Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Fcγ receptors and immunomodulatory antibodies in cancer

Abstract

The discovery of both cytotoxic T lymphocyte-associated antigen 4 (CTLA4) and programmed cell death protein 1 (PD1) as negative regulators of antitumour immunity led to the development of numerous immunomodulatory antibodies as cancer treatments. Preclinical studies have demonstrated that the efficacy of immunoglobulin G (IgG)-based therapies depends not only on their ability to block or engage their targets but also on the antibody’s constant region (Fc) and its interactions with Fcγ receptors (FcγRs). Fc–FcγR interactions are essential for the activity of tumour-targeting antibodies, such as rituximab, trastuzumab and cetuximab, where the killing of tumour cells occurs at least in part due to these mechanisms. However, our understanding of these interactions in the context of immunomodulatory antibodies designed to boost antitumour immunity remains less explored. In this Review, we discuss our current understanding of the contribution of FcγRs to the in vivo activity of immunomodulatory antibodies and the challenges of translating results from preclinical models into the clinic. In addition, we review the impact of genetic variability of human FcγRs on the activity of therapeutic antibodies and how antibody engineering is being utilized to develop the next generation of cancer immunotherapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Human Fcγ receptors, their expression pattern and affinity for therapeutic IgG1, IgG2 and IgG4.
Fig. 2: Fcγ receptor mRNA expression in key immune subsets from patients with non-small-cell lung cancer, renal cell carcinoma and colorectal cancer.
Fig. 3: The mechanism of action of monoclonal antibodies directed against T cell immune checkpoints in cancer.
Fig. 4: The mechanism of action of monoclonal antibodies directed against T cell co-stimulatory receptors ICOS and CD40 in cancer.
Fig. 5: The mechanism of action of monoclonal antibodies directed against T cell co-stimulatory receptors OX40 and 4-1BB in cancer.

Similar content being viewed by others

Data availability

The single-cell RNA sequencing (scRNA-seq) analysis shown in Fig. 2 used publicly available data from the following sources: GSE121638 (ref. 264), GSE131907 (ref. 265), GSE127465 (ref. 266), GSE178341 (ref. 267), GSE148071 (ref. 268), SRZ190804 (ref. 269), (https://github.com/czbiohub/scell_lung_adenocarcinoma), (http://blueprint.lambrechtslab.org), Braun et al.270, Bi et al.271 (https://singlecell.broadinstitute.org/single_cell/study/SCP1288/tumour-and-immune-reprogramming-during-immunotherapy-in-advanced-renal-cell-carcinoma#study-summary), Chan et al.272 (https://data.humantumoratlas.org/) and Cheng et al.273 (data accessed via a request to corresponding author).

References

  1. Bournazos, S. et al. Signaling by antibodies: recent progress. Annu. Rev. Immunol. 35, 285–311 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pincetic, A. et al. Type I and type II Fc receptors regulate innate and adaptive immunity. Nat. Immunol. 15, 707–716 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Leach, J. L. et al. Isolation from human placenta of the IgG transporter, FcRn, and localization to the syncytiotrophoblast: implications for maternal–fetal antibody transport. J. Immunol. 157, 3317–3322 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Mallery, D. L. et al. Antibodies mediate intracellular immunity through tripartite motif-containing 21 (TRIM21). Proc. Natl Acad. Sci. USA 107, 19985–19990 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Evers, M. et al. Novel chimerized IgA CD20 antibodies: improving neutrophil activation against CD20-positive malignancies. MAbs 12, 1795505 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chauhan, J. et al. Anti-cancer pro-inflammatory effects of an IgE antibody targeting the melanoma-associated antigen chondroitin sulfate proteoglycan 4. Nat. Commun. 14, 2192 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang, B. T. et al. Multimeric anti-DR5 IgM agonist antibody IGM-8444 is a potent inducer of cancer cell apoptosis and synergizes with chemotherapy and BCL-2 inhibitor ABT-199. Mol. Cancer Ther. 20, 2483–2494 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Vidarsson, G., Dekkers, G. & Rispens, T. IgG subclasses and allotypes: from structure to effector functions. Front. Immunol. 5, 520 (2014). This work comprehensively reviews IgG structure, function and glycosylation.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zinn, S. et al. Advances in antibody-based therapy in oncology. Nat. Cancer 4, 165–180 (2023).

    Article  PubMed  Google Scholar 

  10. Chu, T. H., Patz, E. F. Jr. & Ackerman, M. E. Coming together at the hinges: therapeutic prospects of IgG3. MAbs 13, 1882028 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Nagelkerke, S. Q. et al. Genetic variation in low-to-medium-affinity Fcγ receptors: functional consequences, disease associations, and opportunities for personalized medicine. Front. Immunol. 10, 2237 (2019). This thorough review examines the genetic variation in the low-affinity FcγRs and their contribution to disease in humans.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Boruchov, A. M. et al. Activating and inhibitory IgG Fc receptors on human DCs mediate opposing functions. J. Clin. Invest. 115, 2914–2923 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dhodapkar, K. M. et al. Selective blockade of inhibitory Fcγ receptor enables human dendritic cell maturation with IL-12p70 production and immunity to antibody-coated tumor cells. Proc. Natl Acad. Sci. USA 102, 2910–2915 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nimmerjahn, F. et al. FcγRIV: a novel FcR with distinct IgG subclass specificity. Immunity 23, 41–51 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Breunis, W. B. et al. Copy number variation of the activating FCGR2C gene predisposes to idiopathic thrombocytopenic purpura. Blood 111, 1029–1038 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Selvaraj, P. et al. The major Fc receptor in blood has a phosphatidylinositol anchor and is deficient in paroxysmal nocturnal haemoglobinuria. Nature 333, 565–567 (1988).

    Article  CAS  PubMed  Google Scholar 

  17. Bruhns, P. Properties of mouse and human IgG receptors and their contribution to disease models. Blood 119, 5640–5649 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Takai, T. et al. FcR γ chain deletion results in pleiotrophic effector cell defects. Cell 76, 519–529 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. van Vugt, M. J. et al. FcR γ-chain is essential for both surface expression and function of human FcγRI (CD64) in vivo. Blood 87, 3593–3599 (1996).

    Article  PubMed  Google Scholar 

  20. Wirthmueller, U. et al. Signal transduction by FcγRIII (CD16) is mediated through the γ chain. J. Exp. Med. 175, 1381–1390 (1992).

    Article  CAS  PubMed  Google Scholar 

  21. Mitchell, M. A. et al. Substitutions and deletions in the cytoplasmic domain of the phagocytic receptor FcγRIIA: effect on receptor tyrosine phosphorylation and phagocytosis. Blood 84, 1753–1759 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Lee, J. et al. Epigenetic modification and antibody-dependent expansion of memory-like NK cells in human cytomegalovirus-infected individuals. Immunity 42, 431–442 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Salmon, J. E. et al. Fcγreceptor III induces actin polymerization in human neutrophils and primes phagocytosis mediated by Fcγ receptor II. J. Immunol. 146, 997–1004 (1991).

    Article  CAS  PubMed  Google Scholar 

  24. Treffers, L. W. et al. FcγRIIIb restricts antibody-dependent destruction of cancer cells by human neutrophils. Front. Immunol. 9, 3124 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Hunter, S. et al. Inhibition of Fcγ receptor-mediated phagocytosis by a nonphagocytic Fcγ receptor. Blood 91, 1762–1768 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Clynes, R. A. et al. Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets. Nat. Med. 6, 443–446 (2000). This seminal paper identifies the inhibitory FcγR as a negative regulator of tumour-targeting antibodies.

    Article  CAS  PubMed  Google Scholar 

  27. Simpson, A. P. et al. FcγRIIB controls antibody-mediated target cell depletion by ITIM-independent mechanisms. Cell Rep. 40, 111099 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lim, S. H. et al. Fcγ receptor IIb on target B cells promotes rituximab internalization and reduces clinical efficacy. Blood 118, 2530–2540 (2011).

    Article  PubMed  Google Scholar 

  29. Hussain, K. et al. Upregulation of FcγRIIb on monocytes is necessary to promote the superagonist activity of TGN1412. Blood 125, 102–110 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Li, F. & Ravetch, J. V. Inhibitory Fcγ receptor engagement drives adjuvant and anti-tumor activities of agonistic CD40 antibodies. Science 333, 1030–1034 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. White, A. L. et al. Interaction with FcγRIIB is critical for the agonistic activity of anti-CD40 monoclonal antibody. J. Immunol. 187, 1754–1763 (2011). Together with Li and Ravetch (2011), this paper first identifies FcγRIIb as a critical mediator of agonistic antibodies against CD40.

    Article  CAS  PubMed  Google Scholar 

  32. Griffiths, J. et al. Domain binding and isotype dictate the activity of anti-human OX40 antibodies. J. Immunother. Cancer 8, e001557 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Buchan, S. L. et al. Antibodies to costimulatory receptor 4-1BB enhance anti-tumor immunity via T regulatory cell depletion and promotion of CD8 T cell effector function. Immunity 49, 958–970.e7 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. Heckel, F. et al. Agonistic CD27 antibody potency is determined by epitope-dependent receptor clustering augmented through Fc-engineering. Commun. Biol. 5, 229 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bruhns, P. et al. Specificity and affinity of human Fcγ receptors and their polymorphic variants for human IgG subclasses. Blood 113, 3716–3725 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Dekkers, G. et al. Affinity of human IgG subclasses to mouse Fcγ receptors. MAbs 9, 767–773 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Unkeless, J. C. & Eisen, H. N. Binding of monomeric immunoglobulins to Fc receptors of mouse macrophages. J. Exp. Med. 142, 1520–1533 (1975).

    Article  CAS  PubMed  Google Scholar 

  38. Bruhns, P. & Jonsson, F. Mouse and human FcR effector functions. Immunol. Rev. 268, 25–51 (2015). This comprehensive review assesses the contribution of both mouse and human FcγRs to antibody therapy across multiple disease types.

    Article  CAS  PubMed  Google Scholar 

  39. Wang, Y. et al. Specificity of mouse and human Fcγ receptors and their polymorphic variants for IgG subclasses of different species. Eur. J. Immunol. 52, 753–759 (2022).

    Article  CAS  PubMed  Google Scholar 

  40. Gavin, A. L. et al. Identification of the mouse IgG3 receptor: implications for antibody effector function at the interface between innate and adaptive immunity. J. Immunol. 160, 20–23 (1988).

    Article  Google Scholar 

  41. Patel, K. R., Roberts, J. T. & Barb, A. W. Multiple variables at the leukocyte cell surface impact Fcγ receptor-dependent mechanisms. Front. Immunol. 10, 223 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nimmerjahn, F. & Ravetch, J. V. Divergent immunoglobulin g subclass activity through selective Fc receptor binding. Science 310, 1510–1512 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Robinett, R. A. et al. Dissecting FcγR regulation through a multivalent binding model. Cell Syst. 7, 41–48.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Isaacs, J. D. et al. A therapeutic human IgG4 monoclonal antibody that depletes target cells in humans. Clin. Exp. Immunol. 106, 427–433 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Arce Vargas, F. et al. Fc effector function contributes to the activity of human anti-CTLA-4 antibodies. Cancer Cell 33, 649–663.e4 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chao, M. P. et al. Anti-CD47 antibody synergizes with rituximab to promote phagocytosis and eradicate non-Hodgkin lymphoma. Cell 142, 699–713 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Golay, J. et al. Glycoengineered CD20 antibody obinutuzumab activates neutrophils and mediates phagocytosis through CD16B more efficiently than rituximab. Blood 122, 3482–3491 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Karampatzakis, A. et al. Antibody afucosylation augments CD16-mediated serial killing and IFNγ secretion by human natural killer cells. Front. Immunol. 12, 641521 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bevaart, L. et al. The high-affinity IgG receptor, FcγRI, plays a central role in antibody therapy of experimental melanoma. Cancer Res. 66, 1261–1264 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Otten, M. A. et al. Experimental antibody therapy of liver metastases reveals functional redundancy between FcγRI and FcγRIV. J. Immunol. 181, 6829–6836 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Albanesi, M. et al. Cutting edge: FcγRIII (CD16) and FcγRI (CD64) are responsible for anti-glycoprotein 75 monoclonal antibody TA99 therapy for experimental metastatic B16 melanoma. J. Immunol. 189, 5513–5517 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Minard-Colin, V. et al. Lymphoma depletion during CD20 immunotherapy in mice is mediated by macrophage FcγRI, FcγRIII, and FcγRIV. Blood 112, 1205–1213 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Simpson, T. R. et al. Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of anti-CTLA-4 therapy against melanoma. J. Exp. Med. 210, 1695–1710 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Arce Vargas, F. et al. Fc-optimized anti-CD25 depletes tumor-infiltrating regulatory T cells and synergizes with PD-1 blockade to eradicate established tumors. Immunity 46, 577–586 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dahan, R. et al. FcγRs modulate the anti-tumor activity of antibodies targeting the PD-1/PD-L1 axis. Cancer Cell 28, 285–295 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. Aguilar, O. A. et al. The CD3ζ adaptor structure determines functional differences between human and mouse CD16 Fc receptor signaling. J. Exp. Med. 219, e20220022 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mechetina, L. V. et al. Identification of CD16-2, a novel mouse receptor homologous to CD16/FcγRIII. Immunogenetics 54, 463–468 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Mancardi, D. A. et al. FcγRIV is a mouse IgE receptor that resembles macrophage FcεRI in humans and promotes IgE-induced lung inflammation. J. Clin. Invest. 118, 3738–3750 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Guilliams, M. et al. Unsupervised high-dimensional analysis aligns dendritic cells across tissues and species. Immunity 45, 669–684 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jonsson, F. et al. Human FcγRIIA induces anaphylactic and allergic reactions. Blood 119, 2533–2544 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. King, M., McDermott, P. & Schreiber, A. D. Characterization of the Fcγ receptor on human platelets. Cell Immunol. 128, 462–479 (1990).

    Article  CAS  PubMed  Google Scholar 

  62. Villani, A. C. et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science 356, eaah4573 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Veri, M. C. et al. Monoclonal antibodies capable of discriminating the human inhibitory Fcγ-receptor IIB (CD32B) from the activating Fcγ-receptor IIA (CD32A): biochemical, biological and functional characterization. Immunology 121, 392–404 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Perussia, B. et al. Human natural killer cells analyzed by B73.1, a monoclonal antibody blocking Fc receptor functions. I. Characterization of the lymphocyte subset reactive with B73.1. J. Immunol. 130, 2133–2141 (1983).

    Article  CAS  PubMed  Google Scholar 

  65. Wong, K. L. et al. Gene expression profiling reveals the defining features of the classical, intermediate, and nonclassical human monocyte subsets. Blood 118, e16–e31 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Ravetch, J. V. & Perussia, B. Alternative membrane forms of FcγRIII(CD16) on human natural killer cells and neutrophils. Cell type-specific expression of two genes that differ in single nucleotide substitutions. J. Exp. Med. 170, 481–497 (1989).

    Article  CAS  PubMed  Google Scholar 

  67. Kerntke, C., Nimmerjahn, F. & Biburger, M. There is (scientific) strength in numbers: a comprehensive quantitation of Fcγ receptor numbers on human and murine peripheral blood leukocytes. Front. Immunol. 11, 118 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bruggeman, C. W. et al. Tissue-specific expression of IgG receptors by human macrophages ex vivo. PLoS ONE 14, e0223264 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Birts, C. N. et al. Prognostic significance of crown-like structures to trastuzumab response in patients with primary invasive HER2+ breast carcinoma. Sci. Rep. 12, 7802 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hussain, K. et al. HIF activation enhances FcγRIIb expression on mononuclear phagocytes impeding tumor targeting antibody immunotherapy. J. Exp. Clin. Cancer Res. 41, 131 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Machado, L. R. et al. Evolutionary history of copy-number-variable locus for the low-affinity Fcγ receptor: mutation rate, autoimmune disease, and the legacy of helminth infection. Am. J. Hum. Genet. 90, 973–985 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Nagelkerke, S. Q. et al. Nonallelic homologous recombination of the FCGR2/3 locus results in copy number variation and novel chimeric FCGR2 genes with aberrant functional expression. Genes. Immun. 16, 422–429 (2015).

    Article  CAS  PubMed  Google Scholar 

  73. van der Heijden, J. et al. Phenotypic variation in IgG receptors by nonclassical FCGR2C alleles. J. Immunol. 188, 1318–1324 (2012).

    Article  PubMed  Google Scholar 

  74. Breunis, W. B. et al. Copy number variation at the FCGR locus includes FCGR3A, FCGR2C and FCGR3B but not FCGR2A and FCGR2B. Hum. Mutat. 30, E640–E650 (2009).

    Article  PubMed  Google Scholar 

  75. den Dunnen, J. T. et al. HGVS recommendations for the description of sequence variants: 2016 update. Hum. Mutat. 37, 564–569 (2016).

    Article  Google Scholar 

  76. Brandsma, A. M. et al. Single nucleotide polymorphisms of the high affinity IgG receptor FcγRI reduce immune complex binding and downstream effector functions. J. Immunol. 199, 2432–2439 (2017).

    Article  CAS  PubMed  Google Scholar 

  77. Bredius, R. G. et al. Role of neutrophil FcγRIIa (CD32) and FcγRIIIb (CD16) polymorphic forms in phagocytosis of human IgG1- and IgG3-opsonized bacteria and erythrocytes. Immunology 83, 624–630 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Nagelkerke, S. Q. et al. Extensive ethnic variation and linkage disequilibrium at the FCGR2/3 locus: different genetic associations revealed in Kawasaki disease. Front. Immunol. 10, 185 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Nicu, E. A. et al. Hyper-reactive PMNs in FcγRIIa 131 H/H genotype periodontitis patients. J. Clin. Periodontol. 34, 938–945 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Kono, H. et al. FcγRIIB Ile232Thr transmembrane polymorphism associated with human systemic lupus erythematosus decreases affinity to lipid rafts and attenuates inhibitory effects on B cell receptor signaling. Hum. Mol. Genet. 14, 2881–2892 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Floto, R. A. et al. Loss of function of a lupus-associated FcγRIIb polymorphism through exclusion from lipid rafts. Nat. Med. 11, 1056–1058 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Spiegel, F. et al. Role of lipid nanodomains for inhibitory FcγRIIb function. Preprint at bioRxiv https://doi.org/10.1101/2023.05.09.540011 (2023).

  83. Wu, J. et al. A novel polymorphism of FcγRIIIa (CD16) alters receptor function and predisposes to autoimmune disease. J. Clin. Invest. 100, 1059–1070 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Jawahar, S. et al. Natural killer (NK) cell deficiency associated with an epitope-deficient Fc receptor type IIIA (CD16-II). Clin. Exp. Immunol. 103, 408–413 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Grier, J. T. et al. Human immunodeficiency-causing mutation defines CD16 in spontaneous NK cell cytotoxicity. J. Clin. Invest. 122, 3769–3780 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. de Vries, E. et al. Identification of an unusual Fcγ receptor IIIa (CD16) on natural killer cells in a patient with recurrent infections. Blood 88, 3022–3027 (1996).

    Article  PubMed  Google Scholar 

  87. Dall’Ozzo, S. et al. Rituximab-dependent cytotoxicity by natural killer cells: influence of FCGR3A polymorphism on the concentration–effect relationship. Cancer Res. 64, 4664–4669 (2004).

    Article  PubMed  Google Scholar 

  88. Cartron, G. et al. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcγRIIIa gene. Blood 99, 754–758 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Strefford, J. C. et al. Single-nucleotide Fcγ receptor polymorphisms do not impact obinutuzumab/rituximab outcome in patients with lymphoma. Blood Adv. 5, 2935–2944 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Musolino, A. et al. Immunoglobulin G fragment C receptor polymorphisms and clinical efficacy of trastuzumab-based therapy in patients with HER-2/neu-positive metastatic breast cancer. J. Clin. Oncol. 26, 1789–1796 (2008).

    Article  CAS  PubMed  Google Scholar 

  91. Bibeau, F. et al. Impact of FcγRIIa–FcγRIIIa polymorphisms and KRAS mutations on the clinical outcome of patients with metastatic colorectal cancer treated with cetuximab plus irinotecan. J. Clin. Oncol. 27, 1122–1129 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. Flesch, B. K. et al. Update on the nomenclature of human neutrophil antigens and alleles. Transfusion 56, 1477–1479 (2016).

    Article  PubMed  Google Scholar 

  93. Shields, R. L. et al. High resolution mapping of the binding site on human IgG1 for FcγRI, FcγRII, FcγRIII, and FcRn and design of IgG1 variants with improved binding to the FcγR. J. Biol. Chem. 276, 6591–6604 (2001).

    Article  CAS  PubMed  Google Scholar 

  94. Liu, R. et al. Fc-engineering for modulated effector functions—improving antibodies for cancer treatment. Antibodies 9, 64 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  95. van der Neut Kolfschoten, M. et al. Anti-inflammatory activity of human IgG4 antibodies by dynamic Fab arm exchange. Science 317, 1554–1557 (2007).

    Article  PubMed  Google Scholar 

  96. Angal, S. et al. A single amino acid substitution abolishes the heterogeneity of chimeric mouse/human (IgG4) antibody. Mol. Immunol. 30, 105–108 (1993).

    Article  CAS  PubMed  Google Scholar 

  97. Tao, M. H. & Morrison, S. L. Studies of aglycosylated chimeric mouse-human IgG. Role of carbohydrate in the structure and effector functions mediated by the human IgG constant region. J. Immunol. 143, 2595–2601 (1989).

    Article  CAS  PubMed  Google Scholar 

  98. Umana, P. et al. Engineered glycoforms of an antineuroblastoma IgG1 with optimized antibody-dependent cellular cytotoxic activity. Nat. Biotechnol. 17, 176–180 (1999).

    Article  CAS  PubMed  Google Scholar 

  99. Bolt, S. et al. The generation of a humanized, non-mitogenic CD3 monoclonal antibody which retains in vitro immunosuppressive properties. Eur. J. Immunol. 23, 403–411 (1993).

    Article  CAS  PubMed  Google Scholar 

  100. Marcus, R. et al. Obinutuzumab for the first-line treatment of follicular lymphoma. N. Engl. J. Med. 377, 1331–1344 (2017).

    Article  CAS  PubMed  Google Scholar 

  101. Waight, J. D. et al. Selective FcγR co-engagement on APCs modulates the activity of therapeutic antibodies targeting T cell antigens. Cancer Cell 33, 1033–1047.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03860272 (2023).

  103. Solomon, I. et al. CD25-Treg-depleting antibodies preserving IL-2 signaling on effector T cells enhance effector activation and antitumor immunity. Nat. Cancer 1, 1153–1166 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04185883 (2022).

  105. Cohen Saban, N. et al. Fc glycoengineering of a PD-L1 antibody harnesses Fcγ receptors for increased antitumor efficacy. Sci. Immunol. 8, eadd8005 (2023).

    Article  CAS  PubMed  Google Scholar 

  106. Wilkinson, I. et al. Fc-engineered antibodies with immune effector functions completely abolished. PLoS ONE 16, e0260954 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Mimura, Y. et al. The influence of glycosylation on the thermal stability and effector function expression of human IgG1-Fc: properties of a series of truncated glycoforms. Mol. Immunol. 37, 697–706 (2000).

    Article  CAS  PubMed  Google Scholar 

  108. Li, M. et al. Next generation of anti-PD-L1 atezolizumab with enhanced anti-tumor efficacy in vivo. Sci. Rep. 11, 5774 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zhang, T. et al. The binding of an anti-PD-1 antibody to FcγRI has a profound impact on its biological functions. Cancer Immunol. Immunother. 67, 1079–1090 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. White, A. L. et al. Conformation of the human immunoglobulin G2 hinge imparts superagonistic properties to immunostimulatory anticancer antibodies. Cancer Cell 27, 138–148 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Walunas, T. L. et al. CTLA-4 can function as a negative regulator of T cell activation. Immunity 1, 405–413 (1994).

    Article  CAS  PubMed  Google Scholar 

  112. Leach, D. R., Krummel, M. F. & Allison, J. Enhancement of antitumor immunity by CTLA-4 blockade. Science 271, 1734–1736 (1996). This paper describes the first recognition of the ability to therapeutically block CTLA4 with positive outcomes in tumour models.

    Article  CAS  PubMed  Google Scholar 

  113. Selby, M. J. et al. Anti-CTLA-4 antibodies of IgG2a isotype enhance antitumor activity through reduction of intratumoral regulatory T cells. Cancer Immunol. Res. 1, 32–42 (2013).

    Article  CAS  PubMed  Google Scholar 

  114. Bulliard, Y. et al. Activating Fcγ receptors contribute to the antitumor activities of immunoregulatory receptor-targeting antibodies. J. Exp. Med. 210, 1685–1693 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Quezada, S. A. et al. CTLA4 blockade and GM-CSF combination immunotherapy alters the intratumor balance of effector and regulatory T cells. J. Clin. Invest. 116, 1935–1945 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Peggs, K. S. et al. Blockade of CTLA-4 on both effector and regulatory T cell compartments contributes to the antitumor activity of anti-CTLA-4 antibodies. J. Exp. Med. 206, 1717–1725 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Yofe, I. et al. Anti-CTLA-4 antibodies drive myeloid activation and reprogram the tumor microenvironment through FcγR engagement and type I interferon signaling. Nat. Cancer 3, 1336–1350 (2022).

    Article  CAS  PubMed  Google Scholar 

  118. Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Johnson, M. L. et al. Durvalumab with or without tremelimumab in combination with chemotherapy as first-line therapy for metastatic non-small-cell lung cancer: the phase III POSEIDON study. J. Clin. Oncol. 41, 1213–1227 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Romano, E. et al. Ipilimumab-dependent cell-mediated cytotoxicity of regulatory T cells ex vivo by nonclassical monocytes in melanoma patients. Proc. Natl Acad. Sci. USA 112, 6140–6145 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Liakou, C. I. et al. CTLA-4 blockade increases IFNγ-producing CD4+ICOShi cells to shift the ratio of effector to regulatory T cells in cancer patients. Proc. Natl Acad. Sci. USA 105, 14987–14992 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. van Pul, K. M. et al. Local delivery of low-dose anti-CTLA-4 to the melanoma lymphatic basin leads to systemic Treg reduction and effector T cell activation. Sci. Immunol. 7, eabn8097 (2022).

    Article  PubMed  Google Scholar 

  123. Eschweiler, S. et al. Intratumoral follicular regulatory T cells curtail anti-PD-1 treatment efficacy. Nat. Immunol. 22, 1052–1063 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Sharma, A. et al. Anti-CTLA-4 immunotherapy does not deplete FOXP3+ regulatory T cells (Tregs) in human cancers. Clin. Cancer Res. 25, 1233–1238 (2019).

    Article  CAS  PubMed  Google Scholar 

  125. Quezada, S. A. & Peggs, K. S. Lost in translation: deciphering the mechanism of action of anti-human CTLA-4. Clin. Cancer Res. 25, 1130–1132 (2019).

    Article  CAS  PubMed  Google Scholar 

  126. Ferrara, R., Susini, S. & Marabelle, A. Anti-CTLA-4 immunotherapy does not deplete FOXP3+ regulatory T cells (Tregs) in human cancers—letter. Clin. Cancer Res. 25, 3468 (2019).

    Article  PubMed  Google Scholar 

  127. Campbell, J. R. et al. Fc-optimized anti-CCR8 antibody depletes regulatory T cells in human tumor models. Cancer Res. 81, 2983–2994 (2021).

    Article  CAS  PubMed  Google Scholar 

  128. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05518045 (2023).

  129. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05635643 (2023).

  130. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05101070 (2023).

  131. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05537740 (2023).

  132. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05007782 (2023).

  133. Majeti, R. et al. CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell 138, 286–299 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Barkal, A. A. et al. CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy. Nature 572, 392–396 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Gordon, S. R. et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature 545, 495–499 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Barkal, A. A. et al. Engagement of MHC class I by the inhibitory receptor LILRB1 suppresses macrophages and is a target of cancer immunotherapy. Nat. Immunol. 19, 76–84 (2018).

    Article  CAS  PubMed  Google Scholar 

  137. Ahmadzadeh, M. et al. Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood 114, 1537–1544 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Chemnitz, J. M. et al. SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation. J. Immunol. 173, 945–954 (2004).

    Article  CAS  PubMed  Google Scholar 

  139. Moreno-Vicente, J. et al. Fc-null anti-PD-1 monoclonal antibodies deliver optimal checkpoint blockade in diverse immune environments. J. Immunother. Cancer 10, e003735 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Arlauckas, S. P. et al. In vivo imaging reveals a tumor-associated macrophage-mediated resistance pathway in anti-PD-1 therapy. Sci. Transl. Med. 9, eaal3604 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Keir, M. E. et al. Programmed death-1 (PD-1):PD-ligand 1 interactions inhibit TCR-mediated positive selection of thymocytes. J. Immunol. 175, 7372–7379 (2005).

    Article  CAS  PubMed  Google Scholar 

  142. Latchman, Y. E. et al. PD-L1-deficient mice show that PD-L1 on T cells, antigen-presenting cells, and host tissues negatively regulates T cells. Proc. Natl Acad. Sci. USA 101, 10691–10696 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Herbst, R. S. et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 515, 563–567 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Juneja, V. R. et al. PD-L1 on tumor cells is sufficient for immune evasion in immunogenic tumors and inhibits CD8 T cell cytotoxicity. J. Exp. Med. 214, 895–904 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Oh, S. A. et al. PD-L1 expression by dendritic cells is a key regulator of T-cell immunity in cancer. Nat. Cancer 1, 681–691 (2020).

    Article  CAS  PubMed  Google Scholar 

  146. Sow, H. S. et al. FcγR interaction is not required for effective anti-PD-L1 immunotherapy but can add additional benefit depending on the tumor model. Int. J. Cancer 144, 345–354 (2019).

    Article  CAS  PubMed  Google Scholar 

  147. Ibrahim, R., Stewart, R. & Shalabi, A. PD-L1 blockade for cancer treatment: MEDI4736. Semin. Oncol. 42, 474–483 (2015).

    Article  CAS  PubMed  Google Scholar 

  148. Boyerinas, B. et al. Antibody-dependent cellular cytotoxicity activity of a novel anti-PD-L1 antibody avelumab (MSB0010718C) on human tumor cells. Cancer Immunol. Res. 3, 1148–1157 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Khanna, S. et al. Malignant mesothelioma effusions are infiltrated by CD3+ T cells highly expressing PD-L1 and the PD-L1+ tumor cells within these effusions are susceptible to ADCC by the anti-PD-L1 antibody avelumab. J. Thorac. Oncol. 11, 1993–2005 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Fujii, R. et al. Enhanced killing of chordoma cells by antibody-dependent cell-mediated cytotoxicity employing the novel anti-PD-L1 antibody avelumab. Oncotarget 7, 33498–33511 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Powles, T. et al. Avelumab maintenance in advanced urothelial carcinoma: biomarker analysis of the phase 3 JAVELIN Bladder 100 trial. Nat. Med. 27, 2200–2211 (2021).

    Article  CAS  PubMed  Google Scholar 

  152. Anderson, A. C., Joller, N. & Kuchroo, V. K. Lag-3, Tim-3, and TIGIT: co-inhibitory receptors with specialized functions in immune regulation. Immunity 44, 989–1004 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Fourcade, J. et al. CD226 opposes TIGIT to disrupt Tregs in melanoma. JCI Insight 3, e121157 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Camisaschi, C. et al. LAG-3 expression defines a subset of CD4+CD25highFoxp3+ regulatory T cells that are expanded at tumor sites. J. Immunol. 184, 6545–6551 (2010).

    Article  CAS  PubMed  Google Scholar 

  155. Woo, S. R. et al. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res. 72, 917–927 (2012).

    Article  CAS  PubMed  Google Scholar 

  156. Johnston, R. J. et al. The immunoreceptor TIGIT regulates antitumor and antiviral CD8+ T cell effector function. Cancer Cell 26, 923–937 (2014).

    Article  CAS  PubMed  Google Scholar 

  157. Han, J. H. et al. Corrigendum: Effective anti-tumor response by TIGIT blockade associated with FcγR engagement and myeloid cell activation. Front. Immunol. 11, 615755 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Preillon, J. et al. Restoration of T-cell effector function, depletion of Tregs, and direct killing of tumor cells: the multiple mechanisms of action of a-TIGIT antagonist antibodies. Mol. Cancer Ther. 20, 121–131 (2021).

    Article  CAS  PubMed  Google Scholar 

  159. Han, J. H. et al. Effective anti-tumor response by TIGIT blockade associated with FcγR engagement and myeloid cell activation. Front. Immunol. 11, 573405 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Tawbi, H. A. et al. Relatlimab and nivolumab versus nivolumab in untreated advanced melanoma. N. Engl. J. Med. 386, 24–34 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03470922 (2023).

  162. Cho, B. C. et al. Tiragolumab plus atezolizumab versus placebo plus atezolizumab as a first-line treatment for PD-L1-selected non-small-cell lung cancer (CITYSCAPE): primary and follow-up analyses of a randomised, double-blind, phase 2 study. Lancet Oncol. 23, 781–792 (2022).

    Article  CAS  PubMed  Google Scholar 

  163. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT03563716 (2023).

  164. Patil, N. et al. 475 Anti-TIGIT antibody tiragolumab leverages myeloid cells and regulatory T cells to improve PD-L1 checkpoint blockade. J. Immunother. Cancer 10, A495–A495 (2022).

    Google Scholar 

  165. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05060432 (2023).

  166. Yu, X. et al. Reducing affinity as a strategy to boost immunomodulatory antibody agonism. Nature 614, 539–547 (2023). Together with White et al. (2015), this paper identifies a set of immunomodulatory antibody ‘rules’ to enhance antibody agonistic potential.

    Article  CAS  PubMed  Google Scholar 

  167. Mayes, P. A., Hance, K. W. & Hoos, A. The promise and challenges of immune agonist antibody development in cancer. Nat. Rev. Drug. Discov. 17, 509–527 (2018).

    Article  CAS  PubMed  Google Scholar 

  168. Bartholomaeus, P. et al. Cell contact-dependent priming and Fc interaction with CD32+ immune cells contribute to the TGN1412-triggered cytokine response. J. Immunol. 192, 2091–2098 (2014).

    Article  CAS  PubMed  Google Scholar 

  169. Yu, X. et al. TNF receptor agonists induce distinct receptor clusters to mediate differential agonistic activity. Commun. Biol. 4, 772 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Orr, C. M. et al. Hinge disulfides in human IgG2 CD40 antibodies modulate receptor signaling by regulation of conformation and flexibility. Sci. Immunol. 7, eabm3723 (2022).

    Article  CAS  PubMed  Google Scholar 

  171. Cohen, A. D. et al. Agonist anti-GITR monoclonal antibody induces melanoma tumor immunity in mice by altering regulatory T cell stability and intra-tumor accumulation. PLoS ONE 5, e10436 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Piconese, S., Valzasina, B. & Colombo, M. OX40 triggering blocks suppression by regulatory T cells and facilitates tumor rejection. J. Exp. Med. 205, 825–839 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Fagnoni, F. F. et al. Expansion of cytotoxic CD8+CD28 T cells in healthy ageing people, including centenarians. Immunology 88, 501–507 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Martin, P. J. et al. A 44 kilodalton cell surface homodimer regulates interleukin 2 production by activated human T lymphocytes. J. Immunol. 136, 3282–3287 (1986).

    Article  CAS  PubMed  Google Scholar 

  175. Beyersdorf, N. et al. Selective targeting of regulatory T cells with CD28 superagonists allows effective therapy of experimental autoimmune encephalomyelitis. J. Exp. Med. 202, 445–455 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Lin, C. H. & Hunig, T. Efficient expansion of regulatory T cells in vitro and in vivo with a CD28 superagonist. Eur. J. Immunol. 33, 626–638 (2003).

    Article  CAS  PubMed  Google Scholar 

  177. Hanke, T. et al. Superagonistic anti-CD28 antibody TGN1412 as a potential immunotherapeutic for the treatment of B cell chronic lymphocytic leukemia. Blood 104, 2519 (2004).

    Article  Google Scholar 

  178. Luhder, F. et al. Topological requirements and signaling properties of T cell-activating, anti-CD28 antibody superagonists. J. Exp. Med. 197, 955–966 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Suntharalingam, G. et al. Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N. Engl. J. Med. 355, 1018–1028 (2006).

    Article  CAS  PubMed  Google Scholar 

  180. Labrijn, A. F. et al. Therapeutic IgG4 antibodies engage in Fab-arm exchange with endogenous human IgG4 in vivo. Nat. Biotechnol. 27, 767–771 (2009).

    Article  CAS  PubMed  Google Scholar 

  181. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT01990157 (2017).

  182. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03006029 (2021).

  183. Waite, J. C. et al. Tumor-targeted CD28 bispecific antibodies enhance the antitumor efficacy of PD-1 immunotherapy. Sci. Transl. Med. 12, eaba2325 (2020).

    Article  CAS  PubMed  Google Scholar 

  184. Skokos, D. et al. A class of costimulatory CD28-bispecific antibodies that enhance the antitumor activity of CD3-bispecific antibodies. Sci. Transl. Med. 12, eaaw7888 (2020).

    Article  CAS  PubMed  Google Scholar 

  185. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT05685173 (2023).

  186. Hutloff, A. et al. ICOS is an inducible T-cell co-stimulator structurally and functionally related to CD28. Nature 397, 263–266 (1999).

    Article  CAS  PubMed  Google Scholar 

  187. Fu, T., He, Q. & Sharma, P. The ICOS/ICOSL pathway is required for optimal antitumor responses mediated by anti-CTLA-4 therapy. Cancer Res. 71, 5445–5454 (2011).

    Article  CAS  PubMed  Google Scholar 

  188. Fan, X. et al. Engagement of the ICOS pathway markedly enhances efficacy of CTLA-4 blockade in cancer immunotherapy. J. Exp. Med. 211, 715–725 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Yap, T. A. et al. First-in-human phase I/II ICONIC trial of the ICOS agonist vopratelimab alone and with nivolumab: ICOS-high CD4 T-cell populations and predictors of response. Clin. Cancer Res. 28, 3695–3708 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT03989362 (2022).

  191. Solinas, C., Gu-Trantien, C. & Willard-Gallo, K. The rationale behind targeting the ICOS–ICOS ligand costimulatory pathway in cancer immunotherapy. ESMO Open 5, e000544 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  192. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04128696 (2023).

  193. Elgueta, R. et al. Molecular mechanism and function of CD40/CD40L engagement in the immune system. Immunol. Rev. 229, 152–172 (2009).

    Article  CAS  PubMed  Google Scholar 

  194. Bennett, S. R. et al. Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature 393, 478–480 (1998).

    Article  CAS  PubMed  Google Scholar 

  195. Wu, R. et al. Mechanisms of CD40-dependent cDC1 licensing beyond costimulation. Nat. Immunol. 23, 1536–1550 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Kawabe, T. et al. The immune responses in CD40-deficient mice: impaired immunoglobulin class switching and germinal center formation. Immunity 1, 167–178 (1994).

    Article  CAS  PubMed  Google Scholar 

  197. Dahan, R. et al. Therapeutic activity of agonistic, human anti-CD40 monoclonal antibodies requires selective FcγR engagement. Cancer Cell 29, 820–831 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Vonderheide, R. H. et al. Clinical activity and immune modulation in cancer patients treated with CP-870,893, a novel CD40 agonist monoclonal antibody. J. Clin. Oncol. 25, 876–883 (2007).

    Article  CAS  PubMed  Google Scholar 

  199. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04547777 (2023).

  200. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05734560 (2023).

  201. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT02600949 (2023).

  202. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05126472 (2023).

  203. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04059588 (2023).

  204. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT02225002 (2018).

  205. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT02157831 (2018).

  206. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT01103635 (2020).

  207. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT01456585 (2018).

  208. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT00607048 (2017).

  209. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04616248 (2023).

  210. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05484011 (2023).

  211. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05849480 (2023).

  212. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05231122 (2023).

  213. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04536077 (2023).

  214. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03329950 (2022).

  215. Richman, L. & Vonderheide, R. H. Role of crosslinking for agonistic CD40 monoclonal antibodies as immune therapy of cancer. Cancer Immunol. Res. 2, 19–26 (2014).

    Article  CAS  PubMed  Google Scholar 

  216. Vitale, L. A. et al. Development of CDX-1140, an agonist CD40 antibody for cancer immunotherapy. Cancer Immunol. Immunother. 68, 233–245 (2019).

    Article  PubMed  Google Scholar 

  217. O’Hara, M. H. et al. CD40 agonistic monoclonal antibody APX005M (sotigalimab) and chemotherapy, with or without nivolumab, for the treatment of metastatic pancreatic adenocarcinoma: an open-label, multicentre, phase 1b study. Lancet Oncol. 22, 118–131 (2021).

    Article  PubMed  Google Scholar 

  218. Knorr, D. A., Dahan, R. & Ravetch, J. V. Toxicity of an Fc-engineered anti-CD40 antibody is abrogated by intratumoral injection and results in durable antitumor immunity. Proc. Natl Acad. Sci. USA 115, 11048–11053 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Ye, S. et al. A bispecific molecule targeting CD40 and tumor antigen mesothelin enhances tumor-specific immunity. Cancer Immunol. Res. 7, 1864–1875 (2019).

    Article  CAS  PubMed  Google Scholar 

  220. Salomon, R. et al. Bispecific antibodies increase the therapeutic window of CD40 agonists through selective dendritic cell targeting. Nat. Cancer 3, 287–302 (2022).

    Article  CAS  PubMed  Google Scholar 

  221. Buchan, S. L., Rogel, A. & Al-Shamkhani, A. The immunobiology of CD27 and OX40 and their potential as targets for cancer immunotherapy. Blood 131, 39–48 (2018).

    Article  CAS  PubMed  Google Scholar 

  222. Kjaergaard, J. et al. Therapeutic efficacy of OX-40 receptor antibody depends on tumor immunogenicity and anatomic site of tumor growth. Cancer Res. 60, 5514–5521 (2000).

    CAS  PubMed  Google Scholar 

  223. Weinberg, A. D. et al. Engagement of the OX-40 receptor in vivo enhances antitumor immunity. J. Immunol. 164, 2160–2169 (2000).

    Article  CAS  PubMed  Google Scholar 

  224. Morales-Kastresana, A. et al. Combined immunostimulatory monoclonal antibodies extend survival in an aggressive transgenic hepatocellular carcinoma mouse model. Clin. Cancer Res. 19, 6151–6162 (2013).

    Article  CAS  PubMed  Google Scholar 

  225. Diab, A. et al. A phase I, open-label, dose-escalation study of the OX40 agonist ivuxolimab in patients with locally advanced or metastatic cancers. Clin. Cancer Res. 28, 71–83 (2022).

    Article  CAS  PubMed  Google Scholar 

  226. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT02315066 (2022).

  227. Hamid, O. et al. First-in-human study of an OX40 (ivuxolimab) and 4-1BB (utomilumab) agonistic antibody combination in patients with advanced solid tumors. J. Immunother. Cancer 10, e005471 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  228. Duhen, R. et al. Neoadjuvant anti-OX40 (MEDI6469) therapy in patients with head and neck squamous cell carcinoma activates and expands antigen-specific tumor-infiltrating T cells. Nat. Commun. 12, 1047 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03758001 (2023).

  230. Glisson, B. S. et al. Safety and clinical activity of MEDI0562, a humanized OX40 agonist monoclonal antibody, in adult patients with advanced solid tumors. Clin. Cancer Res. 26, 5358–5367 (2020).

    Article  CAS  PubMed  Google Scholar 

  231. Pollok, K. E., Kim, S. H. & Kwon, B. S. Regulation of 4-1BB expression by cell-cell interactions and the cytokines, interleukin-2 and interleukin-4. Eur. J. Immunol. 25, 488–494 (1995).

    Article  CAS  PubMed  Google Scholar 

  232. Hurtado, J. C. et al. Potential role of 4-1BB in T cell activation. Comparison with the costimulatory molecule CD28. J. Immunol. 155, 3360–3367 (1995).

    Article  CAS  PubMed  Google Scholar 

  233. Melero, I. et al. Monoclonal antibodies against the 4-1BB T-cell activation molecule eradicate established tumors. Nat. Med. 3, 682–685 (1997).

    Article  CAS  PubMed  Google Scholar 

  234. Melero, I. et al. NK1.1 cells express 4-1BB (CDw137) costimulatory molecule and are required for tumor immunity elicited by anti-4-1BB monoclonal antibodies. Cell Immunol. 190, 167–172 (1998).

    Article  CAS  PubMed  Google Scholar 

  235. McHugh, R. S. et al. CD4+CD25+ immunoregulatory T cells: gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor. Immunity 16, 311–323 (2002).

    Article  CAS  PubMed  Google Scholar 

  236. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03792724 (2019).

  237. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT02845323 (2023).

  238. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT02534506 (2020).

  239. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT02420938 (2016).

  240. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT02252263 (2017).

  241. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT02253992 (2020).

  242. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT02110082 (2017).

  243. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT01775631 (2017).

  244. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT01471210 (2017).

  245. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03414658 (2023).

  246. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03704298 (2022).

  247. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03318900 (2023).

  248. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03258008 (2022).

  249. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03440567 (2023).

  250. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03217747 (2023).

  251. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03290937 (2023).

  252. Srivastava, R. M. et al. CD137 stimulation enhances cetuximab-induced natural killer: dendritic cell priming of antitumor T-cell immunity in patients with head and neck cancer. Clin. Cancer Res. 23, 707–716 (2017).

    Article  CAS  PubMed  Google Scholar 

  253. Fisher, T. S. et al. Targeting of 4-1BB by monoclonal antibody PF-05082566 enhances T-cell function and promotes anti-tumor activity. Cancer Immunol. Immunother. 61, 1721–1733 (2012).

    Article  CAS  PubMed  Google Scholar 

  254. Segal, N. H. et al. Results from an integrated safety analysis of urelumab, an agonist anti-CD137 monoclonal antibody. Clin. Cancer Res. 23, 1929–1936 (2017).

    Article  CAS  PubMed  Google Scholar 

  255. Segal, N. H. et al. Phase I study of single-agent utomilumab (PF-05082566), a 4-1BB/CD137 agonist, in patients with advanced cancer. Clin. Cancer Res. 24, 1816–1823 (2018).

    Article  CAS  PubMed  Google Scholar 

  256. Qi, X. et al. Optimization of 4-1BB antibody for cancer immunotherapy by balancing agonistic strength with FcγR affinity. Nat. Commun. 10, 2141 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  257. Ho, S. K. et al. Epitope and Fc-mediated cross-linking, but not high affinity, are critical for antitumor activity of CD137 agonist antibody with reduced liver toxicity. Mol. Cancer Ther. 19, 1040–1051 (2020).

    Article  CAS  PubMed  Google Scholar 

  258. Bartkowiak, T. et al. Activation of 4-1BB on liver myeloid cells triggers hepatitis via an interleukin-27-dependent pathway. Clin. Cancer Res. 24, 1138–1151 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Tolcher, A. W. et al. Phase Ib study of utomilumab (PF-05082566), a 4-1BB/CD137 agonist, in combination with pembrolizumab (MK-3475) in patients with advanced solid tumors. Clin. Cancer Res. 23, 5349–5357 (2017).

    Article  CAS  PubMed  Google Scholar 

  260. Gopal, A. K. et al. First-in-human study of utomilumab, a 4-1BB/CD137 agonist, in combination with rituximab in patients with follicular and other CD20+ non-Hodgkin lymphomas. Clin. Cancer Res. 26, 2524–2534 (2020).

    Article  CAS  PubMed  Google Scholar 

  261. Chin, S. M. et al. Structure of the 4-1BB/4-1BBL complex and distinct binding and functional properties of utomilumab and urelumab. Nat. Commun. 9, 4679 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  262. Sanmamed, M. F. et al. A burned-out CD8+ T-cell subset expands in the tumor microenvironment and curbs cancer immunotherapy. Cancer Discov. 11, 1700–1715 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Voabil, P. et al. An ex vivo tumor fragment platform to dissect response to PD-1 blockade in cancer. Nat. Med. 27, 1250–1261 (2021).

    Article  CAS  PubMed  Google Scholar 

  264. Borcherding, N. et al. Mapping the immune environment in clear cell renal carcinoma by single-cell genomics. Commun. Biol. 4, 122 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Kim, N. et al. Single-cell RNA sequencing demonstrates the molecular and cellular reprogramming of metastatic lung adenocarcinoma. Nat. Commun. 11, 2285 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Zilionis, R. et al. Single-cell transcriptomics of human and mouse lung cancers reveals conserved myeloid populations across individuals and species. Immunity 50, 1317–1334.e10 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Pelka, K. et al. Spatially organized multicellular immune hubs in human colorectal cancer. Cell 184, 4734–4752.e20 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Wu, F. et al. Single-cell profiling of tumor heterogeneity and the microenvironment in advanced non-small cell lung cancer. Nat. Commun. 12, 2540 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Krishna, C. et al. Single-cell sequencing links multiregional immune landscapes and tissue-resident T cells in ccRCC to tumor topology and therapy efficacy. Cancer Cell 39, 662–677.e6 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Braun, D. A. et al. Progressive immune dysfunction with advancing disease stage in renal cell carcinoma. Cancer Cell 39, 632–648.e8 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Bi, K. et al. Tumor and immune reprogramming during immunotherapy in advanced renal cell carcinoma. Cancer Cell 39, 649–661.e5 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Rozenblatt-Rosen, O. et al. The Human Tumor Atlas Network: charting tumor transitions across space and time at single-cell resolution. Cell 181, 236–249 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Cheng, S. et al. A pan-cancer single-cell transcriptional atlas of tumor infiltrating myeloid cells. Cell 184, 792–809.e23 (2021).

    Article  CAS  PubMed  Google Scholar 

  274. Smith, P. et al. Mouse model recapitulating human Fcγ receptor structural and functional diversity. Proc. Natl Acad. Sci. USA 109, 6181–6186 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Gillis, C. M. et al. Mechanisms of anaphylaxis in human low-affinity IgG receptor locus knock-in mice. J. Allergy Clin. Immunol. 139, 1253–1265.e14 (2017).

    Article  CAS  PubMed  Google Scholar 

  276. Borghi, S. et al. FcRn, but not FcγRs, drives maternal–fetal transplacental transport of human IgG antibodies. Proc. Natl Acad. Sci. USA 117, 12943–12951 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Gupta, A. et al. A novel mouse strain optimized for chronic human antibody administration. Proc. Natl Acad. Sci. USA 119, e2123002119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Wolf, B. et al. An afucosylated anti-CD32b monoclonal antibody induced platelet-mediated adverse events in a human Fcγ receptor transgenic mouse model and its potential human translatability. Toxicol. Sci. 185, 89–104 (2021).

    Article  PubMed  Google Scholar 

  279. Beutier, H. et al. Platelets expressing IgG receptor FcγRIIA/CD32A determine the severity of experimental anaphylaxis. Sci. Immunol. 3, eaan5997 (2018).

    Article  PubMed  Google Scholar 

  280. Lee, C. H. et al. An engineered human Fc domain that behaves like a pH-toggle switch for ultra-long circulation persistence. Nat. Commun. 10, 5031 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  281. Shekarian, T. et al. Immunotherapy of glioblastoma explants induces interferon-γ responses and spatial immune cell rearrangements in tumor center, but not periphery. Sci. Adv. 8, eabn9440 (2022).

    Article  CAS  PubMed  Google Scholar 

  282. Takata, K. et al. Induced-pluripotent-stem-cell-derived primitive macrophages provide a platform for modeling tissue-resident macrophage differentiation and function. Immunity 47, 183–198.e6 (2017).

    Article  CAS  PubMed  Google Scholar 

  283. Andersen, J. et al. Generation of functional human 3D cortico-motor assembloids. Cell 183, 1913–1929.e26 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Adashek, J. J. et al. Hyperprogression and immunotherapy: fact, fiction, or alternative fact? Trends. Cancer 6, 181–191 (2020).

    CAS  Google Scholar 

  285. Lo Russo, G. et al. Antibody-Fc/FcR interaction on macrophages as a mechanism for hyperprogressive disease in non-small cell lung cancer subsequent to PD-1/PD-L1 blockade. Clin. Cancer Res. 25, 989–999 (2019).

    Article  CAS  PubMed  Google Scholar 

  286. Kamada, T. et al. PD-1+ regulatory T cells amplified by PD-1 blockade promote hyperprogression of cancer. Proc. Natl Acad. Sci. USA 116, 9999–10008 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Khaddour, K. et al. Rapid and sustained response to immune checkpoint inhibition in cutaneous squamous cell carcinoma after allogenic hematopoietic cell transplant for sezary syndrome. J. Immunother. Cancer 7, 338 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  288. Xiong, D. et al. Immunogenomic landscape contributes to hyperprogressive disease after anti-PD-1 immunotherapy for cancer. iScience 9, 258–277 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

S.A.Q. is funded by a Cancer Research UK (CRUK) Senior Cancer Research Fellowship (C36463/A22246) and a CRUK Biotherapeutic Program grant (C36463/A20764). This work was undertaken at UCL with support from the CRUK-CoL Centre (C7893/A26233).

Author information

Authors and Affiliations

Authors

Contributions

F.G-C., A.P.S., C.C., I.M., D.Q. and K.L. researched data for the article. F.G-C., A.P.S., C.C., I.M., K.S.P., K.L. and S.A.Q. contributed substantially to discussion of the content. F.G-C., A.P.S. and S.A.Q. wrote the article. F.G-C., A.P.S., K.S.P. and S.A.Q. reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Sergio A. Quezada.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cancer thanks Rony Dahan who co-reviewed with Yahel Avraham, Jeanette Leusen and the other, anonymous, reviewer for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Anaphylaxis

A rare but severe allergic reaction that is caused by the systemic release of inflammatory mediators and cytokines resulting in non-specific immune activation.

Antibody-dependent cellular cytotoxicity

(ADCC). Engagement of activating Fcγ receptors (FcγRs) can result in the release of cytotoxic granules to kill the target cell. Predominantly mediated by natural killer (NK) cells, granulocytes and myeloid cells.

Antibody-dependent cellular phagocytosis

(ADCP). Engagement of activating Fcγ receptors (FcγRs) can result in the phagocytosis of opsonized target cells, resulting in their destruction. Predominantly mediated by myeloid cells and granulocytes.

Antibody–drug conjugates

Antibodies chemically tagged to a cytotoxic drug that are designed to bind to a specific antigen and release the drug to the target cell.

Anti-drug antibodies

(ADAs). The immunogenicity of a drug can provoke the immune system into generating an adaptive immune response against the said drug. This can result in antibodies that can neutralize the drug’s mechanism of action.

Assembloids

Organoid-like cultures that contain the tumour and associated microenvironment, maintained in a 3D structure ex vivo.

Bispecific antibodies

Antibodies with two distinct binding sites directed against two different antigens.

Copy number variable regions

(CNRs). A cluster of two or more genes have deletions or duplications of the gene loci, altering protein expression.

Copy number variations

A specific segment of DNA is repeated within the genome of an individual and shows variation in the number of repeats across a population.

Germinal centre

A structure present in lymphoid organs where activated B cells diversify their immunoglobulin genes by somatic hypermutation to generate high-affinity antibodies.

IgG subclass

Defined by the differences in the length of the hinge and number of disulfide bonds, the subclass affects the binding affinity to different Fcγ receptors (FcγRs) and influences the potency of immunoglobulin G (IgG) effector functions.

Immune-proficient patient-derived xenografts

(Immune-PDX). An in vivo system utilizing immunocompromised mice to engraft fragments of a human tumour (and the accompanying microenvironment) for experimentation and therapeutic testing.

Immunomodulatory antibodies

Therapeutic immunoglobulin G (IgG) antibodies designed to bind to immune cells, to either block an inhibitory signal or agonize an activating receptor and enhance the immune response.

Kupffer cells

Resident liver macrophage cells that maintain liver function and act as the first line defence of the innate immune system.

Patient-derived explants

(PDE). An ex vivo system designed to maintain fragments of human tumours (and the accompanying microenvironment) for experimentation and therapeutic testing.

Pseudogene

A non-functional segment of DNA that resembles functional genes containing coding deficiencies such as frameshift mutations or premature stop codons.

Single nucleotide polymorphisms

(SNPs). A single nucleotide change within a protein sequence (present in >1% population) that affects the protein function and, potentially, the patient phenotype.

Surface plasmon resonance

(SPR). An optical technique used to measure molecular interactions. The refractive index of polarized light changes upon the binding of the analyte to the ligand, producing a sensorgram which allows the interpretation of the binding kinetics of two molecules.

Tumour-targeting antibodies

Therapeutic immunoglobulin G (IgG) antibodies designed to bind specifically to a tumour cell and elicit destruction of the cell.

Valency

The number of binding sites present on the antibody to enable binding to the antigen. Immunoglobulin G (IgG) typically has a valency of two (bivalent).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galvez-Cancino, F., Simpson, A.P., Costoya, C. et al. Fcγ receptors and immunomodulatory antibodies in cancer. Nat Rev Cancer 24, 51–71 (2024). https://doi.org/10.1038/s41568-023-00637-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-023-00637-8

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer