Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bdellovibrio predation cycle characterized at nanometre-scale resolution with cryo-electron tomography

Abstract

Bdellovibrio bacteriovorus is a microbial predator that offers promise as a living antibiotic for its ability to kill Gram-negative bacteria, including human pathogens. Even after six decades of study, fundamental details of its predation cycle remain mysterious. Here we used cryo-electron tomography to comprehensively image the lifecycle of B. bacteriovorus at nanometre-scale resolution. With high-resolution images of predation in a native (hydrated, unstained) state, we discover several surprising features of the process, including macromolecular complexes involved in prey attachment/invasion and a flexible portal structure lining a hole in the prey peptidoglycan that tightly seals the prey outer membrane around the predator during entry. Unexpectedly, we find that B. bacteriovorus does not shed its flagellum during invasion, but rather resorbs it into its periplasm for degradation. Finally, following growth and division in the bdelloplast, we observe a transient and extensive ribosomal lattice on the condensed B. bacteriovorus nucleoid.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Anatomy of attack-phase B. bacteriovorus.
Fig. 2: Attachment of B. bacteriovorus to prey.
Fig. 3: B. bacteriovorus flagellar absorption.
Fig. 4: B. bacteriovorus prey invasion.
Fig. 5: Anatomy of the bdelloplast.
Fig. 6: Ribosomal nucleoid lattice in the end-stage bdelloplast.

Similar content being viewed by others

Data availability

The full tomograms are available upon request.

Code availability

A tutorial (containing the codes) is available demonstrating how to use VISFD to segment tomograms of B. bacteriovorus cells (see jewettaij/visfd_tutorials: updated ‘STEP_0’ of the Bdellovibrio segmentation example (2021) https://doi.org/10.5281/ZENODO.5758691).

References

  1. Pérez, J., Moraleda-Muñoz, A., Marcos-Torres, F. J. & Muñoz-Dorado, J. Bacterial predation: 75 years and counting! Environ. Microbiol. 18, 766–779 (2016).

  2. Stolp, H. & Starr, M. P. Bdellovibrio bacteriovorus gen. et sp. n., a predatory, ectoparasitic, and bacteriolytic microorganism. Antonie van Leeuwenhoek 29, 217–248 (1963).

    Article  CAS  PubMed  Google Scholar 

  3. Stolp, H. & Petzold, H. Untersuchungen über einen obligat parasitischen Mikroorganismus mit lytischer Aktivität für Pseudomonas-Bakterien. J. Phytopathol. 45, 364–390 (1962).

    Article  Google Scholar 

  4. Sockett, R. E. Predatory lifestyle of Bdellovibrio bacteriovorus. Annu. Rev. Microbiol. 63, 523–539 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Laloux, G. Shedding light on the cell biology of the predatory bacterium Bdellovibrio bacteriovorus. Front. Microbiol. 10, 3136 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Cavallo, F. M., Jordana, L., Friedrich, A. W., Glasner, C. & van Dijl, J. M. Bdellovibrio bacteriovorus: a potential ‘living antibiotic’ to control bacterial pathogens. Crit. Rev. Microbiol. 47, 630–646 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Bonfiglio, G. et al. Insight into the possible use of the predator Bdellovibrio bacteriovorus as a probiotic. Nutrients 12, 2252 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Atterbury, R. J. et al. Effects of orally administered Bdellovibrio bacteriovorus on the well-being and Salmonella colonization of young chicks. Appl. Environ. Microbiol. 77, 5794–5803 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Davidov, Y. & Jurkevitch, E. Predation between prokaryotes and the origin of eukaryotes. BioEssays 31, 748–757 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Erken, M., Lutz, C. & McDougald, D. The rise of pathogens: predation as a factor driving the evolution of human pathogens in the environment. Microb. Ecol. 65, 860–868 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lyons, N. A. & Kolter, R. On the evolution of bacterial multicellularity. Curr. Opin. Microbiol. 24, 21–28 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Burnham, J. C., Hashimoto, T. & Conti, S. F. Electron microscopic observations on the penetration of Bdellovibrio bacteriovorus into Gram-negative bacterial hosts. J. Bacteriol. 96, 1366–1381 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kuru, E. et al. Fluorescent d-amino-acids reveal bi-cellular cell wall modifications important for Bdellovibrio bacteriovorus predation. Nat. Microbiol 2, 1648–1657 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Said, N., Chatzinotas, A. & Schmidt, M. Have an ion on it: the life‐cycle of Bdellovibrio bacteriovorus viewed by helium‐ion microscopy. Adv. Biosys. 3, 1800250 (2019).

    Article  Google Scholar 

  15. Butan, C. et al. Spiral architecture of the nucleoid in Bdellovibrio bacteriovorus. J. Bacteriol. 193, 1341–1350 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Banks, E. J. et al. Asymmetric peptidoglycan editing generates cell curvature in Bdellovibrio predatory bacteria. Nat. Commun. 13, 1509 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lambert, C. et al. Characterizing the flagellar filament and the role of motility in bacterial prey-penetration by Bdellovibrio bacteriovorus. Mol. Microbiol. 60, 274–286 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rendulic, S. et al. A predator unmasked: life cycle of Bdellovibrio bacteriovorus from a genomic perspective. Science 303, 689–692 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Avidan, O. et al. Identification and characterization of differentially-regulated type IVb pilin genes necessary for predation in obligate bacterial predators. Sci. Rep. 7, 1013 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hobley, L. et al. Discrete cyclic di-GMP-dependent control of bacterial predation versus axenic growth in Bdellovibrio bacteriovorus. PLoS Pathog. 8, e1002493 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Meek, R. W., Cadby, I. T., Moynihan, P. J. & Lovering, A. L. Structural basis for activation of a diguanylate cyclase required for bacterial predation in Bdellovibrio. Nat. Commun. 10, 4086 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Caulton, S. G. & Lovering, A. L. Bacterial invasion and killing by predatory Bdellovibrio primed by predator prey cell recognition and self protection. Curr. Opin. Microbiol. 56, 74–80 (2020).

    Article  CAS  PubMed  Google Scholar 

  23. Lerner, T. R. et al. Specialized peptidoglycan hydrolases sculpt the intra-bacterial niche of predatory Bdellovibrio and increase population fitness. PLoS Pathog. 8, e1002524 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Thomashow, M. F. & Rittenberg, S. C. Intraperiplasmic growth of Bdellovibrio bacteriovorus 109J: solubilization of Escherichia coli peptidoglycan. J. Bacteriol. 135, 998–1007 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Thomashow, M. F. & Rittenberg, S. C. Intraperiplasmic growth of Bdellovibrio bacteriovorus 109J: N-deacetylation of Escherichia coli peptidoglycan amino sugars. J. Bacteriol. 135, 1008–1014 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Thomashow, M. F. & Rittenberg, S. C. Intraperiplasmic growth of Bdellovibrio bacteriovorus 109J: attachment of long-chain fatty acids to escherichia coli peptidoglycan. J. Bacteriol. 135, 1015–1023 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tudor, J. J., McCann, M. P. & Acrich, I. A. A new model for the penetration of prey cells by bdellovibrios. J. Bacteriol. 172, 2421–2426 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Starr, M. P. & Baigent, N. L. Parasitic interaction of Bdellovibrio bacteriovorus with other bacteria. J. Bacteriol. 91, 2006–2017 (1966).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shilo, M. in Current Topics in Microbiology and Immunology (eds Arber, W. et al.) 174–204 (Springer, 1969).

  30. Thomashow, M. F. & Rittenberg, S. C. in Developmental Biology of Prokaryotes (ed Parish, J. H.) 115–138 (Univ. California Press, 1979).

  31. Rotem, O. et al. Cell-cycle progress in obligate predatory bacteria is dependent upon sequential sensing of prey recognition and prey quality cues. Proc. Natl Acad. Sci. USA 112, E6028–E6037 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fenton, A. K., Kanna, M., Woods, R. D., Aizawa, S.-I. & Sockett, R. E. Shadowing the actions of a predator: backlit fluorescent microscopy reveals synchronous nonbinary septation of predatory Bdellovibrio inside prey and exit through discrete bdelloplast pores. J. Bacteriol. 192, 6329–6335 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kaljević, J. et al. Chromosome choreography during the non-binary cell cycle of a predatory bacterium. Curr. Biol. 31, 3707–3720 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Harding, C. J. et al. A lysozyme with altered substrate specificity facilitates prey cell exit by the periplasmic predator Bdellovibrio bacteriovorus. Nat. Commun. 11, 4817 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lambert, C. et al. Interrupting peptidoglycan deacetylation during Bdellovibrio predator–prey interaction prevents ultimate destruction of prey wall, liberating bacterial-ghosts. Sci. Rep. 6, 26010 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Borgnia, M. J., Subramaniam, S. & Milne, J. L. S. Three-dimensional imaging of the highly bent architecture of Bdellovibrio bacteriovorus by using cryo-electron tomography. J. Bacteriol. 190, 2588–2596 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chaban, B., Coleman, I. & Beeby, M. Evolution of higher torque in Campylobacter-type bacterial flagellar motors. Sci. Rep. 8, 97 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Mahmoud, K. K. & Koval, S. F. Characterization of type IV pili in the life cycle of the predator bacterium Bdellovibrio. Microbiology 156, 1040–1051 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Chang, Y.-W. et al. Architecture of the type IVa pilus machine. Science 351, aad2001 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Chang, Y.-W. et al. Architecture of the Vibrio cholerae toxin-coregulated pilus machine revealed by electron cryotomography. Nat. Microbiol. 2, 16269 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gold, V. A., Salzer, R., Averhoff, B. & Kühlbrandt, W. Structure of a type IV pilus machinery in the open and closed state. eLife 4, e07380 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Treuner-Lange, A. et al. PilY1 and minor pilins form a complex priming the type IVa pilus in Myxococcus xanthus. Nat. Commun. 11, 5054 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Friedrich, C., Bulyha, I. & Søgaard-Andersen, L. Outside-in assembly pathway of the type IV pilus system in Myxococcus xanthus. J. Bacteriol. 196, 378–390 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lambert, C., Fenton, A. K., Hobley, L. & Sockett, R. E. Predatory Bdellovibrio bacteria use gliding motility to scout for prey on surfaces. J. Bacteriol. 193, 3139–3141 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Baumeister, W. Electron tomography of molecules and cells. Trends Cell Biol. 9, 81–85 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Abram, D., Castro e Melo, J. & Chou, D. Penetration of Bdellovibrio bacteriovorus into host cells. J. Bacteriol. 118, 663–680 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kaplan, M. Bacterial flagellar motor PL-ring disassembly subcomplexes are widespread and ancient. Proc. Natl Acad. Sci. USA 117, 8941–8947 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ferreira, J. L. et al. γ-proteobacteria eject their polar flagella under nutrient depletion, retaining flagellar motor relic structures. PLoS Biol. 17, e3000165 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kaplan, M. In situ imaging of the bacterial flagellar motor disassembly and assembly processes. EMBO J. 38, e100957 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Dobro, M. J. et al. Uncharacterized bacterial structures revealed by electron cryotomography. J. Bacteriol. 199, e00100–e00117 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Burnham, J. C., Hashimoto, T. & Conti, S. F. Ultrastructure and cell division of a facultatively parasitic strain of Bdellovibrio bacteriovorus. J. Bacteriol. 101, 997–1004 (1970).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Alav, I. et al. Structure, assembly, and function of tripartite efflux and type 1 secretion systems in Gram-negative bacteria. Chem. Rev. 121, 5479–5596 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Evans, K. J., Lambert, C. & Sockett, R. E. Predation by Bdellovibrio bacteriovorus HD100 requires type IV pili. J. Bacteriol. 189, 4850–4859 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ghosal, D. et al. In vivo structure of the Legionella type II secretion system by electron cryotomography. Nat. Microbiol. 4, 2101–2108 (2019).

  55. Dori-Bachash, M., Dassa, B., Pietrokovski, S. & Jurkevitch, E. Proteome-based comparative analyses of growth stages reveal new cell cycle-dependent functions in the predatory bacterium Bdellovibrio bacteriovorus. Appl. Environ. Microbiol. 74, 7152–7162 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sangermani, M., Hug, I., Sauter, N., Pfohl, T. & Jenal, U. Tad pili play a dynamic role in caulobacter crescentus surface colonization. mBio 10, e01237–19 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Thomashow, L. S. & Rittenberg, S. C. Isolation and composition of sheathed flagella from Bdellovibrio bacteriovorus 109J. J. Bacteriol. 163, 1047–1054 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Iida, Y. et al. Roles of multiple flagellins in flagellar formation and flagellar growth post bdelloplast lysis in Bdellovibrio bacteriovorus. J. Mol. Biol. 394, 1011–1021 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kühn, M. J. et al. Spatial arrangement of several flagellins within bacterial flagella improves motility in different environments. Nat. Commun. 9, 5369 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Aschtgen, M.-S. et al. Rotation of Vibrio fischeri flagella produces outer membrane vesicles that induce host development. J. Bacteriol. 198, 2156–2165 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lambert, C., Ivanov, P. & Sockett, R. E. A transcriptional ‘scream’ early response of E. coli prey to predatory invasion by Bdellovibrio. Curr. Microbiol. 60, 419–427 (2010).

    Article  CAS  PubMed  Google Scholar 

  62. Negus, D. et al. Predator versus pathogen: how does predatory Bdellovibrio bacteriovorus interface with the challenges of killing gram-negative pathogens in a host setting? Annu. Rev. Microbiol. 71, 441–457 (2017).

    Article  CAS  PubMed  Google Scholar 

  63. Snellen, J. E. & Starr, M. P. Ultrastructural aspects of localized membrane damage in Spirillum serpens VHL early in its association with Bdellovibrio bacteriovorus 109D. Arch. Microbiol. 100, 179–195 (1974).

    Article  CAS  PubMed  Google Scholar 

  64. Tudor, J. J. & Karp, M. A. Translocation of an outer membrane protein into prey cytoplasmic membranes by bdellovibrios. J. Bacteriol. 176, 948–952 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Rocha, B., Paul, S. & Vashisth, H. Role of entropy in colloidal self-assembly. Entropy 22, 877 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Byers, B. Structure and formation of ribosome crystals in hypothermic chick embryo cells. J. Mol. Biol. 26, 155–167 (1967).

    Article  CAS  PubMed  Google Scholar 

  67. Brandt, F. et al. The native 3D organization of bacterial polysomes. Cell 136, 261–271 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Lambert, C., Chang, C.-Y., Capeness, M. J. & Sockett, R. E. The first bite—profiling the predatosome in the bacterial pathogen Bdellovibrio. PLoS ONE 5, e8599 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Karunker, I., Rotem, O., Dori-Bachash, M., Jurkevitch, E. & Sorek, R. A global transcriptional switch between the attack and growth forms of Bdellovibrio bacteriovorus. PLoS ONE 8, e61850 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Atterbury, R. J. & Tyson, J. Predatory bacteria as living antibiotics—where are we now?. Microbiology 167, 1–8 (2021).

    Article  CAS  Google Scholar 

  71. Lambert, C. & Sockett, R. E. Laboratory maintenance of Bdellovibrio. Curr. Protoc. Microbiol. 9, 7B.2.1–7B.2.13 (2008).

    Article  Google Scholar 

  72. Liu, J., Chen, C.-Y., Shiomi, D., Niki, H. & Margolin, W. Visualization of bacteriophage P1 infection by cryo-electron tomography of tiny Escherichia coli. Virology 417, 304–311 (2011).

    Article  CAS  PubMed  Google Scholar 

  73. Zheng, S. Q. et al. UCSF tomography: an integrated software suite for real-time electron microscopic tomographic data collection, alignment, and reconstruction. J. Struct. Biol. 157, 138–147 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Chreifi, G., Chen, S., Metskas, L. A., Kaplan, M. & Jensen, G. J. Rapid tilt-series acquisition for electron cryotomography. J. Struct. Biol. 205, 163–169 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Eisenstein, F., Danev, R. & Pilhofer, M. Improved applicability and robustness of fast cryo-electron tomography data acquisition. J. Struct. Biol. 208, 107–114 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).

    Article  PubMed  Google Scholar 

  77. Hagen, W. J. H., Wan, W. & Briggs, J. A. G. Implementation of a cryo-electron tomography tilt-scheme optimized for high resolution subtomogram averaging. J. Struct. Biol. 197, 191–198 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Kremer, J. R., Mastronarde, D. N. & McIntosh, J. R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116, 71–76 (1996).

    Article  CAS  PubMed  Google Scholar 

  79. Ding, H. J., Oikonomou, C. M. & Jensen, G. J. The caltech tomography database and automatic processing pipeline. J. Struct. Biol. 192, 279–286 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Nicastro, D. et al. The molecular architecture of axonemes revealed by cryoelectron tomography. Science 313, 944–948 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Chen, M. et al. A complete data processing workflow for cryo-ET and subtomogram averaging. Nat. Methods 16, 1161–1168 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Tang, G. et al. EMAN2: an extensible image processing suite for electron microscopy. J. Struct. Biol. 157, 38–46 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, e42166 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).

    Article  CAS  PubMed  Google Scholar 

  85. Heumann, J. M., Hoenger, A. & Mastronarde, D. N. Clustering and variance maps for cryo-electron tomography using wedge-masked differences. J. Struct. Biol. 175, 288–299 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Ortega, D. R. et al. Repurposing a chemosensory macromolecular machine. Nat. Commun. 11, 2041 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Jewett, A. jewettaij/visfd: fixed two bugs in the ‘crop_mrc’ program. Zenodo https://doi.org/10.5281/ZENODO.5559243 (2021).

  88. Calakli, F. & Taubin, G. In Expanding the Frontiers of Visual Analytics and Visualization (eds Dill, J. et al.) 323–338 (Springer, 2012).

  89. Kazhdan, M. & Hoppe, H. Screened Poisson surface reconstruction. ACM Trans. Graph. 32, 1–13 (2013).

    Article  Google Scholar 

  90. Jewett, A. jewettaij/visfd_tutorials: updated ‘STEP_0’ of the Bdellovibrio segmentation example. Zenodo https://doi.org/10.5281/ZENODO.5758691 (2021).

  91. Lindeberg, T. Feature detection with automatic scale selection. Int. J. Comput. Vis. 30, 79–116 (1998).

    Article  Google Scholar 

  92. Martinez-Sanchez, A., Garcia, I., Asano, S., Lucic, V. & Fernandez, J.-J. Robust membrane detection based on tensor voting for electron tomography. J. Struct. Biol. 186, 49–61 (2014).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This project was funded by the National Institutes of Health (grant R01 AI127401 to G.J.J.) and a Baxter postdoctoral fellowship from Caltech to M.K. S.K. is supported by the Swedish Research Council (2019-06293). Cryo-ET work was performed in the Beckman Institute Resource Center for Transmission Electron Microscopy at the California Institute of Technology and the Howard Hughes Medical Institute Janelia Farm CryoEM Facility. We thank D. Villanueva Avalos for making the summary animation. We are deeply grateful to L. Sockett (University of Nottingham) for the gift of the B. bacteriovorus strain and helpful advice and comments.

Author information

Authors and Affiliations

Authors

Contributions

M.K., Y.-W.C. and G.J.J. conceived the project. M.K. and Y.-W.C. collected the data. M.K., L.A.R., S.K. and Y.-W.C. prepared samples. W.J.N. and A.I.J. performed tomogram segmentations. S.M. performed the PCA of T4P. P.D. performed the ribosome subtomogarm averaging and helped in the data visualization and analysis relative to the ribosome averages. M.K., C.M.O., Y.-W.C., A.I.J., L.A.R. and G.J.J. performed data analysis. M.K. wrote the original manuscript, which was first edited by C.M.O. and G.J.J., then all authors read and further edited the manuscript.

Corresponding authors

Correspondence to Mohammed Kaplan or Grant J. Jensen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Microbiology thanks Andrew Lovering, Andrew Fenton and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1-43 and Tables 1 and 2.

Reporting Summary

Peer Review File

Supplementary Video 1

An electron cryo-tomogram of an attack-phase B. bacteriovorus cell highlighting limited arrangement of ribosomes on some parts of the surface of the compacted nucleoid. Note the flagellum and chemosensory array at one pole and T4aP at the opposite pole. Scale bar, 100 nm.

Supplementary Video 2

An electron cryo-tomogram of an attack-phase B. bacteriovorus cell highlighting the presence of two 8-nm-wide cytoplasmic tubes. Scale bar, 100 nm. Note that these tubes are usually located at different heights inside a cell; hence, it is more probable to see one tube instead of two in a 2D slice through a 3D tomogram at a certain z-level as in Supplementary Fig. 2. Scale bar, 100 nm.

Supplementary Video 3

An electron cryo-tomogram highlighting T4aP extending from a B. bacteriovorus cell to the OM of an E. coli minicell. Scale bar, 100 nm.

Supplementary Video 4

An electron cryo-tomogram highlighting T4aP extending from a B. bacteriovorus cell to the OM of an E. coli minicell. Scale bar, 100 nm.

Supplementary Video 5

An electron cryo-tomogram of a B. bacteriovorus cell in close proximity to an E. coli minicell indicating the presence of multiple rose-like complexes and non-piliated T4aP basal bodies at the contact site. Scale bar, 100 nm.

Supplementary Video 6

An electron cryo-tomogram of a B. bacteriovorus cell attached to an E. coli minicell and accompanying 3D segmentation. An attachment plaque and T4aP basal bodies (blue cylinders) can be seen at the biting pole, while an early stage of flagellar resorption can be seen at the other pole. Scale bar, 100 nm.

Supplementary Video 7

An electron cryo-tomogram of a B. bacteriovorus cell attached to an E. coli minicell and accompanying 3D segmentation. An attachment plaque, rose-like complexes (light green) and T4aP basal bodies (blue cylinders) can be seen at the biting pole, while an intermediate stage of flagellar absorption into the periplasm can be seen at the other pole. Scale bar, 100 nm.

Supplementary Video 8

An electron cryo-tomogram of a B. bacteriovorus cell attached to an E. coli minicell and accompanying segmentation. An attachment plaque and T4aP basal bodies (blue cylinders) can be seen at the biting pole, while a late stage of flagellar resorption can be seen at the other pole. The broken periplasmic flagellar filament is wrapped around the cell. Scale bar, 100 nm.

Supplementary Video 9

An electron cryo-tomogram of a B. bacteriovorus cell attached to an E. coli minicell by an attachment plaque. A late stage of flagellar resorption can be seen at the other pole with the periplasmic flagellar filament wrapping around the cell. Scale bar, 50 nm.

Supplementary Video 10

An electron cryo-tomogram of a B. bacteriovorus cell attached to an E. coli minicell with an attachment plaque. A late stage of flagellar resorption can be seen where the exit hole of the flagellum is far from the motor and a notable part of the flagellar filament is in the periplasm. Scale bar, 50 nm.

Supplementary Video 11

An electron cryo-tomogram of two B. bacteriovorus cells, one of them attached to an E. coli minicell with an attachment plaque. A late stage of flagellar resorption can be seen with the periplasmic flagellar filament wrapping around the cell. No flagellar motor could be identified in this cryo-tomogram. Scale bar, 50 nm.

Supplementary Video 12

An electron cryo-tomogram of a non-productive invasion by a B. bacteriovorus cell of an E. coli minicell. A portal can be seen surrounding the entry hole, and many vesicles are present inside the prey. Scale bar, 100 nm.

Supplementary Video 13

An electron cryo-tomogram of an end-stage non-productive invasion by a B. bacteriovorus cell of an E. coli minicell, in which all the prey cytoplasm has been consumed. A portal with associated membrane blebs can be seen at the entry hole. The ribosomes exhibit a regular hexagonal packing around much of the nucleoid surface. Scale bar, 100 nm.

Supplementary Video 14

An electron cryo-tomogram showing a B. bacteriovorus cell near a lysed E. coli minicell. Multiple knob-like densities can be seen at one pole of the B. bacteriovorus cell (highlighted by white arrows). Scale bar, 100 nm.

Supplementary Video 15

An electron cryo-tomogram of an E. coli bdelloplast, and accompanying 3D segmentation, highlighting the tentative seal at the entry hole. A substantial part of the prey’s cytoplasm is still present. Scale bar, 100 nm.

Supplementary Video 16

An electron cryo-tomogram of a V. cholerae bdelloplast highlighting multiple uniformly sized vesicles inside the bdelloplast. A substantial part of the prey’s cytoplasm is still present. Scale bar, 50 nm.

Supplementary Video 17

An electron cryo-tomogram of a V. cholerae bdelloplast, and a segmentation thereof, containing two newly divided B. bacteriovorus cells highlighting the bdelloplast tentative seal and prey flagellar relic. Inside the bdelloplast, uniformly sized vesicles and a dense sphere of yet-undigested prey cytoplasm are present. Scale bar, 100 nm.

Supplementary Video 18

An electron cryo-tomogram of an end-stage E. coli minicell bdelloplast highlighting the tentative seal, multiple uniformly sized vesicles and ribosomes in a regular hexagonal arrangement on the nucleoid surface. Scale bar, 100 nm.

Supplementary Video 19

An electron cryo-tomogram of an end-stage E. coli minicell bdelloplast highlighting multiple uniformly sized vesicles and a hexagonal lattice of ribosomes around the nucleoid. No prey cytoplasm remains. Scale bar, 100 nm.

Supplementary Video 20

An electron cryo-tomogram of an end-stage E. coli minicell bdelloplast highlighting multiple uniformly sized vesicles and a hexagonal lattice of ribosomes around the nucleoid. No prey cytoplasm remains. Scale bar, 100 nm.

Supplementary Video 21

An electron cryo-tomogram of an end-stage E. coli minicell bdelloplast containing two newly divided B. bacteriovorus cells and accompanying segmentation. No prey cytoplasm remains, and many ribosomes can be seen regularly arranged around the nucleoids of the two predator cells. Scale bar, 100 nm.

Supplementary Video 22

An electron cryo-tomogram of a B. bacteriovorus cell associated with a lysed E. coli minicell and accompanying segmentation, highlighting the regular arrangement of many ribosomes around the nucleoid. Scale bar, 100 nm.

Supplementary Video 23

A summary of the predatory lifecycle of B. bacteriovorus based on the in situ cryo-ET data presented in this study.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaplan, M., Chang, YW., Oikonomou, C.M. et al. Bdellovibrio predation cycle characterized at nanometre-scale resolution with cryo-electron tomography. Nat Microbiol 8, 1267–1279 (2023). https://doi.org/10.1038/s41564-023-01401-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-023-01401-2

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology