Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Quantum-noise-limited microwave amplification using a graphene Josephson junction

Abstract

Josephson junctions (JJs) and their tunable properties, including their nonlinearities, play an important role in superconducting qubits and amplifiers. JJs together with the circuit quantum electrodynamics architecture form many key components of quantum information processing1. In quantum circuits, low-noise amplification of feeble microwave signals is essential, and Josephson parametric amplifiers (JPAs)2 are the widely used devices. The existing JPAs are based on Al–AlOx–Al tunnel junctions realized in a superconducting quantum interference device geometry, where magnetic flux is the knob for tuning the frequency. Recent experimental realizations of two-dimensional (2D) van der Waals JJs3,4,5 provide an opportunity to implement various circuit quantum electrodynamics devices6,7,8 with the added advantage of tuning the junction properties and the operating point using a gate potential. While other components of a possible 2D van der Waals circuit quantum electrodynamics architecture have been demonstrated, a quantum-noise-limited amplifier, an essential component, has not been realized, to the best of our knowledge. Here we implement a quantum-noise-limited JPA using a graphene JJ, that has a linear resonance gate tunability of 3.5 GHz. We report 24 dB amplification with 10 MHz bandwidth and −130 dBm saturation power, a performance on par with the best single-junction JPAs2,9. Importantly, our gate-tunable JPA works in the quantum-limited noise regime, which makes it an attractive option for highly sensitive signal processing. Our work has implications for novel bolometers; the low heat capacity of graphene together with JJ nonlinearity can result in an extremely sensitive microwave bolometer embedded inside a quantum-noise-limited amplifier. In general, this work will open up the exploration of scalable device architectures of 2D van der Waals materials by integrating a sensor with the quantum amplifier.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Parametric amplification scheme and its implementation in a graphene JJ-based LC resonator.
Fig. 2: Gate tunability of the switching current (Ic) and junction inductance (LJ).
Fig. 3: Nonlinear phase diagram (experimental and simulated).
Fig. 4: Gr-JPA as a quantum-limited amplifier.

Similar content being viewed by others

Data availability

Source data are provided with this paper. The experimental data used in the figures of the main text are also available in Zenodo with the identifier https://doi.org/10.5281/zenodo.6966047. Additional data related to this study are available from the corresponding authors upon reasonable request.

Code availability

The code that supports the findings of this study is available from the corresponding authors upon reasonable request.

References

  1. Devoret, M. H. & Schoelkopf, R. J. Superconducting circuits for quantum information: an outlook. Science 339, 1169–1174 (2013).

    Article  CAS  Google Scholar 

  2. Bergeal, N. et al. Phase-preserving amplification near the quantum limit with a Josephson ring modulator. Nature 465, 64–68 (2010).

    Article  CAS  Google Scholar 

  3. Heersche, H. B., Jarillo-Herrero, P., Oostinga, J. B., Vandersypen, L. M. K. & Morpurgo, A. F. Bipolar supercurrent in graphene. Nature 446, 56–59 (2007).

    Article  CAS  Google Scholar 

  4. Calado, V. E. et al. Ballistic Josephson junctions in edge-contacted graphene. Nat. Nanotechnol. 10, 761–764 (2015).

    Article  CAS  Google Scholar 

  5. Lee, G.-H., Kim, S., Jhi, S.-H. & Lee, H.-J. Ultimately short ballistic vertical graphene Josephson junctions. Nat. Commun. 6, 6181 (2015).

    Article  CAS  Google Scholar 

  6. Wang, J. I.-J. et al. Coherent control of a hybrid superconducting circuit made with graphene-based van der Waals heterostructures. Nat. Nanotechnol. 14, 120–125 (2019).

    Article  CAS  Google Scholar 

  7. Schmidt, F. E., Jenkins, M. D., Watanabe, K., Taniguchi, T. & Steele, G. A. A ballistic graphene superconducting microwave circuit. Nat. Commun. 9, 4069 (2018).

    Article  Google Scholar 

  8. Kroll, J. G. et al. Magnetic field compatible circuit quantum electrodynamics with graphene Josephson junctions. Nat. Commun. 9, 4615 (2018).

    Article  CAS  Google Scholar 

  9. Hatridge, M., Vijay, R., Slichter, D. H., Clarke, J. & Siddiqi, I. Dispersive magnetometry with a quantum limited SQUID parametric amplifier. Phys. Rev. B 83, 134501 (2011).

    Article  Google Scholar 

  10. Vijay, R., Devoret, M. H. & Siddiqi, I. Invited review article: the Josephson bifurcation amplifier. Rev. Sci. Instrum. 80, 111101 (2009).

    Article  CAS  Google Scholar 

  11. Aumentado, J. Superconducting parametric amplifiers: the state of the art in Josephson parametric amplifiers. IEEE Microw. Mag. 21, 45–59 (2020).

    Article  Google Scholar 

  12. Roy, T. et al. Broadband parametric amplification with impedance engineering: beyond the gain-bandwidth product. Appl. Phys. Lett. 107, 262601 (2015).

    Article  Google Scholar 

  13. Schmidt, F. E. et al. Current detection using a Josephson parametric upconverter. Phys. Rev. Appl. 14, 024069 (2020).

    Article  CAS  Google Scholar 

  14. Ho Eom, B., Day, P. K., LeDuc, H. G. & Zmuidzinas, J. A wideband, low-noise superconducting amplifier with high dynamic range. Nat. Phys. 8, 623–627 (2012).

    Article  Google Scholar 

  15. Macklin, C. et al. A near-quantum-limited Josephson traveling-wave parametric amplifier. Science 350, 307–310 (2015).

    Article  CAS  Google Scholar 

  16. Massel, F. et al. Microwave amplification with nanomechanical resonators. Nature 480, 351–354 (2011).

    Article  CAS  Google Scholar 

  17. Haller, R. et al. Phase-dependent microwave response of a graphene Josephson junction. Phys. Rev. Res. 4, 013198 (2022).

    Article  CAS  Google Scholar 

  18. Larsen, T. et al. Semiconductor-nanowire-based superconducting qubit. Phys. Rev. Lett. 115, 127001 (2015).

    Article  CAS  Google Scholar 

  19. de Lange, G. et al. Realization of microwave quantum circuits using hybrid superconducting-semiconducting nanowire Josephson elements. Phys. Rev. Lett. 115, 127002 (2015).

    Article  Google Scholar 

  20. Larsen, T. et al. Parity-protected superconductor-semiconductor qubit. Phys. Rev. Lett. 125, 056801 (2020).

    Article  CAS  Google Scholar 

  21. Dou, Z. et al. Microwave photoassisted dissipation and supercurrent of a phase-biased graphene-superconductor ring. Phys. Rev. Res. 3, L032009 (2021).

    Article  CAS  Google Scholar 

  22. Stehlik, J. et al. Fast charge sensing of a cavity-coupled double quantum dot using a Josephson parametric amplifier. Phys. Rev. Appl. 4, 014018 (2015).

    Article  Google Scholar 

  23. Joas, T., Waeber, A. M., Braunbeck, G. & Reinhard, F. Quantum sensing of weak radio-frequency signals by pulsed Mollow absorption spectroscopy. Nat. Commun. 8, 964 (2017).

    Article  CAS  Google Scholar 

  24. Eddins, A. et al. High-efficiency measurement of an artificial atom embedded in a parametric amplifier. Phys. Rev. X 9, 011004 (2019).

    CAS  Google Scholar 

  25. Mallet, F. et al. Single-shot qubit readout in circuit quantum electrodynamics. Nat. Phys. 5, 791–795 (2009).

    Article  CAS  Google Scholar 

  26. Braine, T. et al. Extended search for the invisible axion with the axion dark matter experiment. Phys. Rev. Lett. 124, 101303 (2020).

    Article  CAS  Google Scholar 

  27. Walsh, E. D. et al. Graphene-based Josephson-junction single-photon detector. Phys. Rev. Appl. 8, 024022 (2017).

    Article  Google Scholar 

  28. Lee, G.-H. et al. Graphene-based Josephson junction microwave bolometer. Nature 586, 42–46 (2020).

    Article  CAS  Google Scholar 

  29. Kokkoniemi, R. et al. Bolometer operating at the threshold for circuit quantum electrodynamics. Nature 586, 47–51 (2020).

    Article  CAS  Google Scholar 

  30. Walsh, E. D. et al. Josephson junction infrared single-photon detector. Science 372, 409–412 (2021).

    Article  CAS  Google Scholar 

  31. Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    Article  CAS  Google Scholar 

  32. Titov, M. & Beenakker, C. W. J. Josephson effect in ballistic graphene. Phys. Rev. B 74, 041401 (2006).

    Article  Google Scholar 

  33. Manucharyan, V. E. et al. Microwave bifurcation of a Josephson junction: embedding-circuit requirements. Phys. Rev. B 76, 014524 (2007).

    Article  Google Scholar 

  34. Mutus, J. Y. et al. Strong environmental coupling in a Josephson parametric amplifier. Appl. Phys. Lett. 104, 263513 (2014).

    Article  Google Scholar 

  35. Macklin, C. Quantum Feedback and Traveling-Wave Parametric Amplification in Superconducting Circuits. PhD thesis, Univ. of California, Berkeley (2015).

  36. Butseraen, G. et al. A gate-tunable graphene Josephson parametric amplifier. Nat. Nanotechnol. https://doi.org/10.1038/s41565-022-01235-9 (2022).

  37. Wang, J. I.-J. et al. Hexagonal boron nitride as a low-loss dielectric for superconducting quantum circuits and qubits. Nat. Mater. 21, 398–403 (2022).

Download references

Acknowledgements

We thank V. Singh, S. Gueron, Z. Dou, H. Bouchiat, P. C. Adak, S. Sinha, S. Ghosh and S. Hazra for helpful discussions and comments. We thank J. Saha, S. L. D. Varma, K. Maji, A. Bhattacharjee, G. Bothara and S. Das for experimental assistance. We acknowledge Nanomission grant SR/NM/NS-45/2016 and the DST SUPRA SPR/2019/001247 grant, along with the Department of Atomic Energy of Government of India (12-R&D-TFR-5.10-0100) for support. We also acknowledge support from the Department of Science and Technology, India, via the QuEST programme. Preparation of hBN single crystals was supported by the Elemental Strategy Initiative conducted by the Ministry of Education, Culture, Sports, Science and Technology, Japan (grant number JPMXP0112101001) and Japan Society for the Promotion of Science KAKENHI (grant numbers 19H05790 and JP20H00354).

Author information

Authors and Affiliations

Authors

Contributions

J.S. fabricated the devices. J.S. and K.V.S. took the measurements and analysed the data. S.G., A.H.M., I.D. and S.M. assisted in developing the device fabrication method and experimental set-up. K.W. and T.T. grew the hBN crystals. R.V. led the microwave measurements. J.S., K.V.S., R.V. and M.M.D. wrote the manuscript with input from all authors. M.M.D. supervised the project.

Corresponding authors

Correspondence to R. Vijay or Mandar M. Deshmukh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Kin Chung Fong and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–13 and Sections I–IX.

Source data

Source Data Fig. 2

Source data for Fig. 2.

Source Data Fig. 3

Source data for Fig. 3.

Source Data Fig. 4

Source data for Fig. 4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, J., Salunkhe, K.V., Mandal, S. et al. Quantum-noise-limited microwave amplification using a graphene Josephson junction. Nat. Nanotechnol. 17, 1147–1152 (2022). https://doi.org/10.1038/s41565-022-01223-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-022-01223-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing