Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeted delivery of therapeutic agents to the heart

Abstract

For therapeutic materials to be successfully delivered to the heart, several barriers need to be overcome, including the anatomical challenges of access, the mechanical force of the blood flow, the endothelial barrier, the cellular barrier and the immune response. Various vectors and delivery methods have been proposed to improve the cardiac-specific uptake of materials to modify gene expression. Viral and non-viral vectors are widely used to deliver genetic materials, but each has its respective advantages and shortcomings. Adeno-associated viruses have emerged as one of the best tools for heart-targeted gene delivery. In addition, extracellular vesicles, including exosomes, which are secreted by most cell types, have gained popularity for drug delivery to several organs, including the heart. Accumulating evidence suggests that extracellular vesicles can carry and transfer functional proteins and genetic materials into target cells and might be an attractive option for heart-targeted delivery. Extracellular vesicles or artificial carriers of non-viral and viral vectors can be bioengineered with immune-evasive and cardiotropic properties. In this Review, we discuss the latest strategies for targeting and delivering therapeutic materials to the heart and how the knowledge of different vectors and delivery methods could successfully translate cardiac gene therapy into the clinical setting.

Key points

  • Therapies directed at modifying gene expression are emerging and have shown positive results for non-cardiac diseases in clinical trials; clinical translation of these therapies for cardiac diseases remains slow.

  • Currently, cardiac-specific delivery of therapeutic materials in large mammals requires invasive approaches, and the patterns of distribution depend on the delivery method used.

  • Vector options for gene delivery are increasing; adeno-associated viruses provide safe gene delivery but their gene-transduction efficacy in the human heart remains suboptimal.

  • Extracellular vesicles hold immense potential for the delivery of therapeutic agents; their clinical applications depend on their efficient isolation, scalability, drug loading, biodistribution and tissue targeting.

  • Next-generation cardiovascular therapeutics might include bioengineered macromolecules, viruses, nanobiologics and extracellular vesicles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Exosomes can envelope AAV vectors to shield them from neutralizing antibodies.
Fig. 2: Delivery methods targeting the heart.
Fig. 3: Factors that influence cardiac uptake of therapeutic agents.

Similar content being viewed by others

References

  1. Mattiuzzi, C. & Lippi, G. Worldwide disease epidemiology in the older persons. Eur. Geriatr. Med. 11, 147–153 (2020).

    Article  PubMed  Google Scholar 

  2. Benjamin, E. J. et al. Heart disease and stroke statistics-2019 update: a report from the American Heart Association. Circulation 139, e56–e528 (2019).

    Article  PubMed  Google Scholar 

  3. Mensah, G. A., Roth, G. A. & Fuster, V. The global burden of cardiovascular diseases and risk factors: 2020 and beyond. J. Am. Coll. Cardiol. 74, 2529–2532 (2019).

    Article  PubMed  Google Scholar 

  4. Miyamoto, M. I. et al. Adenoviral gene transfer of SERCA2a improves left-ventricular function in aortic-banded rats in transition to heart failure. Proc. Natl Acad. Sci. USA 97, 793–798 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kho, C. et al. SUMO1-dependent modulation of SERCA2a in heart failure. Nature 477, 601–605 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ishikawa, K. et al. Cardiac gene therapy in large animals: bridge from bench to bedside. Gene Ther. 19, 670–677 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Chamberlain, K., Riyad, J. M. & Weber, T. Cardiac gene therapy with adeno-associated virus-based vectors. Curr. Opin. Cardiol. 32, 275–282 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zangi, L. et al. Modified mRNA directs the fate of heart progenitor cells and induces vascular regeneration after myocardial infarction. Nat. Biotechnol. 31, 898–907 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Carlsson, L. et al. Biocompatible, purified VEGF-A mRNA improves cardiac function after intracardiac injection 1 week post-myocardial infarction in swine. Mol. Ther. Methods Clin. Dev. 9, 330–346 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kanelidis, A. J., Premer, C., Lopez, J., Balkan, W. & Hare, J. M. Route of delivery modulates the efficacy of mesenchymal stem cell therapy for myocardial infarction: a meta-analysis of preclinical studies and clinical trials. Circ. Res. 120, 1139–1150 (2017).

    Article  PubMed  Google Scholar 

  11. Jackson, H. J., Rafiq, S. & Brentjens, R. J. Driving CAR T-cells forward. Nat. Rev. Clin. Oncol. 13, 370–383 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Goswami, R. et al. Gene therapy leaves a vicious cycle. Front. Oncol. 9, 297 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Russell, S. et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet 390, 849–860 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lowes, L. P. et al. Impact of age and motor function in a phase 1/2A study of infants with SMA type 1 receiving single-dose gene replacement therapy. Pediatr. Neurol. 98, 39–45 (2019).

    Article  PubMed  Google Scholar 

  15. Adams, D. et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N. Engl. J. Med. 379, 11–21 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Prado, D. A., Acosta-Acero, M. & Maldonado, R. S. Gene therapy beyond luxturna: a new horizon of the treatment for inherited retinal disease. Curr. Opin. Ophthalmol. 31, 147–154 (2020).

    Article  PubMed  Google Scholar 

  17. Curtis, M. & Philipson, R. Cell & gene therapy commercial insight – December 2019. Cell Gene Ther. Insights 6, 69–83 (2020).

    Article  Google Scholar 

  18. Lambert, J. L. State of the industry: the financial, clinical, and scientific landscape for cell and gene therapies. Cell Gene Ther. Insights 6, 47–54 (2020).

    Article  Google Scholar 

  19. Yla-Herttuala, S. & Baker, A. H. Cardiovascular gene therapy: past, present, and future. Mol. Ther. 25, 1095–1106 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Greenberg, B. et al. Calcium upregulation by percutaneous administration of gene therapy in patients with cardiac disease (CUPID 2): a randomised, multinational, double-blind, placebo-controlled, phase 2b trial. Lancet 387, 1178–1186 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. Chung, E. S. et al. Changes in ventricular remodelling and clinical status during the year following a single administration of stromal cell-derived factor-1 non-viral gene therapy in chronic ischaemic heart failure patients: the STOP-HF randomized phase II trial. Eur. Heart J. 36, 2228–2238 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hammond, H. K. et al. Intracoronary gene transfer of adenylyl cyclase 6 in patients with heart failure: a randomized clinical trial. JAMA Cardiol. 1, 163–171 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hulot, J. S., Ishikawa, K. & Hajjar, R. J. Gene therapy for the treatment of heart failure: promise postponed. Eur. Heart J. 37, 1651–1658 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Nyamay’Antu, A., Dumont, M., Kedinger, V. & Erbacher, P. Non-viral vector mediated gene delivery: the outsider to watch out for in gene therapy. Cell Gene Ther. Insights 5, 51–57 (2019).

    Article  Google Scholar 

  25. Yin, H. et al. Non-viral vectors for gene-based therapy. Nat. Rev. Genet. 15, 541–555 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Zangi, L. & Hajjar, R. J. Synthetic microRNAs stimulate cardiac repair. Circ. Res. 120, 1222–1223 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gan, L. M. et al. Intradermal delivery of modified mRNA encoding VEGF-A in patients with type 2 diabetes. Nat. Commun. 10, 871 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Anttila, V. et al. Synthetic mRNA encoding VEGF-A in patients undergoing coronary artery bypass grafting: design of a phase 2a clinical trial. Mol. Ther. Methods Clin. Dev. 18, 464–472 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen, C. W. et al. Human pericytes for ischemic heart repair. Stem Cell 31, 305–316 (2013).

    Article  CAS  Google Scholar 

  30. Fliervoet, L. A. L., Engbersen, J. F. J., Schiffelers, R. M., Hennink, W. E. & Vermonden, T. Polymers and hydrogels for local nucleic acid delivery. J. Mater. Chem. B 6, 5651–5670 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. Paul, A. et al. Injectable graphene oxide/hydrogel-based angiogenic gene delivery system for vasculogenesis and cardiac repair. ACS Nano 8, 8050–8062 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cheng, K. et al. Magnetic antibody-linked nanomatchmakers for therapeutic cell targeting. Nat. Commun. 5, 4880 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Zhang, J., Ma, A. & Shang, L. Conjugating existing clinical drugs with gold nanoparticles for better treatment of heart diseases. Front. Physiol. 9, 642 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wei, J. et al. Differential m6A, m6Am, and m1A demethylation mediated by FTO in the cell nucleus and cytoplasm. Mol. Cell 71, 973–985.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. van Rooij, E. & Kauppinen, S. Development of microRNA therapeutics is coming of age. EMBO Mol. Med. 6, 851–864 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Foinquinos, A. et al. Preclinical development of a miR-132 inhibitor for heart failure treatment. Nat. Commun. 11, 633 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hinkel, R. et al. AntimiR-21 prevents myocardial dysfunction in a pig model of ischemia/reperfusion injury. J. Am. Coll. Cardiol. 75, 1788–1800 (2020).

    Article  CAS  PubMed  Google Scholar 

  38. Bernardo, B. C. et al. Therapeutic inhibition of the miR-34 family attenuates pathological cardiac remodeling and improves heart function. Proc. Natl Acad. Sci. USA 109, 17615–17620 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Barr, E. et al. Efficient catheter-mediated gene transfer into the heart using replication-defective adenovirus. Gene Ther. 1, 51–58 (1994).

    CAS  PubMed  Google Scholar 

  40. Stratford-Perricaudet, L. D., Makeh, I., Perricaudet, M. & Briand, P. Widespread long-term gene transfer to mouse skeletal muscles and heart. J. Clin. Invest. 90, 626–630 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chu, D. et al. Direct comparison of efficiency and stability of gene transfer into the mammalian heart using adeno-associated virus versus adenovirus vectors. J. Thorac. Cardiovasc. Surg. 126, 671–679 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Douglas, J. T. Adenoviral vectors for gene therapy. Mol. Biotechnol. 36, 71–80 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Flotte, T. R. & Berns, K. I. Adeno-associated virus: a ubiquitous commensal of mammals. Hum. Gene Ther. 16, 401–407 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Herzog, R. W. et al. Long-term correction of canine hemophilia B by gene transfer of blood coagulation factor IX mediated by adeno-associated viral vector. Nat. Med. 5, 56–63 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Wang, Z. et al. Adeno-associated virus serotype 8 efficiently delivers genes to muscle and heart. Nat. Biotechnol. 23, 321–328 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Zincarelli, C., Soltys, S., Rengo, G. & Rabinowitz, J. E. Analysis of AAV serotypes 1-9 mediated gene expression and tropism in mice after systemic injection. Mol. Ther. 16, 1073–1080 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Penaud-Budloo, M. et al. Adeno-associated virus vector genomes persist as episomal chromatin in primate muscle. J. Virol. 82, 7875–7885 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. McCarty, D. M., Monahan, P. E. & Samulski, R. J. Self-complementary recombinant adeno-associated virus (scAAV) vectors promote efficient transduction independently of DNA synthesis. Gene Ther. 8, 1248–1254 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Bish, L. T. et al. Adeno-associated virus (AAV) serotype 9 provides global cardiac gene transfer superior to AAV1, AAV6, AAV7, and AAV8 in the mouse and rat. Hum. Gene Ther. 19, 1359–1368 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gabisonia, K. et al. MicroRNA therapy stimulates uncontrolled cardiac repair after myocardial infarction in pigs. Nature 569, 418–422 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bish, L. T. et al. Percutaneous transendocardial delivery of self-complementary adeno-associated virus 6 achieves global cardiac gene transfer in canines. Mol. Ther. 16, 1953–1959 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Gao, G. et al. Transendocardial delivery of AAV6 results in highly efficient and global cardiac gene transfer in rhesus macaques. Hum. Gene Ther. 22, 979–984 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. Amoasii, L. et al. Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy. Science 362, 86–91 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Moretti, A. et al. Somatic gene editing ameliorates skeletal and cardiac muscle failure in pig and human models of Duchenne muscular dystrophy. Nat. Med. 26, 207–214 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Li, C. & Samulski, R. J. Engineering adeno-associated virus vectors for gene therapy. Nat. Rev. Genet. 21, 255–272 (2020).

    Article  CAS  PubMed  Google Scholar 

  56. Ishikawa, K. et al. Cardiac I-1c overexpression with reengineered AAV improves cardiac function in swine ischemic heart failure. Mol. Ther. 22, 2038–2045 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fleury, S. et al. Multiply attenuated, self-inactivating lentiviral vectors efficiently deliver and express genes for extended periods of time in adult rat cardiomyocytes in vivo. Circulation 107, 2375–2382 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Di Pasquale, E., Latronico, M. V., Jotti, G. S. & Condorelli, G. Lentiviral vectors and cardiovascular diseases: a genetic tool for manipulating cardiomyocyte differentiation and function. Gene Ther. 19, 642–648 (2012).

    Article  PubMed  Google Scholar 

  59. Campochiaro, P. A. et al. Lentiviral vector gene transfer of endostatin/angiostatin for macular degeneration (GEM) study. Hum. Gene Ther. 28, 99–111 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hare, J. M. et al. Comparison of allogeneic vs autologous bone marrow-derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the POSEIDON randomized trial. JAMA 308, 2369–2379 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Niwano, K. et al. Lentiviral vector-mediated SERCA2 gene transfer protects against heart failure and left ventricular remodeling after myocardial infarction in rats. Mol. Ther. 16, 1026–1032 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Povsic, T. J. et al. The RENEW trial: efficacy and safety of intramyocardial autologous CD34+ cell administration in patients with refractory angina. JACC Cardiovasc. Interv. 9, 1576–1585 (2016).

    Article  PubMed  Google Scholar 

  63. Henry, T. D. et al. Autologous CD34+ cell therapy improves exercise capacity, angina frequency and reduces mortality in no-option refractory angina: a patient-level pooled analysis of randomized double-blinded trials. Eur. Heart J. 39, 2208–2216 (2018).

    Article  CAS  PubMed  Google Scholar 

  64. Makkar, R. R. et al. Intracoronary ALLogeneic heart STem cells to Achieve myocardial Regeneration (ALLSTAR): a randomized, placebo-controlled, double-blinded trial. Eur. Heart J. 41, 3451–3458 (2020).

    Article  CAS  PubMed  Google Scholar 

  65. Mathiasen, A. B. et al. Bone marrow-derived mesenchymal stromal cell treatment in patients with severe ischaemic heart failure: a randomized placebo-controlled trial (MSC-HF trial). Eur. Heart J. 36, 1744–1753 (2015).

    Article  CAS  PubMed  Google Scholar 

  66. Madonna, R. et al. ESC working group on cellular biology of the heart: position paper for cardiovascular research: tissue engineering strategies combined with cell therapies for cardiac repair in ischaemic heart disease and heart failure. Cardiovasc. Res. 115, 488–500 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kanisicak, O., Vagnozzi, R. J. & Molkentin, J. D. Identity crisis for regenerative cardiac cKit+ cells. Circ. Res. 121, 1130–1132 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. van Berlo, J. H. et al. c-kit+ cells minimally contribute cardiomyocytes to the heart. Nature 509, 337–341 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Vagnozzi, R. J. et al. An acute immune response underlies the benefit of cardiac stem cell therapy. Nature 577, 405–409 (2020).

    Article  CAS  PubMed  Google Scholar 

  70. Sahoo, S. et al. Exosomes from human CD34+ stem cells mediate their proangiogenic paracrine activity. Circ. Res. 109, 724–728 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sahoo, S. & Losordo, D. W. Exosomes and cardiac repair after myocardial infarction. Circ. Res. 114, 333–344 (2014).

    Article  CAS  PubMed  Google Scholar 

  72. Adamiak, M. & Sahoo, S. Exosomes in myocardial repair: advances and challenges in the development of next-generation therapeutics. Mol. Ther. 26, 1635–1643 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Vicencio, J. M. et al. Plasma exosomes protect the myocardium from ischemia-reperfusion injury. J. Am. Coll. Cardiol. 65, 1525–1536 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. Beltrami, C. et al. Human pericardial fluid contains exosomes enriched with cardiovascular-expressed microRNAs and promotes therapeutic angiogenesis. Mol. Ther. 25, 679–693 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mathiyalagan, P. et al. Angiogenic mechanisms of human cd34+ stem cell exosomes in the repair of ischemic hindlimb. Circ. Res. 120, 1466–1476 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Tseliou, E. et al. Fibroblasts rendered antifibrotic, antiapoptotic, and angiogenic by priming with cardiosphere-derived extracellular membrane vesicles. J. Am. Coll. Cardiol. 66, 599–611 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gallet, R. et al. Exosomes secreted by cardiosphere-derived cells reduce scarring, attenuate adverse remodelling, and improve function in acute and chronic porcine myocardial infarction. Eur. Heart J. 38, 201–211 (2017).

    CAS  PubMed  Google Scholar 

  78. Rupert, D. L. M., Claudio, V., Lasser, C. & Bally, M. Methods for the physical characterization and quantification of extracellular vesicles in biological samples. Biochim. Biophys. Acta Gen. Subj. 1861, 3164–3179 (2017).

    Article  CAS  PubMed  Google Scholar 

  79. Vader, P., Mol, E. A., Pasterkamp, G. & Schiffelers, R. M. Extracellular vesicles for drug delivery. Adv. Drug Deliv. Rev. 106, 148–156 (2016).

    Article  CAS  PubMed  Google Scholar 

  80. Robbins, P. D. & Morelli, A. E. Regulation of immune responses by extracellular vesicles. Nat. Rev. Immunol. 14, 195–208 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Mokarizadeh, A. et al. Microvesicles derived from mesenchymal stem cells: potent organelles for induction of tolerogenic signaling. Immunol. Lett. 147, 47–54 (2012).

    Article  CAS  PubMed  Google Scholar 

  82. Admyre, C. et al. Exosomes with immune modulatory features are present in human breast milk. J. Immunol. 179, 1969–1978 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Hellwinkel, J. E. et al. Glioma-derived extracellular vesicles selectively suppress immune responses. Neuro. Oncol. 18, 497–506 (2016).

    Article  CAS  PubMed  Google Scholar 

  84. Escudier, B. et al. Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: results of the first phase I clinical trial. J. Transl. Med. 3, 10 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Dai, S. et al. Phase I clinical trial of autologous ascites-derived exosomes combined with GM-CSF for colorectal cancer. Mol. Ther. 16, 782–790 (2008).

    Article  CAS  PubMed  Google Scholar 

  86. Morishita, M., Takahashi, Y., Nishikawa, M. & Takakura, Y. Pharmacokinetics of exosomes–an important factor for elucidating the biological roles of exosomes and for the development of exosome-based therapeutics. J. Pharm. Sci. 106, 2265–2269 (2017).

    Article  CAS  PubMed  Google Scholar 

  87. Hu, L., Wickline, S. A. & Hood, J. L. Magnetic resonance imaging of melanoma exosomes in lymph nodes. Magn. Reson. Med. 74, 266–271 (2015).

    Article  CAS  PubMed  Google Scholar 

  88. Horibe, S., Tanahashi, T., Kawauchi, S., Murakami, Y. & Rikitake, Y. Mechanism of recipient cell-dependent differences in exosome uptake. BMC Cancer 18, 47 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Margolis, L. & Sadovsky, Y. The biology of extracellular vesicles: the known unknowns. PLoS Biol. 17, e3000363 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. de Abreu, R. C. et al. Native and bioengineered extracellular vesicles for cardiovascular therapeutics. Nat. Rev. Cardiol. 17, 685–697 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Mentkowski, K. I. & Lang, J. K. Exosomes engineered to express a cardiomyocyte binding peptide demonstrate improved cardiac retention in vivo. Sci. Rep. 9, 10041 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Shin, M. et al. Targeting protein and peptide therapeutics to the heart via tannic acid modification. Nat. Biomed. Eng. 2, 304–317 (2018).

    Article  CAS  PubMed  Google Scholar 

  93. Trac, D. et al. Predicting functional responses of progenitor cell exosome potential with computational modeling. Stem Cell Transl. Med. 8, 1212–1221 (2019).

    Article  CAS  Google Scholar 

  94. Nolte-’t Hoen, E., Cremer, T., Gallo, R. C. & Margolis, L. B. Extracellular vesicles and viruses: are they close relatives? Proc. Natl Acad. Sci. USA 113, 9155–9161 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Feng, Z. et al. A pathogenic picornavirus acquires an envelope by hijacking cellular membranes. Nature 496, 367–371 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Gyorgy, B., Fitzpatrick, Z., Crommentuijn, M. H., Mu, D. & Maguire, C. A. Naturally enveloped AAV vectors for shielding neutralizing antibodies and robust gene delivery in vivo. Biomaterials 35, 7598–7609 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Liang, Y. et al. AAV-containing exosomes as a novel vector to improve AAV-mediated myocardial gene delivery in resistance to neutralizing antibody [abstract]. Circulation 136, A15439 (2017).

    Google Scholar 

  98. Meliani, A. et al. Enhanced liver gene transfer and evasion of preexisting humoral immunity with exosome-enveloped AAV vectors. Blood Adv. 1, 2019–2031 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wassmer, S. J., Carvalho, L. S., Gyorgy, B., Vandenberghe, L. H. & Maguire, C. A. Exosome-associated AAV2 vector mediates robust gene delivery into the murine retina upon intravitreal injection. Sci. Rep. 7, 45329 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Gyorgy, B. et al. Rescue of hearing by gene delivery to inner-ear hair cells using exosome-associated AAV. Mol. Ther. 25, 379–391 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03384433 (2020).

  102. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04356300 (2020).

  103. Pacak, C. A. et al. Recombinant adeno-associated virus serotype 9 leads to preferential cardiac transduction in vivo. Circ. Res. 99, e3–e9 (2006).

    Article  CAS  PubMed  Google Scholar 

  104. Arslan, F. et al. Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Res. 10, 301–312 (2013).

    Article  CAS  PubMed  Google Scholar 

  105. Luger, D. et al. Intravenously delivered mesenchymal stem cells: systemic anti-inflammatory effects improve left ventricular dysfunction in acute myocardial infarction and ischemic cardiomyopathy. Circ. Res. 120, 1598–1613 (2017).

    Article  CAS  PubMed  Google Scholar 

  106. Terajima, Y. et al. Autologous skeletal myoblast sheet therapy for porcine myocardial infarction without increasing risk of arrhythmia. Cell Med. 6, 99–109 (2014).

    Article  PubMed  Google Scholar 

  107. Masumoto, H. et al. Human iPS cell-engineered cardiac tissue sheets with cardiomyocytes and vascular cells for cardiac regeneration. Sci. Rep. 4, 6716 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kang, K. et al. Exosomes secreted from CXCR4 overexpressing mesenchymal stem cells promote cardioprotection via akt signaling pathway following myocardial infarction. Stem Cell Int. 2015, 659890 (2015).

    Google Scholar 

  109. Weinberger, F. et al. Cardiac repair in guinea pigs with human engineered heart tissue from induced pluripotent stem cells. Sci. Transl. Med. 8, 363ra148 (2016).

    Article  PubMed  Google Scholar 

  110. Wei, K. et al. Epicardial FSTL1 reconstitution regenerates the adult mammalian heart. Nature 525, 479–485 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Serpooshan, V. et al. The effect of bioengineered acellular collagen patch on cardiac remodeling and ventricular function post myocardial infarction. Biomaterials 34, 9048–9055 (2013).

    Article  CAS  PubMed  Google Scholar 

  112. Svensson, E. C. et al. Efficient and stable transduction of cardiomyocytes after intramyocardial injection or intracoronary perfusion with recombinant adeno-associated virus vectors. Circulation 99, 201–205 (1999).

    Article  CAS  PubMed  Google Scholar 

  113. Fortuin, F. D. et al. One-year follow-up of direct myocardial gene transfer of vascular endothelial growth factor-2 using naked plasmid deoxyribonucleic acid by way of thoracotomy in no-option patients. Am. J. Cardiol. 92, 436–439 (2003).

    Article  CAS  PubMed  Google Scholar 

  114. Ishikawa, K. et al. Stem cell factor gene transfer improves cardiac function after myocardial infarction in swine. Circ. Heart Fail. 8, 167–174 (2015).

    Article  CAS  PubMed  Google Scholar 

  115. Losordo, D. W. et al. Intramyocardial transplantation of autologous CD34+ stem cells for intractable angina: a phase I/IIa double-blind, randomized controlled trial. Circulation 115, 3165–3172 (2007).

    Article  PubMed  Google Scholar 

  116. Kulandavelu, S. et al. Pim1 kinase overexpression enhances c-kit+ cardiac stem cell cardiac repair following myocardial infarction in swine. J. Am. Coll. Cardiol. 68, 2454–2464 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Grossman, P. M., Han, Z., Palasis, M., Barry, J. J. & Lederman, R. J. Incomplete retention after direct myocardial injection. Catheter. Cardiovasc. Interv. 55, 392–397 (2002).

    Article  PubMed  Google Scholar 

  118. van den Akker, F. et al. Intramyocardial stem cell injection: go(ne) with the flow. Eur. Heart J. 38, 184–186 (2017).

    PubMed  Google Scholar 

  119. Dow, J., Simkhovich, B. Z., Kedes, L. & Kloner, R. A. Washout of transplanted cells from the heart: a potential new hurdle for cell transplantation therapy. Cardiovasc. Res. 67, 301–307 (2005).

    Article  CAS  PubMed  Google Scholar 

  120. Chong, J. J. et al. Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature 510, 273–277 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kikuchi, K., McDonald, A. D., Sasano, T. & Donahue, J. K. Targeted modification of atrial electrophysiology by homogeneous transmural atrial gene transfer. Circulation 111, 264–270 (2005).

    Article  CAS  PubMed  Google Scholar 

  122. Yau, T. M. et al. Intramyocardial injection of mesenchymal precursor cells and successful temporary weaning from left ventricular assist device support in patients with advanced heart failure: a randomized clinical trial. JAMA 321, 1176–1186 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Li, J. et al. Comparative study of catheter-mediated gene transfer into heart. Chin. Med. J. 115, 612–613 (2002).

    CAS  PubMed  Google Scholar 

  124. von Degenfeld, G. et al. Selective pressure-regulated retroinfusion of fibroblast growth factor-2 into the coronary vein enhances regional myocardial blood flow and function in pigs with chronic myocardial ischemia. J. Am. Coll. Cardiol. 42, 1120–1128 (2003).

    Article  Google Scholar 

  125. Tuma, J. et al. Safety and feasibility of percutaneous retrograde coronary sinus delivery of autologous bone marrow mononuclear cell transplantation in patients with chronic refractory angina. J. Transl. Med. 9, 183 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Thompson, C. A. et al. Percutaneous transvenous cellular cardiomyoplasty. A novel nonsurgical approach for myocardial cell transplantation. J. Am. Coll. Cardiol. 41, 1964–1971 (2003).

    Article  PubMed  Google Scholar 

  127. Hou, D. et al. Radiolabeled cell distribution after intramyocardial, intracoronary, and interstitial retrograde coronary venous delivery: implications for current clinical trials. Circulation 112, I150–I156 (2005).

    Article  PubMed  Google Scholar 

  128. Hoshino, K. et al. Three catheter-based strategies for cardiac delivery of therapeutic gelatin microspheres. Gene Ther. 13, 1320–1327 (2006).

    Article  CAS  PubMed  Google Scholar 

  129. Hong, S. J. et al. Intracoronary and retrograde coronary venous myocardial delivery of adipose-derived stem cells in swine infarction lead to transient myocardial trapping with predominant pulmonary redistribution. Catheter. Cardiovasc. Interv. 83, E17–E25 (2014).

    Article  PubMed  Google Scholar 

  130. Vale, P. R. et al. Left ventricular electromechanical mapping to assess efficacy of phVEGF(165) gene transfer for therapeutic angiogenesis in chronic myocardial ischemia. Circulation 102, 965–974 (2000).

    Article  CAS  PubMed  Google Scholar 

  131. Ladage, D. et al. Delivery of gelfoam-enabled cells and vectors into the pericardial space using a percutaneous approach in a porcine model. Gene Ther. 18, 979–985 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Vogiatzidis, K. et al. Physiology of pericardial fluid production and drainage. Front. Physiol. 6, 62 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Sun, W., Li, Z., Zhou, X., Yang, G. & Yuan, L. Efficient exosome delivery in refractory tissues assisted by ultrasound-targeted microbubble destruction. Drug Deliv. 26, 45–50 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Mah, C. et al. Improved method of recombinant AAV2 delivery for systemic targeted gene therapy. Mol. Ther. 6, 106–112 (2002).

    Article  CAS  PubMed  Google Scholar 

  135. Delyagina, E., Li, W., Ma, N. & Steinhoff, G. Magnetic targeting strategies in gene delivery. Nanomedicine 6, 1593–1604 (2011).

    Article  CAS  PubMed  Google Scholar 

  136. Penn, M. S. et al. An open-label dose escalation study to evaluate the safety of administration of nonviral stromal cell-derived factor-1 plasmid to treat symptomatic ischemic heart failure. Circ. Res. 112, 816–825 (2013).

    Article  CAS  PubMed  Google Scholar 

  137. Ly, H. Q. et al. In vivo myocardial distribution of multipotent progenitor cells following intracoronary delivery in a swine model of myocardial infarction. Eur. Heart J. 30, 2861–2868 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Ishikawa, K. Intracoronary injection of large stem cells: size matters. Circ. Cardiovasc. Interv. 8, e002648 (2015).

    Article  PubMed  Google Scholar 

  139. Emani, S. M. et al. Catheter-based intracoronary myocardial adenoviral gene delivery: importance of intraluminal seal and infusion flow rate. Mol. Ther. 8, 306–313 (2003).

    Article  CAS  PubMed  Google Scholar 

  140. Hayase, M. et al. Catheter-based antegrade intracoronary viral gene delivery with coronary venous blockade. Am. J. Physiol. Heart Circ. Physiol. 288, H2995–H3000 (2005).

    Article  CAS  PubMed  Google Scholar 

  141. Keith, M. C. et al. Effect of the stop-flow technique on cardiac retention of c-kit positive human cardiac stem cells after intracoronary infusion in a porcine model of chronic ischemic cardiomyopathy. Basic Res. Cardiol. 110, 503 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Musialek, P. et al. Randomized transcoronary delivery of CD34+ cells with perfusion versus stop-flow method in patients with recent myocardial infarction: early cardiac retention of 99mTc-labeled cells activity. J. Nucl. Cardiol. 18, 104–116 (2011).

    Article  PubMed  Google Scholar 

  143. Losordo, D. W. et al. Intramyocardial, autologous CD34+ cell therapy for refractory angina. Circ. Res. 109, 428–436 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Karantalis, V. et al. Autologous mesenchymal stem cells produce concordant improvements in regional function, tissue perfusion, and fibrotic burden when administered to patients undergoing coronary artery bypass grafting: the Prospective Randomized Study of Mesenchymal Stem Cell Therapy in Patients Undergoing Cardiac Surgery (PROMETHEUS) trial. Circ. Res. 114, 1302–1310 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Teng, C. J., Luo, J., Chiu, R. C. & Shum-Tim, D. Massive mechanical loss of microspheres with direct intramyocardial injection in the beating heart: implications for cellular cardiomyoplasty. J. Thorac. Cardiovasc. Surg. 132, 628–632 (2006).

    Article  PubMed  Google Scholar 

  146. Shah, A. S. et al. Intracoronary adenovirus-mediated delivery and overexpression of the β2-adrenergic receptor in the heart: prospects for molecular ventricular assistance. Circulation 101, 408–414 (2000).

    Article  CAS  PubMed  Google Scholar 

  147. James, S. K. et al. Long-term safety and efficacy of drug-eluting versus bare-metal stents in Sweden. N. Engl. J. Med. 360, 1933–1945 (2009).

    Article  CAS  PubMed  Google Scholar 

  148. Sharif, F., Daly, K., Crowley, J. & O’Brien, T. Current status of catheter- and stent-based gene therapy. Cardiovasc. Res. 64, 208–216 (2004).

    Article  CAS  PubMed  Google Scholar 

  149. Lekshmi, K. M., Che, H. L., Cho, C. S. & Park, I. K. Drug- and gene-eluting stents for preventing coronary restenosis. Chonnam. Med. J. 53, 14–27 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Bukka, M., Rednam, P. J. & Sinha, M. Drug-eluting balloon: design, technology and clinical aspects. Biomed. Mater. 13, 032001 (2018).

    Article  PubMed  Google Scholar 

  151. Fargnoli, A. S. et al. A pharmacokinetic analysis of molecular cardiac surgery with recirculation mediated delivery of βARKct gene therapy: developing a quantitative definition of the therapeutic window. J. Card. Fail. 17, 691–699 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Krause, K. T. et al. Percutaneous endocardial injection of erythropoietin: assessment of cardioprotection by electromechanical mapping. Eur. J. Heart Fail. 8, 443–450 (2006).

    Article  CAS  PubMed  Google Scholar 

  153. Tao, Z. et al. HGF percutaneous endocardial injection induces cardiomyocyte proliferation and rescues cardiac function in pigs. J. Biomed. Res. 24, 198–206 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Traverse, J. H. et al. First-in-man study of a cardiac extracellular matrix hydrogel in early and late myocardial infarction patients. JACC Basic Transl. Sci. 4, 659–669 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Matoba, T. & Egashira, K. Nanoparticle-mediated drug delivery system for cardiovascular disease. Int. Heart J. 55, 281–286 (2014).

    Article  CAS  PubMed  Google Scholar 

  156. Matoba, T., Koga, J. I., Nakano, K., Egashira, K. & Tsutsui, H. Nanoparticle-mediated drug delivery system for atherosclerotic cardiovascular disease. J. Cardiol. 70, 206–211 (2017).

    Article  PubMed  Google Scholar 

  157. Lee, R. J. et al. Antibody targeting of stem cells to infarcted myocardium. Stem Cell 25, 712–717 (2007).

    Article  CAS  Google Scholar 

  158. Chen, S. & Grayburn, P. A. in Cardiac Gene Therapy: Methods and Protocols (ed. Ishikawa, K.) 205–218 (Springer, 2017).

  159. Hudry, E. et al. Exosome-associated AAV vector as a robust and convenient neuroscience tool. Gene Ther. 23, 380–392 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Jang, S. C. et al. Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors. ACS Nano 7, 7698–7710 (2013).

    Article  CAS  PubMed  Google Scholar 

  161. Luan, X. et al. Engineering exosomes as refined biological nanoplatforms for drug delivery. Acta Pharmacol. Sin. 38, 754–763 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are supported by grants NIH R01HL140469, R01HL124187 and R01HL148786 and New York Stem Cell Science (NYSTEM) C32562GG to S.S., and NIH R01HL139963 and AHA-SDG 17SDG33410873 to K.I. The authors acknowledge the Gene Therapy Resource Program (GTRP) of the National Heart, Lung, and Blood Institute.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Susmita Sahoo or Kiyotake Ishikawa.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Cardiology thanks C. Emanueli, C. Kupatt and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Polyplex particles

Any complex of a polymer and a nucleic acid (DNA or RNA interference molecules) formed through electrostatic interactions between cationic groups of the polymer and the negatively charged nucleic acids.

Episome

A segment of DNA that exists independently of a chromosome.

Second-strand synthesis

DNA synthesis to form double-stranded DNA after delivery of single-stranded DNA.

Zeta potential

A measure of the effective electric charge on the surface of an extracellular vesicle (EV) (or nanoparticle); the potential is calculated by quantifying the electrophoretic mobility of EVs in liquid between electrodes when a field is applied.

Retroperfusion

Injection through the coronary sinus (vein).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, S., Kariya, T. & Ishikawa, K. Targeted delivery of therapeutic agents to the heart. Nat Rev Cardiol 18, 389–399 (2021). https://doi.org/10.1038/s41569-020-00499-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-020-00499-9

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research