Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Consequences of the renormalization group for perturbative quantum chromodynamics

The renormalization group is a key ingredient in methods of improving perturbative computations in particle physics. Here I briefly discuss its role in perturbative quantum chromodynamics and particularly the running of its coupling constant.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Dominant Feynman diagrams for the computation of muon magnetic moment.
Fig. 2: Running of the QCD coupling.
Fig. 3: Renormalization scale dependence for the decay of the Higgs boson into bottom quarks and gluons.

References

  1. ’t Hooft, G. & Veltman, M. J. G. Nucl. Phys. B 44, 189 (1972).

    Article  ADS  Google Scholar 

  2. Callan, C. G. Jr Phys. Rev. D 2, 1541 (1970).

    Article  ADS  Google Scholar 

  3. Symanzik, K. Commun. Math. Phys. 18, 227 (1970).

    Article  ADS  MathSciNet  Google Scholar 

  4. Gross, D. J. & Wilczek, F. Phys. Rev. Lett. 30, 1943 (1973).

    Article  ADS  Google Scholar 

  5. Politzer, H. D. Phys. Rev. Lett. 30, 1346 (1973).

    Article  ADS  Google Scholar 

  6. Baikov, P. A., Chetyrkin, K. G. & Kühn, J. H. Phys. Rev. Lett. 118, 082002 (2017).

    Article  ADS  Google Scholar 

  7. Herzog, F., Ruijl, B., Ueda, T., Vermaseren, J. A. M. & Vogt, A. J. High-Energy Phys. 2, 90 (2017).

    Article  ADS  Google Scholar 

  8. Luthe, T., Maier, A., Marquard, P. & Schroder, Y. J. High-Energy Phys. 10, 166 (2017).

    Article  ADS  Google Scholar 

  9. Brodsky, S. J., Lepage, G. P. & Mackenzie, P. B. Phys. Rev. D 28, 228 (1983).

    Article  ADS  Google Scholar 

  10. Grunberg, G. Phys. Rev. D 29, 2315 (1984).

    Article  ADS  Google Scholar 

  11. Boito, D., Jamin, M. & Miravitllas, R. Phys. Rev. Lett. 117, 152001 (2016).

    Article  ADS  Google Scholar 

  12. Davies, J., Steinhauser, M. & Wellmann, D. Nucl. Phys. B 920, 20 (2017).

    Article  ADS  Google Scholar 

  13. Dyson, F. J. Phys. Rev. 85, 631 (1952).

    Article  ADS  MathSciNet  Google Scholar 

  14. Beneke, M. Phys. Rep. 317, 1–142 (1999).

    Article  ADS  Google Scholar 

  15. Hoang, A. H. & Regner, C. Phys. Rev. D 105, 096023 (2022).

    Article  ADS  Google Scholar 

  16. Benitez-Rathgeb, M. A., Boito, D., Hoang, A. H. & Jamin, M. J. High-Energy Phys. 7, 16 (2022).

    Article  ADS  Google Scholar 

  17. Schwinger, J. S. Phys. Rev. 73, 416 (1948).

    Article  ADS  Google Scholar 

  18. Particle Data Group. et al. Prog. Theor. Exp. Phys. 8, 083C01 (2022).

Download references

Acknowledgements

This work is supported by São Paulo Research Foundation (FAPESP) grant 2021/06756-6 and by CNPq grant 308979/2021-4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diogo Boito.

Ethics declarations

Competing interests

The author declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boito, D. Consequences of the renormalization group for perturbative quantum chromodynamics. Nat. Phys. 19, 1533–1535 (2023). https://doi.org/10.1038/s41567-023-02234-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-023-02234-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing