Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nanoscale subparticle imaging of vibrational dynamics using dark-field ultrafast transmission electron microscopy

This article has been updated

Abstract

An understanding of nanoscale energy transport and acoustic response is important for applications of nanomaterials but hinges on a complete characterization of their structural dynamics. The precise determination of the structural dynamics within nanoparticles, however, is still challenging and requires high spatiotemporal resolution and detection sensitivity. Here we present a centred dark-field imaging approach based on ultrafast transmission electron microscopy that is capable of directly mapping the picosecond-scale evolution of intrananoparticle vibration with a spatial resolution down to 3 nm. Using this approach, we investigated the photo-induced vibrational dynamics in individual gold heterodimers composed of a nanoprism and a nanosphere. We observed not only the retardation of in-plane vibrations in the nanoprisms, which we attribute to thermal and vibrational energy transferred from adjacent nanospheres mediated by surfactants, but also the existence of a complex multimodal oscillation and its spatial variation within individual nanoprisms. This work represents an advance in real-space mapping of vibrational dynamics on the subnanoparticle level with a high detection sensitivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of the UHS-CDF imaging setup and structural dynamics of isolated Au nanoprisms on various substrates.
Fig. 2: Overall structural dynamics of an Au nanoprism–nanosphere heterodimer on the Si3N4 substrate.
Fig. 3: Numerical simulation of thermal evolution in heterodimers.
Fig. 4: Intrananoparticle oscillation analysis of the Au nanoprism in the heterodimer on the Si3N4 substrate.
Fig. 5: Effect of structural deformation on vibrational interactions of Au nanoparticles on the Si3N4 substrate.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the paper and the Supplementary Information. Other relevant data are available from the corresponding author upon reasonable request. Source data are provided with this paper.

Code availability

The codes that support the findings of this study are available from the corresponding author upon reasonable request.

Change history

  • 19 December 2022

    In the version of this article initially published, the Supplementary Information file was incorrect and has been restored in the online version of the article.

References

  1. Zewail, A. H. Four-dimensional electron microscopy. Science 328, 187–193 (2010).

    Article  CAS  Google Scholar 

  2. Arbouet, A., Caruso, G. M. & Houdellier, F. in Advances in Imaging and Electron Physics Vol. 207 (ed. Hawkes, P. W.) 1–72 (Elsevier, 2018).

  3. Barwick, B., Park, H. S., Kwon, O.-H., Baskin, J. S. & Zewail, A. H. 4D imaging of transient structures and morphologies in ultrafast electron microscopy. Science 322, 1227–1231 (2008).

    Article  CAS  Google Scholar 

  4. Park, H. S., Baskin, J. S., Barwick, B., Kwon, O.-H. & Zewail, A. H. 4D ultrafast electron microscopy: imaging of atomic motions, acoustic resonances, and moiré fringe dynamics. Ultramicroscopy 110, 7–19 (2009).

    Article  CAS  Google Scholar 

  5. van der Veen, R. M., Kwon, O.-H., Tissot, A., Hauser, A. & Zewail, A. H. Single-nanoparticle phase transition visualized by four-dimensional electron microscopy. Nat. Chem. 5, 395–402 (2013).

    Article  Google Scholar 

  6. Cremons, D. R., Plemmons, D. A. & Flannigan, D. J. Femtosecond electron imaging of defect-modulated phonon dynamics. Nat. Commun. 7, 11230 (2016).

    Article  CAS  Google Scholar 

  7. Cremons, D. R., Du, D. X. & Flannigan, D. J. Picosecond phase-velocity dispersion of hypersonic phonons imaged with ultrafast electron microscopy. Phys. Rev. Mater. 1, 073801 (2017).

    Article  Google Scholar 

  8. Kim, Y.-J., Lee, Y., Kim, K. & Kwon, O.-H. Light-induced anisotropic morphological dynamics of black phosphorus membranes visualized by dark-field ultrafast electron microscopy. ACS Nano 14, 11383–11393 (2020).

    Article  CAS  Google Scholar 

  9. Valley, D. T., Ferry, V. E. & Flannigan, D. J. Imaging intra- and interparticle acousto-plasmonic vibrational dynamics with ultrafast electron microscopy. Nano Lett. 16, 7302–7308 (2016).

    Article  CAS  Google Scholar 

  10. Kim, Y.-J., Jung, H., Han, S. W. & Kwon, O.-H. Ultrafast electron microscopy visualizes acoustic vibrations of plasmonic nanorods at the interfaces. Matter 1, 481–495 (2019).

    Article  Google Scholar 

  11. Danz, T., Domröse, T. & Ropers, C. Ultrafast nanoimaging of the order parameter in a structural phase transition. Science 371, 371–374 (2021).

    Article  CAS  Google Scholar 

  12. Reimer, L. & Kohl, H. Transmission Electron Microscopy: Physics of Image Formation 5th edn (Springer, 2008).

  13. Crut, A., Maioli, P., Del Fatti, N. & Vallée, F. Acoustic vibrations of metal nano-objects: time-domain investigations. Phys. Rep. 549, 1–43 (2015).

    Article  CAS  Google Scholar 

  14. Ruan, C.-Y., Murooka, Y., Raman, R. K. & Murdick, R. A. Dynamics of size-selected gold nanoparticles studied by ultrafast electron nanocrystallography. Nano Lett. 7, 1290–1296 (2007).

    Article  CAS  Google Scholar 

  15. Liang, W., Schäfer, S. & Zewail, A. H. Ultrafast electron crystallography of heterogeneous structures: gold–graphene bilayer and ligand-encapsulated nanogold on graphene. Chem. Phys. Lett. 542, 8–12 (2012).

    Article  CAS  Google Scholar 

  16. Hartland, G. V. Optical studies of dynamics in noble metal nanostructures. Chem. Rev. 111, 3858–3887 (2011).

    Article  CAS  Google Scholar 

  17. Tchebotareva, A. L. et al. Acoustic and optical modes of single dumbbells of gold nanoparticles. ChemPhysChem 10, 111–114 (2009).

    Article  CAS  Google Scholar 

  18. Miller, S. A., Womick, J. M., Parker, J. F., Murray, R. W. & Moran, A. M. Femtosecond relaxation dynamics of Au25L18 monolayer-protected clusters. J. Phys. Chem. C 113, 9440–9444 (2009).

    Article  CAS  Google Scholar 

  19. Calvo, F. Influence of size, composition, and chemical order on the vibrational properties of gold–silver nanoalloys. J. Phys. Chem. C 115, 17730–17735 (2011).

    Article  CAS  Google Scholar 

  20. Vasileiadis, T. et al. Ultrafast heat flow in heterostructures of Au nanoclusters on thin films: atomic disorder induced by hot electrons. ACS Nano 12, 7710–7720 (2018).

    Article  CAS  Google Scholar 

  21. Li, D. S., Wang, Z. L. & Wang, Z. W. Revealing electron–phonon interactions and lattice dynamics in nanocrystal films by combining in situ thermal heating and femtosecond laser excitations in 4D transmission electron microscopy. J. Phys. Chem. Lett. 9, 6795–6800 (2018).

    Article  CAS  Google Scholar 

  22. Burgin, J. et al. Time-resolved investigation of the acoustic vibration of a single gold nanoprism pair. J. Phys. Chem. C 112, 11231–11235 (2008).

    Article  CAS  Google Scholar 

  23. Ha, T. H., Koo, H.-J. & Chung, B. H. Shape-controlled synthesis of gold nanoprisms and nanorods influenced by specific adsorption of halide ions. J. Phys. Chem. C 111, 1123–1130 (2007).

    Article  CAS  Google Scholar 

  24. Chen, L. et al. High-yield seedless synthesis of triangular gold nanoplates through oxidative etching. Nano Lett. 14, 7201–7206 (2014).

    Article  CAS  Google Scholar 

  25. Meena, S. K. et al. The role of halide ions in the anisotropic growth of gold nanoparticles: a microscopic, atomistic perspective. Phys. Chem. Chem. Phys. 18, 13246–13254 (2016).

    Article  CAS  Google Scholar 

  26. Anisimov, S. I., Kapeliovich, B. L. & Perelman, T. L. Electron emission from metal surfaces exposed to ultrashort laser pulses. J. Exp. Theor. Phys. 66, 375–377 (1974).

    Google Scholar 

  27. Nie, S., Wang, X., Park, H., Clinite, R. & Cao, J. Measurement of the electronic Grüneisen constant using femtosecond electron diffraction. Phys. Rev. Lett. 96, 025901 (2006).

    Article  Google Scholar 

  28. Schäfer, S., Liang, W. X. & Zewail, A. H. Structural dynamics of nanoscale gold by ultrafast electron crystallography. Chem. Phys. Lett. 515, 278–282 (2011).

    Article  Google Scholar 

  29. dos Santos, W. N., de Sousa, J. A. & Gregorio, R. Thermal conductivity behaviour of polymers around glass transition and crystalline melting temperatures. Polym. Test. 32, 987–994 (2013).

    Article  Google Scholar 

  30. Lisiecki, I. et al. Coherent longitudinal acoustic phonons in three-dimensional supracrystals of cobalt nanocrystals. Nano Lett. 13, 4914–4919 (2013).

    Article  CAS  Google Scholar 

  31. Durvasula, L. N. & Gammon, R. W. Brillouin scattering from shear waves in amorphous polycarbonate. J. Appl. Phys. 50, 4339–4344 (1979).

    Article  CAS  Google Scholar 

  32. Luedtke, W. D. & Landman, U. Structure and thermodynamics of self-assembled monolayers on gold nanocrystallites. J. Phys. Chem. B 102, 6566–6572 (1998).

    Article  CAS  Google Scholar 

  33. Yi, C. et al. Vibrational coupling in plasmonic molecules. Proc. Natl Acad. Sci. USA 114, 11621–11626 (2017).

    Article  CAS  Google Scholar 

  34. Asadi, K., Yu, J. & Cho, H. Nonlinear couplings and energy transfers in micro- and nano-mechanical resonators: intermodal coupling, internal resonance and synchronization. Phil. Trans. R. Soc. A 376, 20170141 (2018).

    Article  Google Scholar 

  35. Acebron, J. A., Bonilla, L. L., Pérez Vicente, C. J., Ritort, F. & Spigler, R. The Kuramoto model: a simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77, 137–185 (2005).

    Article  Google Scholar 

  36. Kealhofer, C. et al. All-optical control and metrology of electron pulses. Science 352, 429–433 (2016).

    Article  CAS  Google Scholar 

  37. Rakić, A. D., Djurisic, A. B., Elazar, J. M. & Majewski, M. L. Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Opt. 37, 5271–5283 (1998).

    Article  Google Scholar 

  38. Yu, C., Varghese, L. & Irudayaraj, J. Surface modification of cetyltrimethylammonium bromide-capped gold nanorods to make molecular probes. Langmuir 23, 9114–9119 (2007).

    Article  CAS  Google Scholar 

  39. Luke, K., Okawachi, Y., Lamont, M. R. E., Gaeta, A. L. & Lipson, M. Broadband mid-infrared frequency comb generation in a Si3N4 microresonator. Opt. Lett. 40, 4823–4826 (2015).

    Article  CAS  Google Scholar 

  40. Hohlfeld, J. et al. Electron and lattice dynamics following optical excitation of metals. Chem. Phys. 251, 237–258 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (grant nos. 51571035 and 11774032). We thank D. S. Li, X. F. Kang and J. S. Baskin for their help in UTEM experiments, and P. Wang and S. Gao for their help in EELS experiments.

Author information

Authors and Affiliations

Authors

Contributions

Z.W. conceived the research project. L.T. and Z.W. performed the UTEM experiments. L.T., Z.W. and J.T. conducted the UTEM data analysis. L.T., Z.Z., Z.W. and J.Y. carried out numerical simulation and analysis. All authors discussed the results. Z.W., L.T. and J.Y. wrote the manuscript with input and comments from all authors.

Corresponding author

Correspondence to Zhiwei Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Florian Banhart, David Flannigan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Notes, Figs. 1–28 and Videos 1–6.

Supplementary Video 1

Experimentally acquired time-delay BF-UTEM image series and intensity analysis corresponding to Supplementary Fig. 5a,c.

Supplementary Video 2

Experimentally acquired time-delay UHS-CDF image series and intensity analysis corresponding to Supplementary Fig. 5b,d.

Supplementary Video 3

Simulated time-delay UHS-CDF image series and intensity analysis corresponding to Supplementary Fig. 6.

Supplementary Video 4

Simulated time-delay BF-UTEM image series and intensity analysis corresponding to Supplementary Fig. 7.

Supplementary Video 5

Experimentally acquired time-delay UHS-CDF image series and intensity analysis corresponding to Fig. 2d.

Supplementary Video 6

Intrananoprism frequency evolution corresponding to Fig. 4d. The oscillation frequency was measured from a square region of 10 nm wide, whose centre is marked with the red dot. The selected region shifts laterally and pixel by pixel (pixel size, 3.3 Å).

Source data

Source Data Fig. 1

Statistical source data for Fig. 1b,c.

Source Data Fig. 2

Statistical source data for Fig. 2d.

Source Data Fig. 3

Statistical source data for Fig. 3a,b.

Source Data Fig. 4

Statistical source data for Fig. 4c.

Source Data Fig. 5

Statistical source data for Fig. 5d.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, L., Yuan, J., Zhang, Z. et al. Nanoscale subparticle imaging of vibrational dynamics using dark-field ultrafast transmission electron microscopy. Nat. Nanotechnol. 18, 145–152 (2023). https://doi.org/10.1038/s41565-022-01255-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-022-01255-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing