Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Picosecond volume expansion drives a later-time insulator–metal transition in a nano-textured Mott insulator

Abstract

There is significant technological interest in developing ever faster switching between different electronic and magnetic states of matter. Manipulating properties at terahertz rates requires accessing the intrinsic timescales of both electrons and associated phonons, which is possible with short-pulse photoexcitation. However, in many Mott insulators, the electronic transition is accompanied by the nucleation and growth of percolating domains of the changed lattice structure, leading to empirical timescales dominated by slowly coarsening dynamics. Here we use time-resolved X-ray diffraction and reflectivity measurements to show that the photoinduced insulator-to-metal transition in an epitaxially strained Mott insulating thin film occurs without observable domain formation and coarsening effects, allowing the study of the intrinsic electronic and lattice dynamics. Above a fluence threshold, the initial electronic excitation drives a fast lattice rearrangement, which is followed by a slower electronic evolution into a metastable nonequilibrium state. Microscopic model calculations based on time-dependent dynamical mean-field theory and semiclassical lattice dynamics explain the threshold behaviour and elucidate the delayed onset of the electronic phase transition. This work highlights the importance of combined electronic and structural studies in unravelling the physics of dynamic transitions and the timescales of photoinduced processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Photoinduced structural change and insulator-to-metal transition.
Fig. 2: Photoinduced structural rearrangements of the Ca2RuO4 unit cell.
Fig. 3: Results from time-dependent DMFT and quantitative Landau theory.
Fig. 4: Dynamics in the nano-texture in the strained Ca2RuO4 thin film.

Similar content being viewed by others

Data availability

The time-resolved X-ray reciprocal space mapping data presented in this work are available for download at Zenodo (https://doi.org/10.5281/zenodo.10373577).

References

  1. Gorelov, E. et al. Nature of the Mott transition in Ca2RuO4. Phys. Rev. Lett. 104, 226401 (2010).

    CAS  PubMed  ADS  Google Scholar 

  2. Alexander, C. S. et al. Destruction of the Mott insulating ground state of Ca2RuO4 by a structural transition. Phys. Rev. B 60, R8422–R8425 (1999).

    CAS  ADS  Google Scholar 

  3. Fürsich, K. et al. Raman scattering from current-stabilized nonequilibrium phases in Ca2RuO4. Phys. Rev. B 100, 081101 (2019).

    ADS  Google Scholar 

  4. Georges, A., Medici, L. D. & Mravlje, J. Strong correlations from Hund’s coupling. Annu. Rev. Condens. Matter Phys. 4, 137–178 (2013).

    CAS  ADS  Google Scholar 

  5. Neupane, M. et al. Observation of a novel orbital selective Mott transition in Ca1.8Sr0.2RuO4. Phys. Rev. Lett. 103, 097001 (2009).

    CAS  PubMed  ADS  Google Scholar 

  6. Sutter, D. et al. Hallmarks of Hunds coupling in the Mott insulator Ca2RuO4. Nat. Commun. 8, 15176 (2017).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  7. Liebsch, A. & Ishida, H. Subband filling and Mott transition in Ca2−xSrxRuO4. Phys. Rev. Lett. 98, 216403 (2007).

    CAS  PubMed  ADS  Google Scholar 

  8. Georgescu, A. B. & Millis, A. J. Quantifying the role of the lattice in metal–insulator phase transitions. Commun. Phys. 5, 135 (2022).

    CAS  Google Scholar 

  9. Hao, H. et al. Metal–insulator and magnetic phase diagram of Ca2RuO4 from auxiliary field quantum Monte Carlo and dynamical mean field theory. Phys. Rev. B 101, 235110 (2020).

    CAS  ADS  Google Scholar 

  10. Friedt, O. et al. Structural and magnetic aspects of the metal–insulator transition in Ca2RuO4. Phys. Rev. B 63, 174432 (2001).

    ADS  Google Scholar 

  11. Riccò, S. et al. In situ strain tuning of the metal–insulator-transition of Ca2RuO4 in angle-resolved photoemission experiments. Nat. Commun. 9, 4535 (2018).

    PubMed  PubMed Central  ADS  Google Scholar 

  12. Zhang, J. et al. Nano-resolved current-induced insulator–metal transition in the Mott insulator Ca2RuO4. Phys. Rev. 9, 011032 (2019).

    CAS  Google Scholar 

  13. Nakamura, F. et al. From Mott insulator to ferromagnetic metal: a pressure study of Ca2RuO4. Phys. Rev. B 65, 220402 (2002).

    ADS  Google Scholar 

  14. Wall, S. et al. Ultrafast disordering of vanadium dimers in photoexcited VO2. Science 362, 572–576 (2018).

    CAS  PubMed  ADS  Google Scholar 

  15. Lloyd-Hughes, J. et al. The 2021 ultrafast spectroscopic probes of condensed matter roadmap. J. Phys. Condens. Matter 33, 353001 (2021).

    CAS  Google Scholar 

  16. Abreu, E. et al. Dynamic conductivity scaling in photoexcited V2O3 thin films. Phys. Rev. B 92, 085130 (2015).

    ADS  Google Scholar 

  17. Singer, A. et al. Nonequilibrium phase precursors during a photoexcited insulator-to-metal transition in V2O3. Phys. Rev. Lett. 120, 207601 (2018).

    CAS  PubMed  ADS  Google Scholar 

  18. Yang, D.-S., Baum, P. & Zewail, A. H. Ultrafast electron crystallography of the cooperative reaction path in vanadium dioxide. Struct. Dyn. 3, 034304 (2016).

    PubMed  PubMed Central  Google Scholar 

  19. Gray, A. X. et al. Ultrafast terahertz field control of electronic and structural interactions in vanadium dioxide. Phys. Rev. B 98, 045104 (2018).

    CAS  ADS  Google Scholar 

  20. Johnson, A. S. et al. Ultrafast X-ray imaging of the light-induced phase transition in VO2. Nat. Phys. https://doi.org/10.1038/s41567-022-01848-w (2022).

    Article  Google Scholar 

  21. Glinka, Y. D., Babakiray, S., Johnson, T. A., Holcomb, M. B. & Lederman, D. Acoustic phonon dynamics in thin-films of the topological insulator Bi2Se3. J. Appl. Phys. 117, 165703 (2015).

    ADS  Google Scholar 

  22. Warren, B. E. X-ray Diffraction (Dover Publications, 1990).

  23. Pashkin, A. et al. Ultrafast insulator–metal phase transition in VO2 studied by multiterahertz spectroscopy. Phys. Rev. B 83, 195120 (2011).

    ADS  Google Scholar 

  24. Han, Q. & Millis, A. Lattice energetics and correlation-driven metal–insulator transitions: the case of Ca2RuO4. Phys. Rev. Lett. 121, 067601 (2018).

    CAS  PubMed  ADS  Google Scholar 

  25. Peil, O. E., Hampel, A., Ederer, C. & Georges, A. Mechanism and control parameters of the coupled structural and metal–insulator transition in nickelates. Phys. Rev. B 99, 245127 (2019).

    CAS  ADS  Google Scholar 

  26. Georges, A., Kotliar, G., Krauth, W. & Rozenberg, M. J. Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions. Rev. Mod. Phys. 68, 13–125 (1996).

    MathSciNet  CAS  ADS  Google Scholar 

  27. Aoki, H. et al. Nonequilibrium dynamical mean-field theory and its applications. Rev. Mod. Phys. 86, 779–837 (2014).

    ADS  Google Scholar 

  28. Schüler, M. et al. NESSi: The Non-Equilibrium Systems Simulation package. Comput. Phys. Commun. 257, 107484 (2020).

    MathSciNet  Google Scholar 

  29. Rho, H., Cooper, S. L., Nakatsuji, S., Fukazawa, H. & Maeno, Y. Lattice dynamics and the electron–phonon interaction in Ca2RuO4. Phys. Rev. B 71, 245121 (2005).

    ADS  Google Scholar 

  30. Souliou, S.-M. et al. Raman scattering from Higgs mode oscillations in the two-dimensional antiferromagnet Ca2RuO4. Phys. Rev. Lett. 119, 067201 (2017).

    PubMed  ADS  Google Scholar 

  31. Jung, J. H. et al. Change of electronic structure in Ca2RuO4 induced by orbital ordering. Phys. Rev. Lett. 91, 056403 (2003).

    CAS  PubMed  ADS  Google Scholar 

  32. Okamoto, H. et al. Ultrafast charge dynamics in photoexcited Nd2CuO4 and La2CuO4 cuprate compounds investigated by femtosecond absorption spectroscopy. Phys. Rev. B 82, 060513 (2010).

    ADS  Google Scholar 

  33. Okamoto, H. et al. Photoinduced transition from Mott insulator to metal in the undoped cuprates Nd2CuO4 and La2CuO4. Phys. Rev. B 83, 125102 (2011).

    ADS  Google Scholar 

  34. Lenarčič, Z. & Prelovšek, P. Ultrafast charge recombination in a photoexcited Mott–Hubbard insulator. Phys. Rev. Lett. 111, 016401 (2013).

    PubMed  ADS  Google Scholar 

  35. Sensarma, R. et al. Lifetime of double occupancies in the Fermi–Hubbard model. Phys. Rev. B 82, 224302 (2010).

    ADS  Google Scholar 

  36. Schmidbauer, M., Braun, D., Markurt, T., Hanke, M. & Schwarzkopf, J. Strain engineering of monoclinic domains in KxNa1−xNbO3 epitaxial layers: a pathway to enhanced piezoelectric properties. Nanotechnology 28, 24LT02 (2017).

    PubMed  Google Scholar 

  37. Boulle, A., Infante, I. C. & Lemee, N. Diffuse X-ray scattering from 180° ferroelectric stripe domains: polarization-induced strain, period disorder and wall roughness. J. Appl. Crystallogr. 49, 845–855 (2016).

    CAS  ADS  Google Scholar 

  38. Shao, Z. et al. Real-space imaging of periodic nanotextures in thin films via phasing of diffraction data. Proc. Natl Acad. Sci. USA 120, e2303312120 (2023).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  39. Trigo, M. et al. Fourier-transform inelastic X-ray scattering from time- and momentum-dependent phonon–phonon correlations. Nat. Phys. 9, 790–794 (2013).

    CAS  Google Scholar 

  40. Zhu, D. et al. Phonon spectroscopy with sub-meV resolution by femtosecond X-ray diffuse scattering. Phys. Rev. B 92, 054303 (2015).

    ADS  Google Scholar 

  41. Gorobtsov, O. Y. et al. Femtosecond control of phonon dynamics near a magnetic order critical point. Nat. Commun. 12, 2865 (2021).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  42. Singer, A. et al. Photoinduced enhancement of the charge density wave amplitude. Phys. Rev. Lett. 117, 056401 (2016).

    CAS  PubMed  ADS  Google Scholar 

  43. Sinha, S. K., Sirota, E. B., Garoff, S. & Stanley, H. B. X-ray and neutron scattering from rough surfaces. Phys. Rev. B 38, 2297–2311 (1988).

    CAS  ADS  Google Scholar 

  44. Vitalone, R. A. et al. Nanoscale femtosecond dynamics of Mott insulator (Ca0.99Sr0.01)2RuO4. Nano Lett. 22, 5689–5697 (2022).

    CAS  PubMed  ADS  Google Scholar 

  45. McLeod, A. S. et al. Nanotextured phase coexistence in the correlated insulator V2O3. Nat. Phys. 13, 80–86 (2016).

    Google Scholar 

  46. Tancogne-Dejean, N., Sentef, M. A. & Rubio, A. Ultrafast modification of Hubbard U in a strongly correlated material: ab initio high-harmonic generation in NiO. Phys. Rev. Lett. 121, 097402 (2018).

    PubMed  ADS  Google Scholar 

  47. Grånäs, O. et al. Ultrafast modification of the electronic structure of a correlated insulator. Phys. Rev. Res. https://doi.org/10.1103/PhysRevResearch.4.L032030 (2022).

  48. Baykusheva, D. R. et al. Ultrafast renormalization of the on-site coulomb repulsion in a cuprate superconductor. Phys. Rev. X, https://doi.org/10.1103/PhysRevX.12.011013 (2022).

  49. Picano, A., Grandi, F. & Eckstein, M. Inhomogeneous disordering at a photoinduced charge density wave transition. Phys. Rev. B https://doi.org/10.1103/PhysRevB.107.245112 (2023).

  50. Lantz, G. et al. Ultrafast evolution and transient phases of a prototype out-of-equilibrium Mott–Hubbard material. Nat. Commun. 8, 13917 (2017).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  51. He, Z. & Millis, A. J. Photoinduced phase transitions in narrow-gap Mott insulators: the case of VO2. Phys. Rev. B https://doi.org/10.1103/PhysRevB.93.115126 (2016).

  52. Ishikawa, T. et al. A compact X-ray free-electron laser emitting in the sub-ångström region. Nat. Photon. 6, 540–544 (2012).

    CAS  ADS  Google Scholar 

  53. Kameshima, T. et al. Development of an X-ray pixel detector with multi-port charge-coupled device for X-ray free-electron laser experiments. Rev. Sci. Instrum. 85, 033110 (2014).

    PubMed  ADS  Google Scholar 

  54. Williams, G. J., Pfeifer, M. A., Vartanyants, I. A. & Robinson, I. K. Three-dimensional imaging of microstructure in Au nanocrystals. Phys. Rev. Lett. 90, 175501 (2003).

    CAS  PubMed  ADS  Google Scholar 

  55. Jung, J. H. Raman scattering and optical absorption studies of an orbital ordered Ca2RuO4. Solid State Commun. 133, 103–107 (2005).

    CAS  ADS  Google Scholar 

  56. Eckstein, M. & Werner, P. Nonequilibrium dynamical mean-field calculations based on the noncrossing approximation and its generalizations. Phys. Rev. B 82, 115115 (2010).

    ADS  Google Scholar 

  57. Pelz, M. Comparison of Mott–Hubbard-transition on the Bethe-lattice and the 2D-square-lattice. Bachelor thesis, TU Vienna (2019).

Download references

Acknowledgements

The work was primarily supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences (Contract No. DE-SC0019414 for X-ray experiments and interpretation to A.V., O.G., J.P.R., J.Z.K, G.K, K.M.S. and A.S., for thin-film synthesis to H.N. and N.S., for DFT calculations to J.Z.K, G.K. and N.A.B. and for high-frequency reflectivity to R.R. and J.W.H.). A.J.M. acknowledges support from the US Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Scientific Discovery through the Advanced Computing programme (Award No. DE-SC0022088). This research was funded in part by the Gordon and Betty Moore Foundation’s EPiQS Initiative (Grant Nos. GBMF3850 and GBMF9073 to Cornell University). Sample preparation was, in part, facilitated by the Cornell NanoScale Facility, a member of the National Nanotechnology Coordinated Infrastructure, which is supported by the National Science Foundation (NSF; Grant No. NNCI-2025233). This work was also supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences (Contract No. DE-SC0001805 for temperature-dependent XRD to E.L. and O.G.S.). H.P., V.A.S. and J.W.F. acknowledge support from the US Department of Energy, Office of Science, Office of Basic Energy Sciences (Award No. DE-SC-0012375 for studying complex-oxide heterostructures with X-ray scattering). The X-ray free-electron laser experiments were performed at beamline 3 at the SPring-8 Angstrom Compact Free-electron Laser with the approval of the Japan Synchrotron Radiation Research Institute (Proposal No. 2019A8084). D.G. is supported by the Slovenian Research Agency (Programmes J1-2455, P1-0044 and MN-0016-106). K.K., V.R. and R.D.A are supported by the NSF (Grant No. DMR-1810310). The calculations were performed using a software library developed by M. Eckstein and H.U.R. Strand. The Flatiron Institute is a division of the Simons Foundation. We thank B. Gregory and Z. Shao for measuring the resistivity.

Author information

Authors and Affiliations

Authors

Contributions

A.S., D.G.S. and K.M.S. conceived the idea. O.Y.G., Y.S., R.B., Y.K. and T.T. conducted the time-resolved X-ray experiments. A.V. analysed the time-resolved X-ray data with help from J.Z.K, G.K. and A.S. D.G. and A.J.M. performed the time-resolved DMFT calculations. H.N., N.S. and J.P.R. synthesized and characterized the films with advice from K.M.S. and D.G.S. J.Z.K., G.K. and N.A.B. performed the DFT calculations. K.K., V.R. and R.D.A. conducted the low-frequency reflectivity experiments. E.L. and O.G.S. collected the temperature-dependent XRD data. V.A.S., H.P. and J.W.F. assisted in the interpretation of the X-ray data. R.R. and J.W.H. conducted the high-frequency reflectivity experiments. A.V., D.G., A.J.M. and A.S. wrote the paper with comments from all co-authors.

Corresponding author

Correspondence to Andrej Singer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Richard Haglund and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary discussion, Figs. 1–22 and Tables 1 and 2.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, A., Golež, D., Gorobtsov, O.Y. et al. Picosecond volume expansion drives a later-time insulator–metal transition in a nano-textured Mott insulator. Nat. Phys. (2024). https://doi.org/10.1038/s41567-024-02396-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41567-024-02396-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing