Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High-coherence mid-infrared dual-comb spectroscopy spanning 2.6 to 5.2 μm

Abstract

Mid-infrared dual-comb spectroscopy has the potential to supplant conventional Fourier-transform spectroscopy in applications requiring high resolution, accuracy, signal-to-noise ratio and speed. Until now, mid-infrared dual-comb spectroscopy has been limited to narrow optical bandwidths or low signal-to-noise ratios. Using digital signal processing and broadband frequency conversion in waveguides, we demonstrate a mid-infrared dual-comb spectrometer covering 2.6 to 5.2 µm with comb-tooth resolution, sub-MHz frequency precision and accuracy, and a spectral signal-to-noise ratio as high as 6,500. As a demonstration, we measure the highly structured, broadband cross-section of propane from 2,840 to 3,040 cm−1, the complex phase/amplitude spectra of carbonyl sulfide from 2,000 to 2,100 cm−1, and of a methane, acetylene and ethane mixture from 2,860 to 3,400 cm−1. The combination of broad bandwidth, comb-mode resolution and high brightness will enable accurate mid-infrared spectroscopy in precision laboratory experiments and non-laboratory applications including open-path atmospheric gas sensing, process monitoring and combustion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Octave-spanning mid-infrared dual comb spectrometer.
Fig. 2: Dual-comb spectra.
Fig. 3: Propane spectrum and cross-section.
Fig. 4: Dispersive dual-comb spectrum of gas mixture.
Fig. 5: Measured spectrum of COS.
Fig. 6: Broadband dual-comb spectroscopy with light generated in PPLN waveguides.

Similar content being viewed by others

References

  1. Coddington, I., Newbury, N. & Swann, W. Dual-comb spectroscopy. Optica 3, 414–426 (2016).

    Article  Google Scholar 

  2. Ideguchi, T. Dual-comb spectroscopy. Opt. Photon. News 28, 32–39 (2017).

    Article  ADS  Google Scholar 

  3. Boudreau, S., Levasseur, S., Perilla, C., Roy, S. & Genest, J. Chemical detection with hyperspectral lidar using dual frequency combs. Opt. Express 21, 7411–7418 (2013).

    Article  ADS  Google Scholar 

  4. Schroeder, P. J. et al. Dual frequency comb laser absorption spectroscopy in a 16 MW gas turbine exhaust. Proc. Combust. Inst. 36, 4565–4573 (2017).

    Article  Google Scholar 

  5. Waxman, E. M. et al. Intercomparison of open-path trace gas measurements with two dual-frequency-comb spectrometers. Atmos. Meas. Tech. 10, 3295–3311 (2017).

    Article  ADS  Google Scholar 

  6. Cossel, K. C. et al. Open-path dual-comb spectroscopy to an airborne retroreflector. Optica 4, 724–728 (2017).

    Article  Google Scholar 

  7. Roy, J., Deschênes, J.-D., Potvin, S. & Genest, J. Continuous real-time correction and averaging for frequency comb interferometry. Opt. Express 20, 21932–21939 (2012).

    Article  ADS  Google Scholar 

  8. Zolot, A. M. et al. Direct-comb molecular spectroscopy with accurate, resolved comb teeth over 43 THz. Opt. Lett. 37, 638–640 (2012).

    Article  ADS  Google Scholar 

  9. Ideguchi, T., Poisson, A., Guelachvili, G., Picqué, N. & Hänsch, T. W. Adaptive real-time dual-comb spectroscopy. Nat. Commun. 5, 3375 (2014).

    Article  ADS  Google Scholar 

  10. Okubo, S. et al. Ultra-broadband dual-comb spectroscopy across 1.0–1.9 µm. Appl. Phys. Express 8, 082402 (2015).

    Article  ADS  Google Scholar 

  11. Schliesser, A., Brehm, M., Keilmann, F. & van der Weide, D. Frequency-comb infrared spectrometer for rapid, remote chemical sensing. Opt. Express 13, 9029–9038 (2005).

    Article  ADS  Google Scholar 

  12. Bernhardt, B. et al. Mid-infrared dual-comb spectroscopy with 2.4 μm Cr2+:ZnSe femtosecond lasers. Appl. Phys. B 100, 3–8 (2010).

    Article  ADS  Google Scholar 

  13. Baumann, E. et al. Spectroscopy of the methane ν 3 band with an accurate midinfrared coherent dual-comb spectrometer. Phys. Rev. A 84, 062513 (2011).

    Article  ADS  Google Scholar 

  14. Schliesser, A., Picqué, N. & Hänsch, T. W. Mid-infrared frequency combs. Nat. Photon. 6, 440–449 (2012).

    Article  ADS  Google Scholar 

  15. Zhang, Z., Gardiner, T. & Reid, D. T. Mid-infrared dual-comb spectroscopy with an optical parametric oscillator. Opt. Lett. 38, 3148–3150 (2013).

    Article  ADS  Google Scholar 

  16. Villares, G., Hugi, A., Blaser, S. & Faist, J. Dual-comb spectroscopy based on quantum-cascade-laser frequency combs. Nat. Commun. 5, 5192 (2014).

    Article  ADS  Google Scholar 

  17. Zhu, F. et al. Mid-infrared dual frequency comb spectroscopy based on fiber lasers for the detection of methane in ambient air. Laser Phys. Lett. 12, 095701 (2015).

    Article  ADS  Google Scholar 

  18. Jin, Y., Cristescu, S. M., Harren, F. J. M. & Mandon, J. Femtosecond optical parametric oscillators toward real-time dual-comb spectroscopy. Appl. Phys. B 119, 65–74 (2015).

    Article  ADS  Google Scholar 

  19. Cruz, F. C. et al. Mid-infrared optical frequency combs based on difference frequency generation for molecular spectroscopy. Opt. Express 23, 26814–26824 (2015).

    Article  ADS  Google Scholar 

  20. Yan, M. et al. Mid-infrared dual-comb spectroscopy with electro-optic modulators. Light Sci. Appl. 6, e17076 (2017).

    Article  Google Scholar 

  21. Yu, M. et al. Silicon-chip-based mid-infrared dual-comb spectroscopy. Preprint at http://arxiv.org/abs/1610.01121 (2016).

  22. Smolski, V. O., Yang, H., Xu, J. & Vodopyanov, K. L. Massively parallel dual-comb molecular detection with subharmonic optical parametric oscillators. Preprint at http://arxiv.org/abs/1608.07318 (2016).

  23. Westberg, J., Sterczewski, L. A. & Wysocki, G. Mid-infrared multiheterodyne spectroscopy with phase-locked quantum cascade lasers. Appl. Phys. Lett. 110, 141108 (2017).

    Article  ADS  Google Scholar 

  24. Kara, O., Zhang, Z., Gardiner, T. & Reid, D. T. Dual-comb mid-infrared spectroscopy with free-running oscillators and absolute optical calibration from a radio-frequency reference. Opt. Express 25, 16072–16082 (2017).

    Article  ADS  Google Scholar 

  25. Sinclair, L. C. et al. Invited Article: A compact optically coherent fiber frequency comb. Rev. Sci. Instrum. 86, 081301 (2015).

    Article  ADS  Google Scholar 

  26. Erny, C. et al. Mid-infrared difference-frequency generation of ultrashort pulses tunable between 3.2 and 4.8 µm from a compact fiber source. Opt. Lett. 32, 1138–1140 (2007).

    Article  ADS  Google Scholar 

  27. Maser, D. L., Ycas, G., Depetri, W. I., Cruz, F. C. & Diddams, S. A. Coherent frequency combs for spectroscopy across the 3–5 μm region. Appl. Phys. B 123, 142 (2017).

  28. Villares, G. et al. On-chip dual-comb based on quantum cascade laser frequency combs. Appl. Phys. Lett. 107, 251104 (2015).

    Article  ADS  Google Scholar 

  29. Truong, G.-W. et al. Accurate frequency referencing for fieldable dual-comb spectroscopy. Opt. Express 24, 30495–30504 (2016).

    Article  ADS  Google Scholar 

  30. Deschênes, J.-D., Giaccarri, P. & Genest, J. Optical referencing technique with CW lasers as intermediate oscillators for continuous full delay range frequency comb interferometry. Opt. Express 18, 23358–23370 (2010).

    Article  ADS  Google Scholar 

  31. Coddington, I., Swann, W. C. & Newbury, N. R. Coherent dual-comb spectroscopy at high signal-to-noise ratio. Phys. Rev. A 82, 043817 (2010).

    Article  ADS  Google Scholar 

  32. Jacobsen, M., Richmond, D., Hogains, M. & Kastner, R. RIFFA 2.1: A Reusable Integration Framework for FPGA Accelerators. ACM Trans. Reconfigurable Technol. Syst. 8, 22 (2015).

    Article  Google Scholar 

  33. Malathy Devi, V. et al. A multispectrum analysis of the ν 1 band of H12C14N: Part I. Intensities, self-broadening and self-shift coefficients. J. Quant. Spectrosc. Radiat. Transf. 82, 319–341 (2003).

    Article  ADS  Google Scholar 

  34. Rinsland, C. P. et al. A multispectrum analysis of the ν 1 band of H12C14N: Part II. Air- and N2-broadening, shifts and their temperature dependences. J. Quant. Spectrosc. Radiat. Transf. 82, 343–362 (2003).

    Article  ADS  Google Scholar 

  35. Moore, C. W., Zielinska, B., Pétron, G. & Jackson, R. B. Air impacts of increased natural gas acquisition, processing, and use: a critical review. Environ. Sci. Technol. 48, 8349–8359 (2014).

    Article  ADS  Google Scholar 

  36. Beale, C. A., Hargreaves, R. J. & Bernath, P. F. Temperature-dependent high resolution absorption cross sections of propane. J. Quant. Spectrosc. Radiat. Transf. 182, 219–224 (2016).

    Article  ADS  Google Scholar 

  37. Newbury, N. R., Coddington, I. & Swann, W. C. Sensitivity of coherent dual-comb spectroscopy. Opt. Express 18, 7929–7945 (2010).

    Article  ADS  Google Scholar 

  38. Rothman, L. S. et al. The HITRAN 2008 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 110, 533–572 (2009).

    Article  ADS  Google Scholar 

  39. Iwakuni, K. et al. Ortho-para-dependent pressure effects observed in the near infrared band of acetylene by dual-comb spectroscopy. Phys. Rev. Lett. 117, 143902 (2016).

    Article  ADS  Google Scholar 

  40. Mörz, F. et al. Nearly diffraction limited FTIR mapping using an ultrastable broadband femtosecond laser tunable from 1.33 to 8 µm. Opt. Express 25, 32355–32363 (2017).

    Article  ADS  Google Scholar 

  41. Hugi, A. Single-shot microsecond mid-infrared spectroscopy with quantum cascade laser frequency combs. In Optics and Photonics for Energy and the Environment ETu1B.1 (OSA, 2017).

  42. Schroeder, P. J. et al. Broadband, high-resolution investigation of advanced absorption line shapes at high temperature. Phys. Rev. A 96, 022514 (2017).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding from the Defense Advanced Research Projects Agency Defense Sciences Office SCOUT program, discussions with F. Cruz regarding the design of the lithium niobate waveguides, and helpful comments from A. Fleisher and E. Waxman.

Author information

Authors and Affiliations

Authors

Contributions

The experiments were conceived of by N.R.N., I.C., G.Y. and S.A.D. The mid-infrared systems were built by G.Y., E.B. and D.H. The digital signal processing was implemented by G.Y. and F.R.G. Data analysis was performed by F.R.G. and G.Y. The manuscript was written by G.Y., F.R.G., I.C. and N.R.N.

Corresponding author

Correspondence to Gabriel Ycas.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1 and 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ycas, G., Giorgetta, F.R., Baumann, E. et al. High-coherence mid-infrared dual-comb spectroscopy spanning 2.6 to 5.2 μm. Nature Photon 12, 202–208 (2018). https://doi.org/10.1038/s41566-018-0114-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-018-0114-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing