Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spin-selective strong light–matter coupling in a 2D hole gas-microcavity system

Abstract

The interplay between time-reversal symmetry breaking and strong light–matter coupling in two-dimensional (2D) gases brings intriguing aspects to polariton physics. This combination can lead to a polarization/spin-selective light–matter interaction in the strong coupling regime. Here we report such a selective strong light–matter interaction by harnessing a 2D gas in the quantum Hall regime coupled to a microcavity. Specifically, we demonstrate circular-polarization dependence of the vacuum Rabi splitting, as a function of magnetic field and hole density. We provide a quantitative understanding of the phenomenon by modelling the coupling of optical transitions between Landau levels to the microcavity. This method introduces a control tool over the spin degree of freedom in polaritonic semiconductor systems, paving the way for new experimental possibilities in light–matter hybrids.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: System description and physical mechanisms.
Fig. 2: Energy dispersion of the system probed at values of B corresponding to the three ranges of ν shown in Fig. 1b–d.
Fig. 3: Magnetic field dependence of the system resonance at the momentum at which the bare cavity and exciton energies cross.
Fig. 4: Quantitative description of the spin-selective SC effect.

Similar content being viewed by others

Data availability

All of the data that support the findings of this study are reported in the main text, supplementary information and supplementary videos. Source data are available from the corresponding authors on reasonable request.

References

  1. VonKlitzing, K. The quantized Hall effect. Rev. Mod. Phys. 58, 519–531 (1986).

    Article  ADS  Google Scholar 

  2. Klitzing, K. V., Dorda, G. & Pepper, M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45, 494–497 (1980).

    Article  ADS  Google Scholar 

  3. Stormer, H. L. Two-dimensional electron correlation in high magnetic fields. Phys. B 177, 401–408 (1992).

    Article  ADS  Google Scholar 

  4. Kawasugi, Y. et al. Two-dimensional ground-state mapping of a Mott-Hubbard system in a flexible field-effect device. Sci. Adv. 5, eaav7282 (2019).

    Article  ADS  Google Scholar 

  5. Li, T. et al. Continuous Mott transition in semiconductor moiré superlattices. Nature 597, 350–354 (2021).

    Article  ADS  Google Scholar 

  6. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article  ADS  Google Scholar 

  7. Schmeller, A., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Evidence for skyrmions and single spin flips in the integer quantized Hall effect. Phys. Rev. Lett. 75, 4290–4293 (1995).

    Article  ADS  Google Scholar 

  8. Shukla, S., Shayegan, M., Parihar, S., Lyon, S. & Cooper, N. Large skyrmions in an Al0.13Ga0.87As quantum well. Phys. Rev. B 61, 4469–4472 (2000).

    Article  ADS  Google Scholar 

  9. Zuo, Z.-W. et al. Quantum Hall ferromagnets. Rep. Prog. Phys. 72, 086502 (2009).

    Article  Google Scholar 

  10. Bao, C., Tang, P., Sun, D. & Zhou, S. Light-induced emergent phenomena in 2D materials and topological materials. Nat. Rev. Phys. 4, 33–48 (2021).

    Article  Google Scholar 

  11. Smolka, S. et al. Cavity quantum electrodynamics with many-body states of a two-dimensional electron gas. Science 346, 332–335 (2014).

    Article  ADS  Google Scholar 

  12. Ravets, S. et al. Polaron polaritons in the integer and fractional quantum Hall regimes. Phys. Rev. Lett. 120, 057401 (2018).

    Article  ADS  Google Scholar 

  13. Lupatini, M. et al. Spin reversal of a quantum Hall ferromagnet at a Landau level crossing. Phys. Rev. Lett. 125, 067404 (2020).

    Article  ADS  Google Scholar 

  14. Knüppel, P. et al. Nonlinear optics in the fractional quantum Hall regime. Nature 572, 91–94 (2019).

    Article  ADS  Google Scholar 

  15. Lyons, T. P. et al. Giant effective Zeeman splitting in a monolayer semiconductor realized by spin-selective strong light–matter coupling. Nat. Photon. 16, 632–636 (2022).

    Article  ADS  Google Scholar 

  16. Carusotto, I. & Ciuti, C. Quantum fluids of light. Rev. Mod. Phys. 85, 299–366 (2013).

    Article  ADS  Google Scholar 

  17. Whittaker, C. E. et al. Optical analogue of Dresselhaus spin–orbit interaction in photonic graphene. Nat. Photon. 15, 193–196 (2020).

    Article  ADS  Google Scholar 

  18. Bloch, J., Cavalleri, A., Galitski, V., Hafezi, M. & Rubio, A. Strongly correlated electron-photon systems. Nature 606, 41–48 (2022).

    Article  ADS  Google Scholar 

  19. Hübener, H. et al. Engineering quantum materials with chiral optical cavities. Nat. Mater. 20, 438–442 (2021).

    Article  ADS  Google Scholar 

  20. Winkler, R. Spin–Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems, Vol. 191 Springer Tracts in Modern Physics (Springer, 2003).

  21. Ma, M. K. et al. Robust quantum Hall ferromagnetism near a gate-tuned ν = 1 Landau level crossing. Phys. Rev. Lett. 129, 196801 (2022).

    Article  ADS  Google Scholar 

  22. Efimkin, D. K. & Macdonald, A. H. Exciton-polarons in doped semiconductors in a strong magnetic field. Phys. Rev. B 97, 235432 (2018).

    Article  ADS  Google Scholar 

  23. Rana, F., Koksal, O. & Manolatou, C. Many-body theory of the optical conductivity of excitons and trions in two-dimensional materials. Phys. Rev. B 102, 85304 (2020).

    Article  ADS  Google Scholar 

  24. Kavokin, A. V., Baumberg, J. J., Malpuech, G. & Laussy, F. P. Microcavities (Oxford Univ. Press, 2017).

  25. Gianfrate, A. et al. Measurement of the quantum geometric tensor and of the anomalous Hall drift. Nature 578, 381–385 (2020).

    Article  ADS  Google Scholar 

  26. Cong, K., Noe, G. T. & Kono, J. Excitons in magnetic fields. Encyclopedia Mod. Opt. 1–5, 63–81 (2018).

    Article  Google Scholar 

  27. Laird, E., Marchetti, F. M., Efimkin, D. K., Parish, M. M. & Levinsen, J. Rydberg exciton-polaritons in a magnetic field. Phys. Rev. B 106, 125407 (2022).

    Article  ADS  Google Scholar 

  28. Chervy, T. et al. Accelerating polaritons with external electric and magnetic fields. Phys. Rev. X 10, 011040 (2020).

    Google Scholar 

  29. Liu, X. et al. Strong light–matter coupling in two-dimensional atomic crystals. Nat. Photon. 9, 30–34 (2015).

    Article  ADS  Google Scholar 

  30. Graß, T. et al. Optical control over bulk excitations in fractional quantum Hall systems. Phys. Rev. B 98, 155124 (2018).

    Article  ADS  Google Scholar 

  31. Graß, T., Cotlet, O., Imamoğlu, A. & Hafezi, M. Optical excitations in compressible and incompressible two-dimensional electron liquids. Phys. Rev. B 101, 155127 (2020).

    Article  ADS  Google Scholar 

  32. Cao, B., Grass, T., Solomon, G. & Hafezi, M. Optical flux pump in the quantum Hall regime. Phys. Rev. B 103, L241301 (2021).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank A. Imamoglu and S. Ravets for valuable discussions and enriching feedback on the paper. This work was supported by grants AFOSR FA9550-20-1-0223, FA9550-19-1-0399, ONR N00014-20-1-2325, NSF IMOD DMR-2019444 and ARL W911NF1920181, M. Martin and the Simons Foundation. P.K. acknowledges financial support from the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Contributions

D.G.S.-F. and M.H. conceived and designed the experiments. S.F. and W.W. designed and fabricated the microcavity-QW sample. D.W.S. processed the sample to adapt it for the required measurements. D.G.S.-F. performed the experiments. D.G.S.-F., M.H., M.J.M. and P.K. analysed the data and interpreted the results. D.G.S.-F., M.J.M. and M.H. wrote the paper, with input from all authors.

Corresponding authors

Correspondence to D. G. Suárez-Forero or M. Hafezi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Guillaume Malpuech and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–4 and Discussion.

Supplementary Video 1

Energy dispersion versus magnetic field for high charge density.

Supplementary Video 2

Energy dispersion versus magnetic field for medium charge density.

Supplementary Video 3

Energy dispersion versus magnetic field for charge neutrality.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suárez-Forero, D.G., Session, D.W., Jalali Mehrabad, M. et al. Spin-selective strong light–matter coupling in a 2D hole gas-microcavity system. Nat. Photon. 17, 912–916 (2023). https://doi.org/10.1038/s41566-023-01248-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-023-01248-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing