-art review. JACC Cardiooncol. 4, 598–615 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Vuong, J. T. et al. Immune checkpoint therapies and atherosclerosis: mechanisms and clinical implications: JACC state-of-the-art review. J. Am. Coll. Cardiol. 79, 577–593 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gong, J. et al. Pericardial disease in patients treated with immune checkpoint inhibitors. J. Immunother. Cancer 9, e002771 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Daxini, A., Cronin, K. & Sreih, A. G. Vasculitis associated with immune checkpoint inhibitors — a systematic review. Clin. Rheumatol. 37, 2579–2584 (2018).

    Article  PubMed  Google Scholar 

  9. Power, J. R. et al. Electrocardiographic manifestations of immune checkpoint inhibitor myocarditis. Circulation 144, 1521–1523 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zaha, V. G., Meijers, W. C. & Moslehi, J. Cardio-immuno-oncology. Circulation 141, 87–89 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Laenens, D. et al. Incidence of cardiovascular events in patients treated with immune checkpoint inhibitors. J. Clin. Oncol. 40, 3430–3438 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Dolladille, C. et al. Cardiovascular immunotoxicities associated with immune checkpoint inhibitors: a safety meta-analysis. Eur. Heart J. 42, 4964–4977 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Lutgens, E. et al. CHECKPOINT ATHERO: developing immune checkpoint-based therapeutics for atherosclerosis. Eur. Heart J. 44, 1010–1012 (2023).

    Article  CAS  PubMed  Google Scholar 

  14. Levine, B., Kalman, J., Mayer, L., Fillit, H. M. & Packer, M. Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. N. Engl. J. Med. 323, 236–241 (1990).

    Article  CAS  PubMed  Google Scholar 

  15. Chung, E. S., Packer, M., Lo, K. H., Fasanmade, A. A. & Willerson, J. T. Randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-α, in patients with moderate-to-severe heart failure: results of the anti-TNF therapy against congestive heart failure (ATTACH). Circulation 107, 3133–3140 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Everett, B. M. et al. Anti-inflammatory therapy with canakinumab for the prevention of hospitalization for heart failure. Circulation 139, 1289–1299 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Schiattarella, G. G. et al. Immunometabolic mechanisms of heart failure with preserved ejection fraction. Nat. Cardiovasc. Res. 1, 211–222 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cohen, C. D. et al. Myocardial immune cells: the basis of cardiac immunology. J. Immunol. 210, 1198–1207 (2023).

    Article  CAS  PubMed  Google Scholar 

  19. Bajpai, G. et al. The human heart contains distinct macrophage subsets with divergent origins and functions. Nat. Med. 24, 1234–1245 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liao, X. et al. Distinct roles of resident and nonresident macrophages in nonischemic cardiomyopathy. Proc. Natl Acad. Sci. USA 115, E4661–E4669 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Patel, B. et al. CCR2+ monocyte-derived infiltrating macrophages are required for adverse cardiac remodeling during pressure overload. JACC Basic Transl. Sci. 3, 230–244 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Onódi, Z. et al. AIM2-driven inflammasome activation in heart failure. Cardiovasc. Res. 117, 2639–2651 (2021).

    PubMed  Google Scholar 

  23. Adamo, L., Rocha-Resende, C., Prabhu, S. D. & Mann, D. L. Reappraising the role of inflammation in heart failure. Nat. Rev. Cardiol. 17, 269–285 (2020).

    Article  PubMed  Google Scholar 

  24. Martini, E. et al. Single-cell sequencing of mouse heart immune infiltrate in pressure overload-driven heart failure reveals extent of immune activation. Circulation 140, 2089–2107 (2019).

    Article  CAS  PubMed  Google Scholar 

  25. Nevers, T. et al. Left ventricular T-cell recruitment contributes to the pathogenesis of heart failure. Circ. Heart Fail. 8, 776–787 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bansal, S. S. et al. Activated T lymphocytes are essential drivers of pathological remodeling in ischemic heart failure. Circ. Heart Fail. 10, e003688 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Laroumanie, F. et al. CD4+ T cells promote the transition from hypertrophy to heart failure during chronic pressure overload. Circulation 129, 2111–2124 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Ngwenyama, N. et al. CXCR3 regulates CD4+ T cell cardiotropism in pressure overload-induced cardiac dysfunction. JCI Insight 4, e125527 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Bansal, S. S. et al. Dysfunctional and proinflammatory regulatory T-lymphocytes are essential for adverse cardiac remodeling in ischemic cardiomyopathy. Circulation 139, 206–221 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Oyewole-Said, D. et al. Beyond T-cells: functional characterization of CTLA-4 expression in immune and non-immune cell types. Front. Immunol. 11, 608024 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bracamonte-Baran, W. et al. Endothelial stromal PD-L1 (programmed death ligand 1) modulates CD8+ T-cell infiltration after heart transplantation. Circ. Heart Fail. 14, e007982 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cha, J. H., Chan, L. C., Li, C. W., Hsu, J. L. & Hung, M. C. Mechanisms controlling PD-L1 expression in cancer. Mol. Cell 76, 359–370 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jhajj, H. S., Lwo, T. S., Yao, E. L. & Tessier, P. M. Unlocking the potential of agonist antibodies for treating cancer using antibody engineering. Trends Mol. Med. 29, 48–60 (2023).

    Article  CAS  PubMed  Google Scholar 

  34. Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Robert, C. et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N. Engl. J. Med. 364, 2517–2526 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Rizvi, N. A. et al. Activity and safety of nivolumab, an anti-PD-1 immune checkpoint inhibitor, for patients with advanced, refractory squamous non-small-cell lung cancer (CheckMate 063): a phase 2, single-arm trial. Lancet Oncol. 16, 257–265 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Balar, A. V. et al. First-line pembrolizumab in cisplatin-ineligible patients with locally advanced and unresectable or metastatic urothelial cancer (KEYNOTE-052): a multicentre, single-arm, phase 2 study. Lancet Oncol. 18, 1483–1492 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. Larkin, J. et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N. Engl. J. Med. 373, 23–34 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wolchok, J. D. et al. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N. Engl. J. Med. 377, 1345–1356 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Upadhaya, S., Neftelinov, S. T., Hodge, J. & Campbell, J. Challenges and opportunities in the PD1/PDL1 inhibitor clinical trial landscape. Nat. Rev. Drug Discov. 21, 482–483 (2022).

    Article  CAS  PubMed  Google Scholar 

  41. Haslam, A., Gill, J. & Prasad, V. Estimation of the percentage of US patients with cancer who are eligible for immune checkpoint inhibitor drugs. JAMA Netw. Open 3, e200423 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Tawbi, H. A. et al. Relatlimab and nivolumab versus nivolumab in untreated advanced melanoma. N. Engl. J. Med. 386, 24–34 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Postow, M. A., Sidlow, R. & Hellmann, M. D. Immune-related adverse events associated with immune checkpoint blockade. N. Engl. J. Med. 378, 158–168 (2018).

    Article  CAS  PubMed  Google Scholar 

  44. Salem, J. E. et al. Cardiovascular toxicities associated with immune checkpoint inhibitors: an observational, retrospective, pharmacovigilance study. Lancet Oncol. 19, 1579–1589 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mahmood, S. S. et al. Myocarditis in patients treated with immune checkpoint inhibitors. J. Am. Coll. Cardiol. 71, 1755–1764 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Moslehi, J., Lichtman, A. H., Sharpe, A. H., Galluzzi, L. & Kitsis, R. N. Immune checkpoint inhibitor-associated myocarditis: manifestations and mechanisms. J. Clin. Invest. 131, e145186 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Waliany, S. et al. Immune checkpoint inhibitor cardiotoxicity: understanding basic mechanisms and clinical characteristics and finding a cure. Annu. Rev. Pharmacol. Toxicol. 61, 113–134 (2021).

    Article  CAS  PubMed  Google Scholar 

  48. Palaskas, N., Lopez‐Mattei, J., Durand, J. B., Iliescu, C. & Deswal, A. Immune checkpoint inhibitor myocarditis: pathophysiological characteristics, diagnosis, and treatment. J. Am. Heart Assoc. 9, e013757 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Lyon, A. R. et al. 2022 ESC guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur. Heart J. 43, 4229–4361 (2022).

    Article  PubMed  Google Scholar 

  50. Thavendiranathan, P. et al. Myocardial T1 and T2 mapping by magnetic resonance in patients with immune checkpoint inhibitor-associated myocarditis. J. Am. Coll. Cardiol. 77, 1503–1516 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Cadour, F. et al. Cardiac MRI features and prognostic value in immune checkpoint inhibitor-induced myocarditis. Radiology 303, 512–521 (2022).

    Article  PubMed  Google Scholar 

  52. Roth, M. E., Muluneh, B., Jensen, B. C., Madamanchi, C. & Lee, C. B. Left ventricular dysfunction after treatment with ipilimumab for metastatic melanoma. Am. J. Ther. 23, e1925–e1928 (2016).

    Article  PubMed  Google Scholar 

  53. Serzan, M., Rapisuwon, S., Krishnan, J., Chang, I. C. & Barac, A. Takotsubo cardiomyopathy associated with checkpoint inhibitor therapy: endomyocardial biopsy provides pathological insights to dual diseases. JACC Cardiooncol. 3, 330–334 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Waliany, S. et al. Myocarditis surveillance with high-sensitivity troponin I during cancer treatment with immune checkpoint inhibitors. JACC Cardiooncol. 3, 137–139 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Sakai, T. et al. Nivolumab-induced myocardial necrosis in a patient with lung cancer: a case report. Respir. Med. Case Rep. 27, 100839 (2019).

    PubMed  PubMed Central  Google Scholar 

  56. Samejima, Y. et al. Development of severe heart failure in a patient with squamous non-small-cell lung cancer during nivolumab treatment. Intern. Med. 59, 2003–2008 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Escudier, M. et al. Clinical features, management, and outcomes of immune checkpoint inhibitor-related cardiotoxicity. Circulation 136, 2085–2087 (2017).

    Article  PubMed  Google Scholar 

  58. Michel, L. et al. Targeting early stages of cardiotoxicity from anti-PD1 immune checkpoint inhibitor therapy. Eur. Heart J. 43, 316–329 (2022).

    Article  CAS  PubMed  Google Scholar 

  59. Waheed, N. et al. Newly diagnosed cardiovascular disease in patients treated with immune checkpoint inhibitors: a retrospective analysis of patients at an academic tertiary care center. Cardiooncology 7, 10 (2021).

    PubMed  PubMed Central  Google Scholar 

  60. D’Souza, M. et al. The risk of cardiac events in patients receiving immune checkpoint inhibitors: a nationwide Danish study. Eur. Heart J. 42, 1621–1631 (2020).

    Article  Google Scholar 

  61. Dolladille, C. et al. Late cardiac adverse events in patients with cancer treated with immune checkpoint inhibitors. J. Immunother. Cancer 8, e000261 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Chitturi, K. R. et al. Immune checkpoint inhibitor-related adverse cardiovascular events in patients with lung cancer. JACC Cardiooncol. 1, 182–192 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Lal, J. C., Brown, S. A., Collier, P. & Cheng, F. A retrospective analysis of cardiovascular adverse events associated with immune checkpoint inhibitors. Cardiooncology 7, 19 (2021).

    PubMed  PubMed Central  Google Scholar 

  64. Naqash, A. R. et al. Major adverse cardiac events with immune checkpoint inhibitors: a pooled analysis of trials sponsored by the National Cancer Institute — cancer therapy evaluation program. J. Clin. Oncol. 40, 3439–3452 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Korste, S. et al. Anthracycline therapy modifies immune checkpoint signaling in the heart. Int. J. Mol. Sci. 24, 6052 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sharma, M., Suero-Abreu, G. A. & Kim, B. A case of acute heart failure due to immune checkpoint blocker nivolumab. Cardiol. Res. 10, 120–123 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Chahine, J., Collier, P., Maroo, A., Tang, W. H. W. & Klein, A. L. Myocardial and pericardial toxicity associated with immune checkpoint inhibitors in cancer patients. JACC Case Rep. 2, 191–199 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Okauchi, S., Sasatani, Y., Yamada, H. & Satoh, H. Late-onset pulmonary and cardiac toxicities in a patient treated with immune checkpoint inhibitor monotherapy. Klinicka Onkol. 35, 150–154 (2022).

    CAS  Google Scholar 

  69. Rini, B. I. et al. Prospective cardiovascular surveillance of immune checkpoint inhibitor-based combination therapy in patients with advanced renal cell cancer: data from the phase III JAVELIN Renal 101 trial. J. Clin. Oncol. 40, 1929–1938 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Andres, M. S. et al. The spectrum of cardiovascular complications related to immune-checkpoint inhibitor treatment: including myocarditis and the new entity of non inflammatory left ventricular dysfunction. Cardiooncology 8, 21 (2022).

    PubMed  PubMed Central  Google Scholar 

  71. Geisler, B. P., Raad, R. A., Esaian, D., Sharon, E. & Schwartz, D. R. Apical ballooning and cardiomyopathy in a melanoma patient treated with ipilimumab: a case of takotsubo-like syndrome. J. Immunother. Cancer 3, 4 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Anderson, R. D. & Brooks, M. Apical takotsubo syndrome in a patient with metastatic breast carcinoma on novel immunotherapy. Int. J. Cardiol. 222, 760–761 (2016).

    Article  PubMed  Google Scholar 

  73. Ederhy, S. et al. Takotsubo-like syndrome in cancer patients treated with immune checkpoint inhibitors. JACC Cardiovasc. Imaging 11, 1187–1190 (2018).

    Article  PubMed  Google Scholar 

  74. Schwab, K. S. et al. Long term remission and cardiac toxicity of a combination of ipilimumab and nivolumab in a patient with metastatic head and neck carcinoma after progression following nivolumab monotherapy. Front. Oncol. 9, 403 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Okamatsu, Y. et al. Rapid onset of takotsubo cardiomyopathy induced by an infusion reaction to pembrolizumab in a patient with NSCLC. JTO Clin. Res. Rep. 1, 100055 (2020).

    PubMed  PubMed Central  Google Scholar 

  76. Khan, N. A. J., Pacioles, T. & Alsharedi, M. Atypical takotsubo cardiomyopathy secondary to combination of chemo-immunotherapy in a patient with non-small cell lung cancer. Cureus 12, 10–13 (2020).

    Google Scholar 

  77. Oldfield, K., Jayasinghe, R., Niranjan, S. & Chadha, S. Immune checkpoint inhibitor-induced takotsubo syndrome and diabetic ketoacidosis: rare reactions. BMJ Case Rep. 14, e237217 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Ederhy, S., Dolladille, C., Thuny, F., Alexandre, J. & Cohen, A. Takotsubo syndrome in patients with cancer treated with immune checkpoint inhibitors: a new adverse cardiac complication. Eur. J. Heart Fail. 21, 945–947 (2019).

    Article  PubMed  Google Scholar 

  79. Norikane, T. et al. Immune checkpoint inhibitor myocarditis mimicking takotsubo cardiomyopathy on MPI. J. Nucl. Cardiol. 29, 2694–2698 (2022).

    Article  PubMed  Google Scholar 

  80. Tan, N. Y. L., Anavekar, N. S. & Wiley, B. M. Concomitant myopericarditis and takotsubo syndrome following immune checkpoint inhibitor therapy. BMJ Case Rep. 13, e235265 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Norwood, T. G. et al. Smoldering myocarditis following immune checkpoint blockade. J. Immunother. Cancer 5, 91 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Johnson, D. B., Nebhan, C. A., Moslehi, J. J. & Balko, J. M. Immune-checkpoint inhibitors: long-term implications of toxicity. Nat. Rev. Clin. Oncol. 19, 254–267 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Drobni, Z. D. et al. Impact of immune checkpoint inhibitors on atherosclerosis progression in patients with lung cancer. J. Immunother. Cancer 11, e007307 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Poels, K. et al. Immune checkpoint inhibitor therapy aggravates T cell-driven plaque inflammation in atherosclerosis. JACC Cardiooncol. 2, 599–610 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Ferdinandy, P. et al. Definition of hidden drug cardiotoxicity: paradigm change in cardiac safety testing and its clinical implications. Eur. Heart J. 40, 1771–1777 (2018).

    Article  PubMed Central  Google Scholar 

  86. Lau, E. S. et al. Cardiovascular risk factors are associated with future cancer. JACC Cardiooncol. 3, 48–58 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Torrente, M. et al. Assessing the risk of cardiovascular events in patients receiving immune checkpoint inhibitors. Front. Cardiovasc. Med. 9, 1062858 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Lehmann, L. H. et al. Cardiomuscular biomarkers in the diagnosis and prognostication of immune checkpoint inhibitor myocarditis. Circulation 148, 473–486 (2023).

    Article  CAS  PubMed  Google Scholar 

  89. Nishimura, H. et al. Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science 291, 319–322 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. Okazaki, T. et al. Autoantibodies against cardiac troponin I are responsible for dilated cardiomyopathy in PD-1-deficient mice. Nat. Med. 9, 1477–1483 (2003).

    Article  CAS  PubMed  Google Scholar 

  91. Forte, E. et al. Type 2 MI induced by a single high dose of isoproterenol in C57BL/6J mice triggers a persistent adaptive immune response against the heart J. Cell. Mol. Med. 25, 229–243 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Furusawa, S. et al. Cardiac autoantibodies against cardiac troponin I in post-myocardial infarction heart failure: evaluation in a novel murine model and applications in therapeutics. Circ. Heart Fail. 16, e010347 (2023).

    Article  CAS  PubMed  Google Scholar 

  93. Nishimura, H., Nose, M., Hiai, H., Minato, N. & Honjo, T. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 11, 141–151 (1999).

    Article  CAS  PubMed  Google Scholar 

  94. Gergely, T. G. et al. Characterization of immune checkpoint inhibitor‐induced cardiotoxicity reveals interleukin‐17A as a driver of cardiac dysfunction after anti‐PD‐1 treatment. Br. J. Pharmacol. 180, 740–761 (2022).

    Article  PubMed  Google Scholar 

  95. Baldeviano, G. C. et al. Interleukin-17A is dispensable for myocarditis but essential for the progression to dilated cardiomyopathy. Circ. Res. 106, 1646–1655 (2010).

    Article  CAS  PubMed  Google Scholar 

  96. Quagliariello, V. et al. Evidences of CTLA-4 and PD-1 blocking agents-induced cardiotoxicity in cellular and preclinical models. J. Pers. Med. 10, 179 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Tay, W. T. et al. Programmed cell death-1: programmed cell death-ligand 1 interaction protects human cardiomyocytes against T-cell mediated inflammation and apoptosis response in vitro. Int. J. Mol. Sci. 21, 2399 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Xia, W., Zou, C., Chen, H., Xie, C. & Hou, M. Immune checkpoint inhibitor induces cardiac injury through polarizing macrophages via modulating microRNA-34a/Kruppel-like factor 4 signaling. Cell Death Dis. 11, 575 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Xia, W. et al. PD-1 inhibitor inducing exosomal miR-34a-5p expression mediates the cross talk between cardiomyocyte and macrophage in immune checkpoint inhibitor-related cardiac dysfunction. J. Immunother. Cancer 8, e001293 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Zhu, H. et al. Identification of pathogenic immune cell subsets associated with checkpoint inhibitor-induced myocarditis. Circulation 146, 316–335 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wei, S. C. et al. A genetic mouse model recapitulates immune checkpoint inhibitor-associated myocarditis and supports a mechanism-based therapeutic intervention. Cancer Discov. 11, 614–625 (2021).

    Article  CAS  PubMed  Google Scholar 

  102. Axelrod, M. L. et al. T cells specific for α-myosin drive immunotherapy-related myocarditis. Nature 611, 818–826 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Won, T. et al. Cardiac myosin-specific autoimmune T cells contribute to immune-checkpoint-inhibitor-associated myocarditis. Cell Rep. 41, 111611 (2022).

    Article  CAS  PubMed  Google Scholar 

  104. Ma, P. et al. Expansion of pathogenic cardiac macrophages in immune checkpoint inhibitor myocarditis. Circulation 149, 48–66 (2023).

    Article  PubMed  Google Scholar 

  105. Lee, C. et al. Pre-existing autoimmune disease increases the risk of cardiovascular and noncardiovascular events after immunotherapy. JACC Cardiooncol. 4, 660–669 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Tsuruoka, K. et al. Exacerbation of autoimmune myocarditis by an immune checkpoint inhibitor is dependent on its time of administration in mice. Int. J. Cardiol. 313, 67–75 (2020).

    Article  PubMed  Google Scholar 

  107. Zhang, Y. et al. Hormonal therapies up-regulate MANF and overcome female susceptibility to immune checkpoint inhibitor myocarditis. Sci. Transl. Med. 14, eabo1981 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Nemeth, B. T., Varga, Z. V., Wu, W. J. & Pacher, P. Trastuzumab cardiotoxicity: from clinical trials to experimental studies. Br. J. Pharmacol. 174, 3727–3748 (2017).

    Article  CAS  PubMed  Google Scholar 

  109. Vermeulen, Z., Segers, V. F. M. & De Keulenaer, G. W. ErbB2 signaling at the crossing between heart failure and cancer. Basic Res. Cardiol. 111, 60 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Dokmanovic, M., King, K. E., Mohan, N., Endo, Y. & Wu, W. J. Cardiotoxicity of ErbB2-targeted therapies and its impact on drug development, a spotlight on trastuzumab. Expert Opin. Drug Metab. Toxicol. 13, 755–766 (2017).

    Article  CAS  PubMed  Google Scholar 

  111. Xiao, L. et al. Ibrutinib-mediated atrial fibrillation attributable to inhibition of C-terminal Src kinase. Circulation 142, 2443–2455 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Simons, K. H. et al. T cell co-stimulation and co-inhibition in cardiovascular disease: a double-edged sword. Nat. Rev. Cardiol. 16, 325–343 (2019).

    Article  PubMed  Google Scholar 

  113. Shami, A. et al. Glucocorticoid-induced tumour necrosis factor receptor family-related protein (GITR) drives atherosclerosis in mice and is associated with an unstable plaque phenotype and cerebrovascular events in humans. Eur. Heart J. 41, 2938–2948 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kassiteridi, C. et al. CD200 limits monopoiesis and monocyte recruitment in atherosclerosis. Circ. Res. 129, 280–295 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Lacy, M. et al. Cell-specific and divergent roles of the CD40L–CD40 axis in atherosclerotic vascular disease. Nat. Commun. 12, 3754 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Lutgens, E. et al. Immunotherapy for cardiovascular disease. Eur. Heart J. 40, 3937–3946 (2019).

    Article  CAS  PubMed  Google Scholar 

  117. Delgobo, M. et al. Myocardial milieu favors local differentiation of regulatory T cells. Circ. Res. 132, 565–582 (2023).

    Article  CAS  PubMed  Google Scholar 

  118. Kushnareva, E., Kushnarev, V., Artemyeva, A., Mitrofanova, L. & Moiseeva, O. Myocardial PD-L1 expression in patients with ischemic and non-ischemic heart failure. Front. Cardiovasc. Med. 8, 759972 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Screever, E. M. et al. Circulating immune checkpoints predict heart failure outcomes. ESC Heart Fail. 10, 2330–2337 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Hayashi, T. et al. The programmed death-1 signaling axis modulates inflammation and LV structure/function in a stress-induced cardiomyopathy model. JACC Basic Transl. Sci. 7, 1120–1139 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Choudhary, A. et al. PD-L1 (programmed death ligand 1) as a marker of acute cellular rejection after heart transplantation. Circ. Heart Fail. 14, e008563 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Horckmans, M., Diaz Villamil, E., Horckmans, M., De Roeck, L. & Communi, D. Central role of PD-L1 in cardioprotection resulting from P2Y4 nucleotide receptor loss. Front. Immunol. 13, 1006934 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Ruppert, V. et al. Evidence for CTLA4 as a susceptibility gene for dilated cardiomyopathy. Eur. J. Hum. Genet. 18, 694–699 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Wang, H. et al. CD28/B7 deficiency attenuates systolic overload-induced congestive heart failure, myocardial and pulmonary inflammation, and activated T cell accumulation in the heart and lungs. Hypertension 68, 688–696 (2016).

    Article  CAS  PubMed  Google Scholar 

  125. Kallikourdis, M. et al. T cell costimulation blockade blunts pressure overload-induced heart failure. Nat. Commun. 8, 14680 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Martini, E. et al. T cell costimulation blockade blunts age-related heart failure. Circ. Res. 127, 1115–1117 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Reynolds, K. et al. 696 Abatacept for immune checkpoint inhibitor associated myocarditis (ATRIUM): a phase 3, investigator-initiated, randomized, double blind, placebo-controlled trial. J. Immunother. Cancer https://doi.org/10.1136/jitc-2022-SITC2022.0696 (2022).

  128. Wolf, Y., Anderson, A. C. & Kuchroo, V. K. TIM3 comes of age as an inhibitory receptor. Nat. Rev. Immunol. 20, 173–185 (2020).

    Article  CAS  PubMed  Google Scholar 

  129. Acharya, N., Acharya, N., Sabatos-Peyton, C., Anderson, A. C. & Anderson, A. C. Tim-3 finds its place in the cancer immunotherapy landscape. J. Immunother. Cancer 8, e000911 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Meng, X., Xia, G., Zhang, L., Xu, C. & Chen, Z. T cell immunoglobulin and mucin domain-containing protein 3 is highly expressed in patients with acute decompensated heart failure and predicts mid-term prognosis. Front. Cardiovascular Med. 9, 933532 (2022).

    Article  CAS  Google Scholar 

  131. Garetto, S. et al. Immunobiology peak inflammation in atherosclerosis, primary biliary cirrhosis and autoimmune arthritis is counter-intuitively associated with regulatory T cell enrichment. Immunobiology 220, 1025–1029 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Girerd, N. et al. Protein biomarkers of new-onset heart failure: insights from the heart omics and ageing cohort, the atherosclerosis risk in communities study, and the Framingham Heart Study. Circ. Heart Fail. 16, e009694 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Cauwenberghs, N., Sabovčik, F., Magnus, A., Haddad, F. & Kuznetsova, T. Proteomic profiling for detection of early-stage heart failure in the community. ESC Heart Fail. 8, 2928–2939 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Kresoja, K.-P. et al. Proteomics to improve phenotyping in obese patients with heart failure with preserved ejection fraction. Eur. J. Heart Fail. 23, 1633–1644 (2021).

    Article  CAS  PubMed  Google Scholar 

  135. Wang, Y. et al. Loss of CEACAM1, a tumor-associated factor, attenuates post-infarction cardiac remodeling by inhibiting apoptosis. Sci. Rep. 6, 1972 (2016).

    Google Scholar 

  136. Han, W. K., Bailly, V., Abichandani, R., Thadhani, R. & Bonventre, J. V. Kidney injury molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury. Kidney Int. 62, 237–244 (2002).

    Article  CAS  PubMed  Google Scholar 

  137. Driver, T. H. et al. Urinary kidney injury molecule 1 (KIM-1) and interleukin 18 (IL-18) as risk markers for heart failure in older adults: the health, aging, and body composition (Health ABC) study. Am. J. Kidney Dis. 64, 49–56 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Jungbauer, C. G. et al. Kidney injury molecule-1 and N-acetyl-β-d-glucosaminidase in chronic heart failure: possible biomarkers of cardiorenal syndrome. Eur. J. Heart Fail. 13, 1104–1110 (2011).

    Article  CAS  PubMed  Google Scholar 

  139. Stenemo, M. et al. Circulating proteins as predictors of incident heart failure in the elderly. Eur. J. Heart Fail. 20, 55–62 (2018).

    Article  CAS  PubMed  Google Scholar 

  140. Emmens, J. E. et al. Plasma kidney injury molecule-1 in heart failure: renal mechanisms and clinical outcome. Eur. J. Heart Fail. 18, 641–649 (2016).

    Article  CAS  PubMed  Google Scholar 

  141. Henry, A. et al. Therapeutic targets for heart failure identified using proteomics and Mendelian randomization. Circulation 145, 1205–1217 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Xie, X., Li, C., Zhou, B., Dai, X. & Rao, L. Associations between TIM1 polymorphisms and dilated cardiomyopathy in a Han Chinese population. Int. Heart J. 57, 742–746 (2016).

    Article  CAS  PubMed  Google Scholar 

  143. Dong, C. et al. ICOS co-stimulatory receptor is essential for T-cell activation and function. Nature 409, 97–101 (2001).

    Article  CAS  PubMed  Google Scholar 

  144. Yoshinaga, S. K. et al. T-cell co-stimulation through B7RP-1 and ICOS. Nature 402, 827–832 (1999).

    Article  CAS  PubMed  Google Scholar 

  145. Khayyamian, S. et al. ICOS-ligand, expressed on human endothelial cells, costimulates Th1 and Th2 cytokine secretion by memory CD4+ T cells. Proc. Natl Acad. Sci. USA 99, 6198–6203 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Solinas, C., Gu-Trantien, C. & Willard-Gallo, K. The rationale behind targeting the ICOS–ICOS ligand costimulatory pathway in cancer immunotherapy. ESMO Open 5, e000544 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Spicer, P. & Runkel, L. Costimulatory pathway targets for autoimmune and inflammatory conditions: clinical successes, failures, and hope for the future. Expert Opin. Investig. Drugs 28, 99–106 (2019).

    Article  CAS  PubMed  Google Scholar 

  148. Voors, A. A. et al. A systems biology study to tailored treatment in chronic heart failure: rationale, design, and baseline characteristics of BIOSTAT-CHF. Eur. J. Heart Fail. 18, 716–726 (2016).

    Article  PubMed  Google Scholar 

  149. Markousis-Mavrogenis, G. et al. Multimarker profiling identifies protective and harmful immune processes in heart failure: findings from BIOSTAT-CHF. Cardiovasc. Res. 118, 1964–1977 (2022).

    Article  CAS  PubMed  Google Scholar 

  150. Futamatsu, H. et al. Attenuation of experimental autoimmune myocarditis by blocking activated T cells through inducible costimulatory molecule pathway. Cardiovasc. Res. 59, 95–104 (2003).

    Article  CAS  PubMed  Google Scholar 

  151. Liu, W. et al. Adenovirus-mediated ICOSIg gene transfer alleviates cardiac remodeling in experimental autoimmune myocarditis. Immunol. Cell Biol. 86, 659–665 (2008).

    Article  CAS  PubMed  Google Scholar 

  152. Li, D. K. & Wang, W. Characteristics and clinical trial results of agonistic anti-CD40 antibodies in the treatment of malignancies (review). Oncol. Lett. 20, 176 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Yndestad, A. et al. Increased gene expression of tumor necrosis factor superfamily ligands in peripheral blood mononuclear cells during chronic heart failure. Cardiovasc. Res. 54, 175–182 (2002).

    Article  CAS  PubMed  Google Scholar 

  154. Stumpf, C. et al. Enhanced levels of CD154 (CD40 ligand) on platelets in patients with chronic heart failure. Eur. J. Heart Fail. 5, 629–637 (2003).

    Article  CAS  PubMed  Google Scholar 

  155. Ueland, T. et al. Soluble CD40 ligand in acute and chronic heart failure. Eur. Heart J. 26, 1101–1107 (2005).

    Article  CAS  PubMed  Google Scholar 

  156. Seijkens, T. T. P. et al. Targeting CD40-induced TRAF6 signaling in macrophages reduces atherosclerosis. J. Am. Coll. Cardiol. 71, 527–542 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Lameijer, M. et al. Efficacy and safety assessment of a TRAF6-targeted nanoimmunotherapy in atherosclerotic mice and non-human primates. Nat. Biomed. Eng. 2, 279–292 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Bosch, L. et al. Small molecule-mediated inhibition of CD40–TRAF6 reduces adverse cardiac remodelling in pressure overload induced heart failure. Int. J. Cardiol. 279, 141–144 (2019).

    Article  PubMed  Google Scholar 

  159. Duhen, R. et al. Neoadjuvant anti-OX40 (MEDI6469) therapy in patients with head and neck squamous cell carcinoma activates and expands antigen-specific tumor-infiltrating T cells. Nat. Commun. 12, 1047 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Wu, Q. Q. et al. OX40 regulates pressure overload-induced cardiac hypertrophy and remodelling via CD4+ T-cells. Clin. Sci. 130, 2061–2071 (2016).

    Article  Google Scholar 

  161. Seko, Y. et al. Expression of tumor necrosis factor ligand superfamily costimulatory molecules CD27L, CD30L, OX40L and 4-1BBL in the heart of patients with acute myocarditis and dilated cardiomyopathy. Cardiovasc. Pathol. 11, 166–170 (2002).

    Article  CAS  PubMed  Google Scholar 

  162. Min, A., Kim, J., Nemeth, M. R. & Lim, S. 4-1BB: a promising target for cancer immunotherapy. Front. Oncol. 12, 968360 (2022).

    Article  Google Scholar 

  163. Cheung, C. T. Y. et al. Neutralizing anti-4-1BBL treatment improves cardiac function in viral myocarditis. Lab. Invest. 87, 651–661 (2007).

    Article  CAS  PubMed  Google Scholar 

  164. Mouton, A. J. et al. Fibroblast polarization over the myocardial infarction time continuum shifts roles from inflammation to angiogenesis. Basic Res. Cardiol. 114, 6 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Xu, Y. et al. CD137 signal mediates cardiac ischemia — reperfusion injury by regulating the necrosis of cardiomyocytes. J. Cardiovasc. Transl. Res. 15, 1163–1175 (2022).

    Article  PubMed  Google Scholar 

  166. Tang, H. et al. Facilitating T cell infiltration in tumor microenvironment overcomes resistance to PD-L1 blockade. Cancer Cell 29, 285–296 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Dahl, C. P. et al. Increased expression of LIGHT/TNFSF14 and its receptors in experimental and clinical heart failure. Eur. J. Heart Fail. 10, 352–359 (2008).

    Article  CAS  PubMed  Google Scholar 

  168. Wu, Y. et al. TNFSF14/LIGHT promotes cardiac fibrosis and atrial fibrillation vulnerability via PI3Kγ/SGK1 pathway-dependent M2 macrophage polarisation. J. Transl. Med. 21, 544 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Rumpret, M. et al. Functional categories of immune inhibitory receptors. Nat. Rev. Immunol. 20, 771–780 (2020).

    Article  CAS  PubMed  Google Scholar 

  170. Ashour, D., Delgobo, M., Frantz, S. & Ramos, G. C. Coping with sterile inflammation: between risk and necessity. Cardiovasc. Res. 117, e84–e87 (2021).

    Article  PubMed  Google Scholar 

  171. Vinh, A. et al. Inhibition and genetic ablation of the B7/CD28 T-cell costimulation axis prevents experimental hypertension. Circulation 122, 2529–2537 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Salem, J.-E. et al. Abatacept for severe immune checkpoint inhibitor-associated myocarditis. N. Engl. J. Med. 380, 2377–2379 (2019).

    Article  PubMed  Google Scholar 

  173. Nguyen, L. S. et al. Reversal of immune-checkpoint inhibitor fulminant myocarditis using personalized-dose-adjusted abatacept and ruxolitinib: proof of concept. J. Immunother. Cancer 10, e004699 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Salem, J.-E. et al. Abatacept/ruxolitinib and screening for concomitant respiratory muscle failure to mitigate fatality of immune-checkpoint inhibitor myocarditis. Cancer Discov. 13, 1100–1115 (2023).

    Article  CAS  PubMed  Google Scholar 

  175. Liu, M. et al. Soluble CTLA-4 mutants ameliorate immune-related adverse events but preserve efficacy of CTLA-4- and PD-1-targeted immunotherapy. Sci. Transl. Med. 15, eabm5663 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Leedy, D. J. et al. The association between heart failure and incident cancer in women: an analysis of the Women’s Health Initiative. Eur. J. Heart Fail. 23, 1712–1721 (2021).

    Article  PubMed  Google Scholar 

  177. Peleg Hasson, S. et al. Cancer therapeutics-related cardiac dysfunction in patients treated with immune checkpoint inhibitors: an understudied manifestation. J. Immunother. 44, 179–184 (2021).

    Article  CAS  PubMed  Google Scholar 

  178. Isawa, T., Toi, Y., Sugawara, S., Taguri, M. & Toyoda, S. Incidence, clinical characteristics, and predictors of cardiovascular immune-related adverse events associated with immune checkpoint inhibitors. Oncologist 27, e410–e419 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Zhou, J. et al. Adverse cardiovascular complications following prescription of programmed cell death 1 (PD-1) and programmed cell death ligand 1 (PD-L1) inhibitors: a propensity-score matched cohort study with competing risk analysis. Cardiooncology 8, 5 (2022).

    PubMed  PubMed Central  Google Scholar 

  180. Xu, A. et al. Early detection of immune checkpoint inhibitor-related subclinical cardiotoxicity: a pilot study by using speckle tracking imaging and three-dimensional echocardiography. Front. Cardiovasc. Med. 9, 1087287 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Brumberger, Z. L. et al. Cardiotoxicity risk factors with immune checkpoint inhibitors. Cardiooncology 8, 3 (2022).

    PubMed  PubMed Central  Google Scholar 

  182. Li, C., Bhatti, S. A. & Ying, J. Immune checkpoint inhibitors-associated cardiotoxicity. Cancers 14, 1145 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Chan, J. S. K. et al. Cardiovascular outcomes and hospitalizations in Asian patients receiving immune checkpoint inhibitors: a population-based study. Curr. Probl. Cardiol. 48, 101380 (2023).

    Article  PubMed  Google Scholar 

  184. Zhang, C. et al. Incidence of adverse cardiovascular events associated with immune checkpoint inhibitors and risk factors for left ventricular dysfunction: a single-center prospective clinical study. Front. Cardiovasc. Med. 10, 1052699 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Cutroneo, P. M. et al. Safety profile of immune checkpoint inhibitors: an analysis of the Italian spontaneous reporting system database. Br. J. Clin. Pharmacol. 87, 527–541 (2021).

    Article  CAS  PubMed  Google Scholar 

  186. Mascolo, A. et al. Immune checkpoint inhibitors and cardiotoxicity: an analysis of spontaneous reports in eudravigilance. Drug Saf. 44, 957–971 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Jain, P. et al. Cardiovascular adverse events are associated with usage of immune checkpoint inhibitors in real-world clinical data across the United States. ESMO Open 6, 100252 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Rubio-Infante, N. et al. Cardiotoxicity associated with immune checkpoint inhibitor therapy: a meta-analysis. Eur. J. Heart Fail. 23, 1739–1747 (2021).

    Article  CAS  PubMed  Google Scholar 

  189. Heilbroner, S. P. et al. Predicting cardiac adverse events in patients receiving immune checkpoint inhibitors: a machine learning approach. J. Immunother. Cancer 9, e002545 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Wu, N. C. et al. Clinical features and outcomes of immune checkpoint inhibitor-associated cardiovascular toxicities. Acta Cardiol. Sin. 38, 39–46 (2022).

    PubMed  PubMed Central  Google Scholar 

  191. Malaty, M. M., Amarasekera, A. T., Li, C., Scherrer-Crosbie, M. & Tan, T. C. Incidence of immune checkpoint inhibitor mediated cardiovascular toxicity: a systematic review and meta-analysis. Eur. J. Clin. Invest. 52, e13831 (2022).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Z.V.V. was supported by the EU Horizon 2020 Research and Innovation Programme (grant number 739593), by a Momentum Research Grant from the Hungarian Academy of Sciences, by a National Research, Development and Innovation Office under grant 2022-1.1.1-KK-2022-00005 and an EU grant on project RRF-2.3.1-21-2022-00003. T.G.G. was supported by the Semmelweis 250 + Excellence PhD Scholarship (EFOP-3.6.3-VEKOP-16-2017-00009) and by the Gedeon Richter Talentum Foundation scholarship. Z.D.D. and T.G.G. was supported by the ÚNKP-23-4-II-SE and ÚNKP-23-II-SE-43 New National Excellence Program of the Ministry for Innovation and Technology from the National Research, Development and Innovation fund, respectively. H.Z. is supported by grant funding from the National Institutes of Health and National Heart, Lung, and Blood Institute (K08HL161405). M.K. receives support from AIRC IG grant 24988. W.C.M. is supported by the Mandema–Stipendium of the Junior Scientific Masterclass 2020-10 of the University Medical Center Groningen and by the Dutch Heart Foundation (Dekker grant 03-005-2021-T005). T.G.N. is supported by a gift from A. Curt Greer and P. Kohlberg and from C. and P. Kazilionis, the Michael and Kathryn Park Endowed Chair in Cardiology, by a Hassenfeld Scholar Award, and has additional grant funding from the National Institutes of Health and National Heart, Lung, and Blood Institute (R01HL137562 and K24HL150238).

Author information

Authors and Affiliations

Authors

Contributions

T.G.G. researched data for the article. T.G.G. and Z.V.V. wrote the article. All authors contributed to the discussion of content and to reviewing and editing the manuscript before submission.

Corresponding author

Correspondence to Zoltán V. Varga.

Ethics declarations

Competing interests

M.K. is listed as an inventor in a patent on the use of co-stimulation blockade in heart failure. W.C.M. received speaker fees from Daiichi Sankyo and Novartis. T.G.N. has been a consultant for and received fees from Bristol Myers Squibb, CRC Oncology, Genentech, Roche, Roivant, Sanofi and Race Oncology, and has received grant funding from AstraZeneca and Bristol Myers Squibb for work related to immune checkpoint inhibitors. T.R. is a co-founder of Bimyo, a company focusing on the development of cardioprotective peptides; is listed on patents for the use of BNIP3 peptides for the treatment of myocardial infarction; is listed on a patent on the transport and delivery of nitric oxide; and is also listed on a patent of an antihypertensive composition of nitrate or nitrate derivates. P.F. is the founder and CEO of the Pharmahungary Group, a group of research and development companies. All other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cardiology thanks Joachim Alexandre, Franck Thuny and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gergely, T.G., Drobni, Z.D., Kallikourdis, M. et al. Immune checkpoints in cardiac physiology and pathology: therapeutic targets for heart failure. Nat Rev Cardiol (2024). https://doi.org/10.1038/s41569-023-00986-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41569-023-00986-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing