Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

General room-temperature Suzuki–Miyaura polymerization for organic electronics

A Publisher Correction to this article was published on 05 February 2024

This article has been updated

Abstract

π-Conjugated polymers (CPs) have broad applications in high-performance optoelectronics, energy storage, sensors and biomedicine. However, developing green and efficient methods to precisely synthesize alternating CP structures on a large scale remains challenging and critical for their industrialization. Here a room-temperature, scalable and homogeneous Suzuki–Miyaura-type polymerization reaction is developed with broad generality validated for 24 CPs including donor–donor, donor–acceptor and acceptor–acceptor connectivities, yielding device-quality polymers with high molecular masses. Furthermore, the polymerization protocol significantly reduces homocoupling structural defects, yielding more structurally regular and higher-performance electronic materials and optoelectronic devices than conventional thermally activated polymerizations. Experimental and theoretical studies reveal that a borate transmetalation process plays a key role in suppressing protodeboronation, which is critical for large-scale structural regularity. Thus, these results provide a general polymerization tool for the scalable production of device-quality CPs with alternating structural regularity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Suzuki–Miyaura polymerization to access π-CPs.
Fig. 2: Mechanistic study results.
Fig. 3: Investigation of the practical uniformity and scalability of the present polymerization protocol.
Fig. 4: Homocoupling defect analysis.

Similar content being viewed by others

Data availability

All relevant data supporting the findings of this study are available in the Article and its Supplementary Information. Synthesis procedures and characterization for all the new compounds, computational studies and all copies of NMR spectra and gel permeation chromatography traces are available in the Supplementary Information. Source data are provided with this paper.

Change history

References

  1. Fratini, S., Nikolka, M., Salleo, A., Schweicher, G. & Sirringhaus, H. Charge transport in high-mobility conjugated polymers and molecular semiconductors. Nat. Mater. 19, 491–502 (2020).

    Article  CAS  PubMed  Google Scholar 

  2. Wang, J., Xue, P., Jiang, Y., Huo, Y. & Zhan, X. The principles, design and applications of fused-ring electron acceptors. Nat. Rev. Chem. 6, 614–634 (2022).

    Article  PubMed  Google Scholar 

  3. Lopez, J., Mackanic, D. G., Cui, Y. & Bao, Z. Designing polymers for advanced battery chemistries. Nat. Rev. Mater. 4, 312–330 (2019).

    Article  CAS  Google Scholar 

  4. Dou, L., Liu, Y., Hong, Z., Li, G. & Yang, Y. Low-bandgap near-IR conjugated polymers/molecules for organic electronics. Chem. Rev. 115, 12633–12665 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Jiang, Y. & Pu, K. Multimodal biophotonics of semiconducting polymer nanoparticles. Acc. Chem. Res. 51, 1840–1849 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Hendriks, K. H. et al. Homocoupling defects in diketopyrrolopyrrole-based copolymers and their effect on photovoltaic performance. J. Am. Chem. Soc. 136, 11128–11133 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Streiter, M. et al. Homocoupling defects in a conjugated polymer limit exciton diffusion. Adv. Funct. Mater. 29, 1903936 (2019).

    Article  CAS  Google Scholar 

  8. Ni, Z. et al. Mesopolymer synthesis by ligand-modulated direct arylation polycondensation towards n-type and ambipolar conjugated systems. Nat. Chem. 11, 271–277 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. Ji, X. et al. Pauli paramagnetism of stable analogues of pernigraniline salt featuring ladder-type constitution. J. Am. Chem. Soc. 142, 641–648 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Lee, S. M., Park, K. H., Jung, S., Park, H. & Yang, C. Stepwise heating in Stille polycondensation toward no batch-to-batch variations in polymer solar cell performance. Nat. Commun. 9, 1867 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wang, Z. et al. Unraveling the molar mass dependence of shearing-induced aggregation structure of a high-mobility polymer semiconductor. Adv. Mater. 34, 2108255 (2022).

    Article  CAS  Google Scholar 

  12. Vangerven, T. et al. Elucidating batch-to-batch variation caused by homocoupled side products in solution-processable organic solar cells. Chem. Mater. 28, 9088–9098 (2016).

    Article  CAS  Google Scholar 

  13. Yang, J., Zhao, Z., Wang, S., Guo, Y. & Liu, Y. Insight into high-performance conjugated polymers for organic field-effect transistors. Chem 4, 2748–2785 (2018).

    Article  CAS  Google Scholar 

  14. Burke, D. J. & Lipomi, D. J. Green chemistry for organic solar cells. Energy Environ. Sci. 6, 2053–2066 (2013).

    Article  CAS  Google Scholar 

  15. Sakamoto, J., Rehahn, M., Wegner, G. & Schlüter, A. D. Suzuki polycondensation: polyarylenes à la carte. Macromol. Rapid Commun. 30, 653–687 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Zhang, H.-H., Xing, C.-H. & Hu, Q.-S. Controlled Pd(0)/t-Bu3P-catalyzed Suzuki cross-coupling polymerization of AB-type monomers with PhPd(t-Bu3P)I or Pd2(dba)3/t-Bu3P/ArI as the initiator. J. Am. Chem. Soc. 134, 13156–13159 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Peng, W., Dong, J., Li, H.-B., Chow, C. & Hu, Q.-S. Room temperature Suzuki cross-coupling polymerizations of aryl dihalides and aryldiboronic acid/acid esters with t-Bu3P-coordinated 2-phenylaniline-based palladacycle complex as the precatalyst. J. Polym. Sci. A: Polym. Chem. 57, 1606–1611 (2019).

    Article  CAS  Google Scholar 

  18. Carsten, B., He, F., Son, H. J., Xu, T. & Yu, L. Stille polycondensation for synthesis of functional materials. Chem. Rev. 111, 1493–1528 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Lo, C. K., Wolfe, R. M. W. & Reynolds, J. R. From monomer to conjugated polymer: a perspective on best practices for synthesis. Chem. Mater. 33, 4842–4852 (2021).

    Article  CAS  Google Scholar 

  20. Yokozawa, T. & Ohta, Y. Transformation of step-growth polymerization into living chain-growth polymerization. Chem. Rev. 116, 1950–1968 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. Pouliot, J.-R., Grenier, F., Blaskovits, J. T., Beaupré, S. & Leclerc, M. Direct (hetero)arylation polymerization: simplicity for conjugated polymer synthesis. Chem. Rev. 116, 14225–14274 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Cordovilla, C., Bartolomé, C., Martínez-Ilarduya, J. M. & Espinet, P. The Stille reaction, 38 years later. ACS Catal. 5, 3040–3053 (2015).

    Article  CAS  Google Scholar 

  23. Bura, T. et al. Direct heteroarylation polymerization: guidelines for defect-free conjugated polymers. Chem. Sci. 8, 3913–3925 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Blaskovits, J. T., Johnson, P. A. & Leclerc, M. Mechanistic origin of β-defect formation in thiophene-based polymers prepared by direct (hetero)arylation. Macromolecules 51, 8100–8113 (2018).

    Article  CAS  Google Scholar 

  25. Suzuki, A. Cross-coupling reactions of organoboranes: an easy way to construct C–C bonds (Nobel lecture). Angew. Chem. Int. Ed. 50, 6722–6737 (2011).

    Article  CAS  Google Scholar 

  26. van Asselt, R. & Elsevier, C. J. On the mechanism of formation of homocoupled products in the carbon-carbon cross-coupling reaction catalyzed by palladium complexes containing rigid bidentate nitrogen ligands: evidence for the exchange of organic groups between palladium and the transmetalating reagent. Organometallics 13, 1972–1980 (1994).

    Article  Google Scholar 

  27. Adamo, C., Amatore, C., Ciofini, I., Jutand, A. & Lakmini, H. Mechanism of the palladium-catalyzed homocoupling of arylboronic acids: key involvement of a palladium peroxo complex. J. Am. Chem. Soc. 128, 6829–6836 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Rudenko, A. E. & Thompson, B. C. Optimization of direct arylation polymerization (DArP) through the identification and control of defects in polymer structure. J. Polym. Sci. A: Polym. Chem. 53, 135–147 (2015).

    Article  CAS  Google Scholar 

  29. Li, Z. et al. Efficient room temperature catalytic synthesis of alternating conjugated copolymers via C-S bond activation. Nat. Commun. 13, 144 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cox, P. A. et al. Base-catalyzed aryl-B(OH)2 protodeboronation revisited: from concerted proton transfer to liberation of a transient aryl anion. J. Am. Chem. Soc. 139, 13156–13165 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Malapit, C. A., Bour, J. R., Brigham, C. E. & Sanford, M. S. Base-free nickel-catalysed decarbonylative Suzuki–Miyaura coupling of acid fluorides. Nature 563, 100–104 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jayakannan, M., van Dongen, J. L. J. & Janssen, R. A. J. Mechanistic aspects of the Suzuki polycondensation of thiophenebisboronic derivatives and diiodobenzenes analyzed by MALDI–TOF mass spectrometry. Macromolecules 34, 5386–5393 (2001).

    Article  CAS  Google Scholar 

  33. Gibson, G. L., McCormick, T. M. & Seferos, D. S. Atomistic band gap engineering in donor–acceptor polymers. J. Am. Chem. Soc. 134, 539–547 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Lee, J.-K. et al. High-performance electron-transporting polymers derived from a heteroaryl bis(trifluoroborate). J. Am. Chem. Soc. 133, 9949–9951 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Carrillo, J. A., Turner, M. L. & Ingleson, M. J. A general protocol for the polycondensation of thienyl N-methyliminodiacetic acid boronate esters to form high molecular weight copolymers. J. Am. Chem. Soc. 138, 13361–13368 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hazari, N., Melvin, P. R. & Beromi, M. M. Well-defined nickel and palladium precatalysts for cross-coupling. Nat. Rev. Chem. 1, 0025 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bürglová, K. & Hlaváč, J. Application of trimethylsilanolate alkali salts in organic synthesis. Synthesis 50, 1199–1208 (2018).

    Article  Google Scholar 

  38. Billingsley, K. L. & Buchwald, S. L. A general and efficient method for the Suzuki–Miyaura coupling of 2-pyridyl nucleophiles. Angew. Chem. Int. Ed. 47, 4695–4698 (2008).

    Article  CAS  Google Scholar 

  39. Makida, Y., Marelli, E., Slawin, A. M. Z. & Nolan, S. P. Nickel-catalysed carboxylation of organoboronates. Chem. Commun. 50, 8010–8013 (2014).

    Article  CAS  Google Scholar 

  40. Yoshida, H. et al. Direct Suzuki–Miyaura coupling with naphthalene-1,8-diaminato (dan)-substituted organoborons. ACS Catal. 10, 346–351 (2020).

    Article  CAS  Google Scholar 

  41. Delaney, C. P., Kassel, V. M. & Denmark, S. E. Potassium trimethylsilanolate enables rapid, homogeneous Suzuki–Miyaura cross-coupling of boronic esters. ACS Catal. 10, 73–80 (2020).

    Article  CAS  PubMed  Google Scholar 

  42. Niwa, T. et al. Lewis acid-mediated Suzuki–Miyaura cross-coupling reaction. Nat. Catal. 4, 1080–1088 (2021).

    Article  CAS  Google Scholar 

  43. Carothers, W. H. Polymerization. Chem. Rev. 8, 353–426 (1931).

    Article  CAS  Google Scholar 

  44. He, Z.-T., Li, H., Haydl, A. M., Whiteker, G. T. & Hartwig, J. F. Trimethylphosphate as a methylating agent for cross coupling: a slow-release mechanism for the methylation of arylboronic esters. J. Am. Chem. Soc. 140, 17197–17202 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang, Y., Hasegawa, T., Matsumoto, H. & Michinobu, T. Significant difference in semiconducting properties of isomeric all-acceptor polymers synthesized via direct arylation polycondensation. Angew. Chem. Int. Ed. 58, 11893–11902 (2019).

    Article  CAS  Google Scholar 

  46. Li, Y. et al. Annealing-free high-mobility diketopyrrolopyrrole–quaterthiophene copolymer for solution-processed organic thin film transistors. J. Am. Chem. Soc. 133, 2198–2204 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Sun, B., Hong, W., Aziz, H., Abukhdeir, N. M. & Li, Y. Dramatically enhanced molecular ordering and charge transport of a DPP-based polymer assisted by oligomers through antiplasticization. J. Mater. Chem. C 1, 4423–4426 (2013).

    Article  CAS  Google Scholar 

  48. Spano, F. C. & Silva, C. H- and J-aggregate behavior in polymeric semiconductors. Annu. Rev. Phys. Chem. 65, 477–500 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Lombeck, F. et al. On the effect of prevalent carbazole homocoupling defects on the photovoltaic performance of PCDTBT:PC71BM solar cells. Adv. Energy Mater. 6, 1601232 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the NSFC (51925306 (H.H.), 52222309 (Q.S.) and 52173187 (Q.S.)), National Key R&D Program of China (2018FYA 0305800 (H.H.)), Key Research Program of the Chinese Academy of Sciences (XDPB08-2 (H.H.)), China Postdoctoral Science Foundation (2021M703158 (H.X.)) and Fundamental Research Funds for the Central University. T.J.M. thanks the National Science Foundation Materials Research Science and Engineering Center at Northwestern University (DMR-2308691) and the Air Force Office of Scientific Research (FA9550-22-1-0423) for support. We thank X. Hao and J. Qiao from Shandong University for the exciton diffusion length measurements.

Author information

Authors and Affiliations

Authors

Contributions

H.H. directed the investigations and provided overall supervision. H.X. designed the experiments. H.X., W.X., X.Z. and Q.S. performed the synthesis experiments. Q.L. and D.Z. performed the device fabrications. Y. Lu, S.W. and Z.W. performed the DFT calculations. Y. Li and Y. Lin performed the trap density measurements. S.W., C.L. and X.Z. performed the atomic force microscopy and GIWAXS measurements. H.X., Q.S., T.J.M. and H.H. prepared the manuscript.

Corresponding authors

Correspondence to Qinqin Shi, Tobin J. Marks or Hui Huang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–22, discussion and Tables 1–9.

Reporting Summary

Source data

Source Data Fig. 4

Source data for Fig. 4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, H., Lin, Q., Lu, Y. et al. General room-temperature Suzuki–Miyaura polymerization for organic electronics. Nat. Mater. (2024). https://doi.org/10.1038/s41563-023-01794-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41563-023-01794-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing