Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Trap-assisted formation of atom–ion bound states

Abstract

Pairs of free particles cannot form bound states in an elastic collision due to momentum and energy conservation. In many ultracold experiments, however, the particles collide in the presence of an external trapping potential that can couple their centre-of-mass and relative motions, assisting the formation of bound states. Here we report the observation of weakly bound molecular states formed between one ultracold atom and a single trapped ion in the presence of a linear Paul trap. We show that bound states can efficiently form in binary collisions, and enhance the rate of inelastic processes. By measuring the electronic spin-exchange rate, we study the dependence of these bound states on the collision energy and magnetic field, and extract the average molecular binding energy and mean lifetime of the molecule, having good agreement with molecular dynamics simulations. Our simulations predict a power-law distribution of molecular lifetimes with a mean that is dominated by extreme, long-lived events. The dependence of the molecular properties on the trapping parameters enables further studies on the characterization and control of ultracold collisions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Bound state formation and experimental apparatus.
Fig. 2: SE as a function of collision energy.
Fig. 3: SE as a function of magnetic field and thermometry.
Fig. 4: Bound-state properties from MD simulation.

Similar content being viewed by others

Data availability

Source data are provided with this paper. Other data that support the findings of this study are available from the corresponding authors on a reasonable request.

References

  1. Jones, K. M., Tiesinga, E., Lett, P. D. & Julienne, P. S. Ultracold photoassociation spectroscopy: long-range molecules and atomic scattering. Rev. Mod. Phys. 78, 483–535 (2006).

    ADS  Google Scholar 

  2. Idziaszek, Z., Simoni, A., Calarco, T. & Julienne, P. S. Multichannel quantum-defect theory for ultracold atom–ion collisions. New J. Phys. 13, 083005 (2011).

    ADS  Google Scholar 

  3. Tomza, M. et al. Cold hybrid ion-atom systems. Rev. Mod. Phys. 91, 035001 (2019).

    ADS  MathSciNet  Google Scholar 

  4. Jyothi, S. et al. Photodissociation of trapped Rb2+ implications for simultaneous trapping of atoms and molecular ions. Phys. Rev. Lett. 117, 213002 (2016).

    ADS  Google Scholar 

  5. Köhler, T., Góral, K. & Julienne, P. S. Production of cold molecules via magnetically tunable Feshbach resonances. Rev. Mod. Phys. 78, 1311–1361 (2006).

    ADS  Google Scholar 

  6. Chin, C., Grimm, R., Julienne, P. & Tiesinga, E. Feshbach resonances in ultracold gases. Rev. Mod. Phys. 82, 1225–1286 (2010).

    ADS  Google Scholar 

  7. Drews, B., Deiß, M., Jachymski, K., Idziaszek, Z. & Denschlag, J. Hecker Inelastic collisions of ultracold triplet Rb2 molecules in the rovibrational ground state. Nat. Commun. 8, 14854 (2017).

    ADS  Google Scholar 

  8. Weckesser, P. et al. Observation of Feshbach resonances between a single ion and ultracold atoms. Nature 600, 429–433 (2021).

    ADS  Google Scholar 

  9. Härter, A. et al. Single ion as a three-body reaction center in an ultracold atomic gas. Phys. Rev. Lett. 109, 123201 (2012).

    ADS  Google Scholar 

  10. Mohammadi, A. et al. Life and death of a cold BaRb+ molecule inside an ultracold cloud of Rb atoms. Phys. Rev. Research 3, 013196 (2021).

    ADS  Google Scholar 

  11. Krükow, A. et al. Energy scaling of cold atom-atom-ion three-body recombination. Phys. Rev. Lett. 116, 193201 (2016).

    ADS  Google Scholar 

  12. Grimm, R., Weidemuller, M. & Ovchinnikov, Y. B. Optical Dipole Traps Vol. 42 (Academic Press, 2000).

  13. Anderegg, L. et al. An optical tweezer array of ultracold molecules. Science 365, 1156–1158 (2019).

    ADS  Google Scholar 

  14. Lambrecht, A. et al. Long lifetimes and effective isolation of ions in optical and electrostatic traps. Nat. Photon. 11, 704–707 (2017).

    ADS  Google Scholar 

  15. Reynolds, L. A. et al. Direct measurements of collisional dynamics in cold atom triads. Phys. Rev. Lett. 124, 073401 (2020).

    ADS  Google Scholar 

  16. Schmidt, J., Weckesser, P., Thielemann, F., Schaetz, T. & Karpa, L. Optical traps for sympathetic cooling of ions with ultracold neutral atoms. Phys. Rev. Lett. 124, 053402 (2020).

    ADS  Google Scholar 

  17. Grier, A. T., Cetina, M., Oručević, F. & Vuletić, V. Observation of cold collisions between trapped ions and trapped atoms. Phys. Rev. Lett. 102, 223201 (2009).

    ADS  Google Scholar 

  18. Ratschbacher, L., Zipkes, C., Sias, C. & Köhl, M. Controlling chemical reactions of a single particle. Nat. Phys. 8, 649–652 (2012).

    Google Scholar 

  19. Hall, F. H. J. & Willitsch, S. Millikelvin reactive collisions between sympathetically cooled molecular ions and laser-cooled atoms in an ion-atom hybrid trap. Phys. Rev. Lett. 109, 233202 (2012).

    ADS  Google Scholar 

  20. Meir, Z. et al. Dynamics of a ground-state cooled ion colliding with ultracold atoms. Phys. Rev. Lett. 117, 243401 (2016).

    ADS  Google Scholar 

  21. Saito, R. et al. Characterization of charge-exchange collisions between ultracold 6Li atoms and 40Ca+ ions. Phys. Rev. A 95, 032709 (2017).

    ADS  Google Scholar 

  22. Joger, J. et al. Observation of collisions between cold Li atoms and Yb+ ions. Phys. Rev. A 96, 030703 (2017).

    ADS  Google Scholar 

  23. Paul, W. Electromagnetic traps for charged and neutral particles (Nobel Lecture). Angew. Chem. Int. Ed. 29, 739–748 (1990).

    Google Scholar 

  24. Leibfried, D., Blatt, R., Monroe, C. & Wineland, D. Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75, 281–324 (2003).

    ADS  Google Scholar 

  25. Hadzibabic, Z., Krüger, P., Cheneau, M., Battelier, B. & Dalibard, J. Berezinskii-Kosterlitz-Thouless crossover in a trapped atomic gas. Nature 441, 1118–1121 (2006).

    ADS  Google Scholar 

  26. Kinoshita, T., Wenger, T. & Weiss, D. S. Observation of a one-dimensional Tonks-Girardeau gas. Science 305, 1125–1129 (2004).

    ADS  Google Scholar 

  27. Olshanii, M. Atomic scattering in the presence of an external confinement and a gas of impenetrable bosons. Phys. Rev. Lett. 81, 938–941 (1998).

    ADS  Google Scholar 

  28. Mies, F. H., Tiesinga, E. & Julienne, P. S. Manipulation of Feshbach resonances in ultracold atomic collisions using time-dependent magnetic fields. Phys. Rev. A 61, 022721 (2000).

    ADS  Google Scholar 

  29. Haller, E. et al. Confinement-induced resonances in low-dimensional quantum systems. Phys. Rev. Lett. 104, 153203 (2010).

    ADS  Google Scholar 

  30. Kestner, J. P. & Duan, L. M. Anharmonicity-induced resonances for ultracold atoms and their detection. New J. Phys. 12, 053016 (2010).

    ADS  Google Scholar 

  31. Rouse, I. & Willitsch, S. Superstatistical energy distributions of an ion in an ultracold buffer gas. Phys. Rev. Lett. 118, 143401 (2017).

    ADS  Google Scholar 

  32. Meir, Z. et al. Direct observation of atom-ion nonequilibrium sympathetic cooling. Phys. Rev. Lett. 121, 53402 (2018).

    ADS  Google Scholar 

  33. Stock, R., Ivan, H. D. & Bolda, E. L. Quantum state control via trap-induced shape resonance in ultracold atomic collisions. Phys. Rev. Lett. 91, 183201 (2003).

    ADS  Google Scholar 

  34. Idziaszek, Z., Calarco, T. & Zoller, P. Controlled collisions of a single atom and an ion guided by movable trapping potentials. Phys. Rev. A 76, 033409 (2007).

    ADS  Google Scholar 

  35. Melezhik, V. S. & Negretti, A. Confinement-induced resonances in ultracold atom-ion systems. Phys. Rev. A 94, 022704 (2016).

    ADS  Google Scholar 

  36. Sala, S., Schneider, P. I. & Saenz, A. Inelastic confinement-induced resonances in low-dimensional quantum systems. Phys. Rev. Lett. 109, 073201 (2012).

    ADS  Google Scholar 

  37. Sala, S. et al. Coherent molecule formation in anharmonic potentials near confinement-induced resonances. Phys. Rev. Lett. 110, 203202 (2013).

    ADS  Google Scholar 

  38. Lee, Y. K., Lin, H. & Ketterle, W. Spin dynamics dominated by superexchange via virtual molecules. Preprint at arXiv https://arxiv.org/abs/2208.06054 (2022).

  39. Capecchi, D. et al. Observation of confinement-induced resonances in a 3D lattice. Preprint at arXiv https://arxiv.org/abs/2209.12504 (2022).

  40. Melezhik, V. S. & Schmelcher, P. Quantum dynamics of resonant molecule formation in waveguides. New J. Phys. 11, 73031–73041 (2009).

    Google Scholar 

  41. Côté, R. & Dalgarno, A. Ultracold atom-ion collisions. Phys. Rev. A 62, 012709 (2000).

    ADS  Google Scholar 

  42. Cetina, M., Grier, A. T. & Vuletić, V. Micromotion-induced limit to atom-ion sympathetic cooling in Paul traps. Phys. Rev. Lett. 109, 253201 (2012).

    ADS  Google Scholar 

  43. Katz, O., Pinkas, M., Akerman, N. & Ozeri, R. Quantum logic detection of collisions between single atom-ion pairs. Nat. Phys. 18, 533–537 (2022).

    Google Scholar 

  44. Ben-shlomi, R. et al. High-energy-resolution measurements of an ultracold-atom–ion collisional cross section. Phys. Rev. A 103, 032805 (2021).

    ADS  Google Scholar 

  45. Aymar, M., Guérout, R. & Dulieu, O. Structure of the alkali-metal-atom strontium molecular ions: towards photoassociation and formation of cold molecular ions. J. Chem. Phys. 135, 064305 (2011).

    ADS  Google Scholar 

  46. Sikorsky, T., Meir, Z., Ben-shlomi, R., Akerman, N. & Ozeri, R. Spin-controlled atom-ion chemistry. Nat. Commun. 9, 920 (2018).

    ADS  Google Scholar 

  47. Katz, O., Pinkas, M., Akerman, N. & Ozeri, R., Quantum suppression of cold reactions far from the quantum regime. Preprint at arXiv https://arxiv.org/abs/2208.07725 (2022).

  48. Feldker, T. et al. Buffer gas cooling of a trapped ion to the quantum regime. Nat. Phys. 16, 413–416 (2020).

    Google Scholar 

  49. Hirzler, H., Trimby, E., Gerritsma, R., Safavi-Naini, A. & Pérez-Ríos, J. Trap-assisted complexes in cold atom-ion collisions. Phys. Rev. Lett. 130, 143003 (2023).

    ADS  Google Scholar 

  50. Gregory, P. D. et al. Sticky collisions of ultracold RbCs molecules. Nat. Commun. 10, 3104 (2019).

    ADS  Google Scholar 

  51. Zipkes, C., Ratschbacher, L., Sias, C. & Kohl, M. Kinetics of a single trapped ion in an ultracold buffer gas. New J. Phys. 13, 053020 (2011).

    ADS  Google Scholar 

  52. Pinkas, M. et al. Effect of ion-trap parameters on energy distributions of ultra-cold atom-ion mixtures. New J. Phys. 22, 013047 (2020).

    ADS  Google Scholar 

  53. Meir, Ziv et al. Experimental apparatus for overlapping a ground-state cooled ion with ultracold atoms. J. Mod. Opt. 65, 501–519 (2017).

    ADS  MathSciNet  Google Scholar 

  54. Meir, Z. Dynamics of a Single, Ground-State Cooled and Trapped Ion Colliding with Ultracold Atoms: A Micromotion Tale. PhD thesis, Weizmann Institute of Science (2016).

Download references

Acknowledgements

This work was supported by the Israeli Science Foundation and the Goldring Family Foundation.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the experimental design, construction, discussions and wrote the manuscript. M.P. collected the data and analysed the results. M.P. and O.K. wrote the numerical simulations.

Corresponding authors

Correspondence to Meirav Pinkas or Roee Ozeri.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Bound state probability in a Paul trap for different axial frequencies and atom’s mass.

(a) Bound state probability as a function of radial trap frequency for axial frequency of ωax/2π = 3, 100, 480 kHz (red, blue, and green, respectively). The 3 kHz graph is the same as in Fig. 4. (b) Bound state probability as a function of the atom’s mass. All parameters, apart from the atom’s mass, are taken as in the experiment. The mass of the atom is changed without changing the polarization constant, C4. For both graphs, each point corresponds to 104 trajectories. Confidence bounds of 1σ are on the order of marker size.

Source data

Extended Data Fig. 2 Estimating the lifetime of bound state from the simple model.

Contour lines are exothermic spin-exchange amplification, \({p}_{SE}^{{{{\rm{eff}}}}}(B\to \infty )/{p}_{SE}^{{{{\rm{eff}}}}}(B=0)\), calculated by the simple bound state model, for different mean number of short-range collisions, 〈N〉, and short-range spin-exchange probability, \({p}_{{{{\rm{SE}}}}}^{0}\). Red and blue bold lines are the measured ratios and short-range spin-exchange probability, respectively, with 1σ confidence bound in shaded area. The star is indicating the mean number of short-range collisions, 〈Nexp = 8(2).

Source data

Extended Data Fig. 3 Calibration of the number of Langevin collisions.

The probability of observing the ion in a bright state after double shelving pulses with atoms (blue) and without (red) for different optical lattice velocities. When atoms are present, this probability is proportional to the probability of at least one Langevin collision in a lattice passage. Solid line is a fit to Eq. (4), with ρKL = 0.039(3) and pbg = 0.078(8). Error bars are binomial distribution standard deviation.

Source data

Extended Data Fig. 4 Rabi carrier thermometry after post-selecting SE events.

(a-b) Exothermic transitions at 3 G (a) and 20 G (b). (c-d) endothermic transitions at 3 G (c) and 20 G (d). Temperatures and contrast of the Rabi oscillation are written in Extended Data Table 1. Error bars are 1σ binomial standard deviation.

Source data

Extended Data Fig. 5 Calibration of the EMM amplitude projection along the shelving beam axis as a function of the applied voltage on an external electrode.

Measured data (blue circles) is extracted from Eq. (12) and dashed line are a fit to Eq. (13), where γproj = 3.97(6) nm/V, V0 = − 74.68(2) V, and c = 2.8(2) nm with 1σ confidence bounds.

Source data

Extended Data Fig. 6 Amplification of the short-range spin exchange, based on the MD simulation.

The amplification, \({p}_{\mathrm{SE}}^{\mathrm{eff}}/{p}_{\mathrm{SE}}^{0}\), is calculated by Eq. (18) for different EMM energies, EEMM, and short-range spin-exchange probabilities, \({p}_{{{{\rm{SE}}}}}^{0}\), at zero magnetic field.

Source data

Extended Data Fig. 7 Double shelving (DS) efficiency after a collision in presence of EMM.

For each EMM energy, the shelving probability is calculated by averaging 104 single collision events. Exothermic reaction releasing 2.7 mK (corresponding to the energy gap at 16 G), happens after each collision.

Source data

Extended Data Fig. 8 Mean number of short-range collisions in a bound state as a function of the magnetic field as calculated by the MD simulation.

The mean number of collisions is calculated for the endothermic (blue), and exothermic (red) transitions, given short-range spin-exchange probability of \({p}_{{{{\rm{SE}}}}}^{0}=0.12\). Error bars are one standard deviation calculated by bootstrapping the data-set 10 times its size.

Source data

Extended Data Table 1 Thermometry measurements

Supplementary information

Supplementary Information

Supplementary Notes I–III.

Source data

Source Data Fig. 2

Raw data for Fig. 2.

Source Data Fig. 3

Raw data for Fig. 3.

Source Data Fig. 4

Raw data for Fig. 4.

Source Data Extended Data Figs. 1–8

Raw data for all the extended data figures.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinkas, M., Katz, O., Wengrowicz, J. et al. Trap-assisted formation of atom–ion bound states. Nat. Phys. 19, 1573–1578 (2023). https://doi.org/10.1038/s41567-023-02158-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-023-02158-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing