Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Imaging moiré excited states with photocurrent tunnelling microscopy

Abstract

Moiré superlattices provide a highly tuneable and versatile platform to explore novel quantum phases and exotic excited states ranging from correlated insulators to moiré excitons. Scanning tunnelling microscopy has played a key role in probing microscopic behaviours of the moiré correlated ground states at the atomic scale. However, imaging of quantum excited states in moiré heterostructures remains an outstanding challenge. Here we develop a photocurrent tunnelling microscopy technique that combines laser excitation and scanning tunnelling spectroscopy to directly visualize the electron and hole distribution within the photoexcited moiré exciton in twisted bilayer WS2. The tunnelling photocurrent alternates between positive and negative polarities at different locations within a single moiré unit cell. This alternating photocurrent originates from the in-plane charge transfer moiré exciton in twisted bilayer WS2, predicted by our GW-Bethe–Salpeter equation calculations, that emerges from the competition between the electron–hole Coulomb interaction and the moiré potential landscape. Our technique enables the exploration of photoexcited non-equilibrium moiré phenomena at the atomic scale.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Laser-STM measurements of a twisted bilayer WS2 moiré superlattice.
Fig. 2: Electronic structure of twisted bilayer WS2.
Fig. 3: Photocurrent mapping of ICT excitons.
Fig. 4: Interaction between STM tip and ICT excitons.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are included in the main text and in the Supplementary Information, and are also available at https://github.com/HongyuanLiCMP/Imaging-Moir-Excited-States-with-Photocurrent-Tunneling-Microscopy.

References

  1. Li, H. et al. Imaging two-dimensional generalized Wigner crystals. Nature 597, 650–654 (2021).

    Article  CAS  Google Scholar 

  2. Regan, E. C. et al. Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature 579, 359–363 (2020).

    Article  CAS  Google Scholar 

  3. Xu, Y. et al. Correlated insulating states at fractional fillings of moiré superlattices. Nature 587, 214–218 (2020).

    Article  CAS  Google Scholar 

  4. Huang, X. et al. Correlated insulating states at fractional fillings of the WS2/WSe2 moiré lattice. Nat. Phys. 17, 715–719 (2021).

    Article  CAS  Google Scholar 

  5. Xie, Y.-M., Zhang, C.-P., Hu, J.-X., Mak, K. F. & Law, K. T. Valley-polarized quantum anomalous Hall state in moiré MoTe2/WSe2 heterobilayers. Phys. Rev. Lett. 128, 026402 (2022).

    Article  CAS  Google Scholar 

  6. Li, T. et al. Quantum anomalous Hall effect from intertwined moiré bands. Nature 600, 641–646 (2021).

    Article  CAS  Google Scholar 

  7. Jin, C. et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature 567, 76–80 (2019).

    Article  CAS  Google Scholar 

  8. Naik, M. H. et al. Intralayer charge-transfer moiré excitons in van der Waals superlattices. Nature 609, 52–57 (2022).

    Article  CAS  Google Scholar 

  9. Seyler, K. L. et al. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 567, 66–70 (2019).

    Article  CAS  Google Scholar 

  10. Tran, K. et al. Evidence for moiré excitons in van der Waals heterostructures. Nature 567, 71–75 (2019).

    Article  CAS  Google Scholar 

  11. Choi, Y. et al. Correlation-driven topological phases in magic-angle twisted bilayer graphene. Nature 589, 536–541 (2021).

    Article  CAS  Google Scholar 

  12. Kerelsky, A. et al. Maximized electron interactions at the magic angle in twisted bilayer graphene. Nature 572, 95–100 (2019).

    Article  CAS  Google Scholar 

  13. Jiang, Y. et al. Charge order and broken rotational symmetry in magic-angle twisted bilayer graphene. Nature 573, 91–95 (2019).

    Article  CAS  Google Scholar 

  14. Wong, D. et al. Cascade of electronic transitions in magic-angle twisted bilayer graphene. Nature 582, 198–202 (2020).

    Article  CAS  Google Scholar 

  15. Xie, Y. et al. Spectroscopic signatures of many-body correlations in magic-angle twisted bilayer graphene. Nature 572, 101–105 (2019).

    Article  CAS  Google Scholar 

  16. Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    Article  CAS  Google Scholar 

  17. Li, H. et al. Mapping charge excitations in generalized Wigner crystals. Preprint at arXiv https://doi.org/10.48550/arXiv.2209.12830 (2022).

  18. Kim, H. et al. Evidence for unconventional superconductivity in twisted trilayer graphene. Nature 606, 494–500 (2022).

    Article  CAS  Google Scholar 

  19. Oh, M. et al. Evidence for unconventional superconductivity in twisted bilayer graphene. Nature 600, 240–245 (2021).

    Article  CAS  Google Scholar 

  20. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article  CAS  Google Scholar 

  21. Karni, O. et al. Structure of the moiré exciton captured by imaging its electron and hole. Nature 603, 247–252 (2022).

    Article  CAS  Google Scholar 

  22. Wang, L. et al. Correlated electronic phases in twisted bilayer transition metal dichalcogenides. Nat. Mater. 19, 861–866 (2020).

    Article  CAS  Google Scholar 

  23. Yankowitz, M. et al. Tuning superconductivity in twisted bilayer graphene. Science 363, 1059–1064 (2019).

    Article  CAS  Google Scholar 

  24. Li, H. et al. Imaging local discharge cascades for correlated electrons in WS2/WSe2 moiré superlattices. Nat. Phys. https://doi.org/10.1038/s41567-021-01324-x (2021).

  25. Imai-Imada, M. et al. Orbital-resolved visualization of single-molecule photocurrent channels. Nature 603, 829–834 (2022).

    Article  CAS  Google Scholar 

  26. Wang, L., Xia, Y. & Ho, W. Atomic-scale quantum sensing based on the ultrafast coherence of an H2 molecule in an STM cavity. Science 376, 401–405 (2022).

    Article  CAS  Google Scholar 

  27. Qiu, X., Nazin, G. & Ho, W. Vibrationally resolved fluorescence excited with submolecular precision. Science 299, 542–546 (2003).

    Article  CAS  Google Scholar 

  28. Ćavar, E. et al. Fluorescence and phosphorescence from individual C60 molecules excited by local electron tunneling. Phys. Rev. Lett. 95, 196102 (2005).

    Article  Google Scholar 

  29. Bolotov, L., Tada, T., Poborchii, V., Fukuda, K. & Kanayama, T. Spatial distribution of photocurrent in Si stripes under tilted illumination measured by multimode scanning probe microscopy. Jpn J. Appl. Phys. 51, 088005 (2012).

    Article  Google Scholar 

  30. Yamamoto, H. Y. H., Kamiya, I. K. I. & Takahashi, T. T. T. Photoinduced current properties of InAs-covered GaAs studied by scanning tunneling microscopy. Jpn J. Appl. Phys. 38, 3871 (1999).

    Article  CAS  Google Scholar 

  31. Takeuchi, O. et al. Probing subpicosecond dynamics using pulsed laser combined scanning tunneling microscopy. Appl. Phys. Lett. 85, 3268–3270 (2004).

    Article  Google Scholar 

  32. McEllistrem, M., Haase, G., Chen, D. & Hamers, R. Electrostatic sample–tip interactions in the scanning tunneling microscope. Phys. Rev. Lett. 70, 2471 (1993).

    Article  CAS  Google Scholar 

  33. Kochanski, G. P. & Bell, R. STM measurements of photovoltage on Si(111) and Si(111):Ge. Surf. Sci. 273, L435–L440 (1992).

    Article  CAS  Google Scholar 

  34. Matthes, T. W. et al. Investigation of photoinduced tunneling current and local surface photovoltage by STM. Appl. Surf. Sci. 123, 187–191 (1998).

    Article  Google Scholar 

  35. Li, H. et al. Imaging moiré flat bands in three-dimensional reconstructed WSe2/WS2 superlattices. Nat. Mater. 20, 945–950 (2021).

    Article  CAS  Google Scholar 

  36. Naik, M. H. & Jain, M. Ultraflatbands and shear solitons in moiré patterns of twisted bilayer transition metal dichalcogenides. Phys. Rev. Lett. 121, 266401 (2018).

    Article  CAS  Google Scholar 

  37. Naik, M. H., Kundu, S., Maity, I. & Jain, M. Origin and evolution of ultraflat bands in twisted bilayer transition metal dichalcogenides: realization of triangular quantum dots. Phys. Rev. B 102, 075413 (2020).

    Article  CAS  Google Scholar 

  38. Wu, F., Lovorn, T. & MacDonald, A. H. Topological exciton bands in moiré heterojunctions. Phys. Rev. Lett. 118, 147401 (2017).

    Article  Google Scholar 

  39. Jin, C. et al. Ultrafast dynamics in van der Waals heterostructures. Nat. Nanotechnol. 13, 994–1003 (2018).

    Article  CAS  Google Scholar 

  40. Wang, H., Zhang, C. & Rana, F. Ultrafast dynamics of defect-assisted electron–hole recombination in monolayer MoS2. Nano Lett. 15, 339–345 (2015).

    Article  CAS  Google Scholar 

  41. Shi, H. et al. Exciton dynamics in suspended monolayer and few-layer MoS2 2D crystals. ACS Nano 7, 1072–1080 (2013).

    Article  CAS  Google Scholar 

  42. Jauregui, L. A. et al. Electrical control of interlayer exciton dynamics in atomically thin heterostructures. Science 366, 870–875 (2019).

    Article  CAS  Google Scholar 

  43. Hybertsen, M. S. & Louie, S. G. Electron correlation in semiconductors and insulators: band gaps and quasiparticle energies. Phys. Rev. B 34, 5390–5413 (1986).

  44. Rohlfing, M. & Louie, S. G. Electron–hole excitations in semiconductors and insulators. Phys. Rev. Lett. 81, 2312–2315 (1998).

  45. Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was primarily funded by the United States Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division under contract no. DE-AC02-05CH11231 (van der Waals heterostructure programme KCFW16) for device fabrication, STM spectroscopy and force field calculations for structural reconstructions. The Center for Computational Study of Excited-State Phenomena in Energy Materials (C2SEPEM) at Lawrence Berkeley National Laboratory, supported by the United States Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division under contract no. DE-AC02-05CH11231, as part of the Computational Materials Sciences Program, provided advanced codes and experimental support for optical measurements. The Theory of Materials Program (KC2301) funded by the DOE Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division under contract DE-AC02-05CH11231, provided resources to develop the PUMP approach and analysis of the moiré excitons. Computational resources were provided by the National Energy Research Scientific Computing Center (NERSC), which is supported by the DOE Office of Science under contract DE-AC02-05CH11231, and Frontera at TACC, which is supported by the National Science Foundation under grant OAC-1818253. Support was also provided by National Science Foundation Award DMR-2221750 (surface preparation). S.T. acknowledges support from DOE-SC0020653, NSF DMR 2111812, NSF DMR 1552220, NSF 2052527, DMR 1904716 and NSF CMMI 1933214 for WS2 bulk crystal growth and analysis. K.W. and T.T. acknowledge support from JSPS KAKENHI (grant nos. 19H05790, 20H00354 and 21H05233). We thank Y. W. Choi, S. Kundu and J. Ruan for discussions.

Author information

Authors and Affiliations

Authors

Contributions

S.G.L., M.F.C. and F.W. conceived the project. H.L. and Z.X. performed the STM/STS and PTM measurements, M.H.N. and F.H.d.J. formulated the generalized PUMP method, and M.H.N., W.K. and Z.L. performed the ab initio GW-BSE calculations. H.L. and Z.X. fabricated the heterostructure device. R.S., R.B. and S.T. grew the WS2 crystals. K.W. and T.T. grew the hBN single crystal. All authors discussed the results and wrote the manuscript.

Corresponding authors

Correspondence to Steven G. Louie, Michael F. Crommie or Feng Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–13 and discussion.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Xiang, Z., Naik, M.H. et al. Imaging moiré excited states with photocurrent tunnelling microscopy. Nat. Mater. (2024). https://doi.org/10.1038/s41563-023-01753-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41563-023-01753-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing