Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quasi-open Cu(i) sites for efficient CO separation with high O2/H2O tolerance

Abstract

Carbon monoxide (CO) separation relies on chemical adsorption but suffers from the difficulty of desorption and instability of open metal sites against O2, H2O and so on. Here we demonstrate quasi-open metal sites with hidden or shielded coordination sites as a promising solution. Possessing the trigonal coordination geometry (sp2), Cu(i) ions in porous frameworks show weak physical adsorption for non-target guests. Rational regulation of framework flexibility enables geometry transformation to tetrahedral geometry (sp3), generating a fourth coordination site for the chemical adsorption of CO. Quantitative breakthrough experiments at ambient conditions show CO uptakes up to 4.1 mmol g−1 and CO selectivity up to 347 against CO2, CH4, O2, N2 and H2. The adsorbents can be completely regenerated at 333–373 K to recover CO with a purity of >99.99%, and the separation performances are stable in high-concentration O2 and H2O. Although CO leakage concentration generally follows the structural transition pressure, large amounts (>3 mmol g−1) of ultrahigh-purity (99.9999999%, 9N; CO concentration < 1 part per billion) gases can be produced in a single adsorption process, demonstrating the usefulness of this approach for separation applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Adsorption behaviours of OMSs and qOMSs.
Fig. 2: Single-component adsorption behaviours.
Fig. 3: CO adsorption mechanism.
Fig. 4: Mixture adsorption/separation behaviours.

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this Article and its Supplementary Information. Additional data are available from the corresponding author upon request.

References

  1. Kerry, F. G. Industrial Gas Handbook: Gas Separation and Purification (CRC Press, 2007).

    Google Scholar 

  2. Reed, D. A. et al. A spin transition mechanism for cooperative adsorption in metal-organic frameworks. Nature 550, 96–100 (2017).

    CAS  Google Scholar 

  3. Sato, H. et al. Self-accelerating CO sorption in a soft nanoporous crystal. Science 343, 167–170 (2014).

    CAS  Google Scholar 

  4. Wang, H., Lustig, W. P. & Li, J. Sensing and capture of toxic and hazardous gases and vapors by metal-organic frameworks. Chem. Soc. Rev. 47, 4729–4756 (2018).

    CAS  Google Scholar 

  5. Dutta, N. N. & Patil, G. S. Developments in CO separation. Gas. Sep. Purif. 9, 277–283 (1995).

    CAS  Google Scholar 

  6. Islamoglu, T. et al. Metal-organic frameworks against toxic chemicals. Chem. Rev. 120, 8130–8160 (2020).

    CAS  Google Scholar 

  7. DeCoste, J. B. & Peterson, G. W. Metal-organic frameworks for air purification of toxic chemicals. Chem. Rev. 114, 5695–5727 (2014).

    CAS  Google Scholar 

  8. Evans, A., Luebke, R. & Petit, C. The use of metal-organic frameworks for CO purification. J. Mater. Chem. A 6, 10570–10594 (2018).

    CAS  Google Scholar 

  9. Frohning C. D., Kohlpaintner C. W. & Bohnen H. W. Carbon Monoxide and Synthesis Gas Chemistry (Wiley-VCH, 2008).

  10. Van Rooij, G. J. et al. Taming microwave plasma to beat thermodynamics in CO2 dissociation. Faraday Discuss. 183, 233–248 (2015).

    Google Scholar 

  11. Cheng, X. et al. A review of PEM hydrogen fuel cell contamination: impacts, mechanisms, and mitigation. J. Power Sources 165, 739–756 (2007).

    CAS  Google Scholar 

  12. Hydrogen fuel quality—product specification (ISO 14687, 2019).

  13. King, C. J. Handbook of Separation Process Technology (John Wiley & Sons, 1987).

    Google Scholar 

  14. Li, G. Q. & Govind, R. Separation of oxygen from air using coordination complexes: a review. Ind. Eng. Chem. Res. 33, 755–783 (1994).

    CAS  Google Scholar 

  15. Morris, R. E. & Wheatley, P. S. Gas storage in nanoporous materials. Angew. Chem. Int. Ed. 47, 4966–4981 (2008).

    CAS  Google Scholar 

  16. Li, J.-R., Sculley, J. & Zhou, H.-C. Metal-organic frameworks for separations. Chem. Rev. 112, 869–932 (2012).

    CAS  Google Scholar 

  17. Cadiau, A. et al. Hydrolytically stable fluorinated metal-organic frameworks for energy-efficient dehydration. Science 356, 731–735 (2017).

    CAS  Google Scholar 

  18. Yoon, J. W. et al. Selective nitrogen capture by porous hybrid materials containing accessible transition metal ion sites. Nat. Mater. 16, 526–531 (2017).

    CAS  Google Scholar 

  19. Smith, G. L. et al. Reversible coordinative binding and separation of sulfur dioxide in a robust metal-organic framework with open copper sites. Nat. Mater. 18, 1358–1365 (2019).

    CAS  Google Scholar 

  20. Schmieder, P., Denysenko, D., Grzywa, M., Magdysyuk, O. & Volkmer, D. A structurally flexible triazolate-based metal-organic framework featuring coordinatively unsaturated copper(i) sites. Dalton Trans. 45, 13853–13862 (2016).

    CAS  Google Scholar 

  21. Peng, J. et al. A supported Cu(i)@MIL-100(Fe) adsorbent with high CO adsorption capacity and CO/N2 selectivity. Chem. Eng. J. 270, 282–289 (2015).

    CAS  Google Scholar 

  22. Gao, F., Wang, Y. & Wang, S. Selective adsorption of CO on CuCl/Y adsorbent prepared using CuCl2 as precursor: equilibrium and thermodynamics. Chem. Eng. J. 290, 418–427 (2016).

    CAS  Google Scholar 

  23. Evans, A. D. et al. Screening metal-organic frameworks for dynamic CO/N2 separation using complementary adsorption measurement techniques. Ind. Eng. Chem. Res. 58, 18336–18344 (2019).

    CAS  Google Scholar 

  24. Reed, D. A. et al. Reversible CO scavenging via adsorbate-dependent spin state transitions in an iron(ii)-triazolate metal-organic framework. J. Am. Chem. Soc. 138, 5594–5602 (2016).

    CAS  Google Scholar 

  25. Bloch, E. D. et al. Reversible CO binding enables tunable CO/H2 and CO/N2 separations in metal-organic frameworks with exposed divalent metal cations. J. Am. Chem. Soc. 136, 10752–10761 (2014).

    CAS  Google Scholar 

  26. Denysenko, D., Grzywa, M., Jelic, J., Reuter, K. & Volkmer, D. Scorpionate-type coordination in MFU-4l metal-organic frameworks: small-molecule binding and activation upon the thermally activated formation of open metal sites. Angew. Chem. Int. Ed. 53, 5832–5836 (2014).

    CAS  Google Scholar 

  27. Bloch, E. D. et al. Selective binding of O2 over N2 in a redox-active metal-organic framework with open iron(ii) coordination sites. J. Am. Chem. Soc. 133, 14814–14822 (2011).

    CAS  Google Scholar 

  28. Wang, J. et al. Optimizing pore space for flexible-robust metal-organic framework to boost trace acetylene removal. J. Am. Chem. Soc. 142, 9744–9751 (2020).

    CAS  Google Scholar 

  29. Horike, S., Inubushi, Y., Hori, T., Fukushima, T. & Kitagawa, S. A solid solution approach to 2D coordination polymers for CH4/CO2 and CH4/C2H6 gas separation: equilibrium and kinetic studies. Chem. Sci. 3, 116–120 (2012).

    CAS  Google Scholar 

  30. Zhang, X.-W., Zhou, D.-D. & Zhang, J.-P. Tuning the gating energy barrier of metal-organic framework for molecular sieving. Chem 7, 1006–1019 (2021).

    CAS  Google Scholar 

  31. Zhang, J.-P. & Chen, X.-M. Exceptional framework flexibility and sorption behavior of a multifunctional porous cuprous triazolate framework. J. Am. Chem. Soc. 130, 6010–6017 (2008).

    CAS  Google Scholar 

  32. Zhang, J.-P. & Chen, X.-M. Optimized acetylene/carbon dioxide sorption in a dynamic porous crystal. J. Am. Chem. Soc. 131, 5516–5521 (2009).

    CAS  Google Scholar 

  33. Liu, S.-Y. et al. Flexible, luminescent metal-organic frameworks showing synergistic solid-solution effects on porosity and sensitivity. Angew. Chem. Int. Ed. 55, 16021–16025 (2016).

    CAS  Google Scholar 

  34. Zhuo, L.-L. et al. Flexible cuprous triazolate frameworks as highly stable and efficient electrocatalysts for CO2 reduction with tunable C2H4/CH4 selectivity. Angew. Chem. Int. Ed. 61, e202204967 (2022).

    CAS  Google Scholar 

  35. Wang, C. et al. A partially fluorinated ligand for two super-hydrophobic porous coordination polymers with classic structures and increased porosities. Natl Sci. Rev. 8, nwaa094 (2021).

    CAS  Google Scholar 

  36. Krause, S. et al. The impact of crystal size and temperature on the adsorption-induced flexibility of the Zr-based metal–organic framework DUT-98. Beilstein J. Nanotechnol. 10, 1737–1744 (2019).

    CAS  Google Scholar 

  37. Numaguchi, R., Tanaka, H., Watanabe, S. & Miyahara, M. T. Simulation study for adsorption-induced structural transition in stacked-layer porous coordination polymers: equilibrium and hysteretic adsorption behaviors. J. Chem. Phys. 138, 054708 (2013).

    Google Scholar 

  38. Lopes, F. V. S. et al. Adsorption of H2, CO2, CH4, CO, N2 and H2O in activated carbon and zeolite for hydrogen production. Sep. Sci. Technol. 44, 1045–1073 (2009).

    CAS  Google Scholar 

  39. Chen, K.-J. et al. Efficient CO2 removal for ultra-pure CO production by two hybrid ultramicroporous materials. Angew. Chem. Int. Ed. 57, 3332–3336 (2018).

    CAS  Google Scholar 

  40. Evans, J. D., Bon, V., Senkovska, I., Lee, H.-C. & Kaskel, S. Four-dimensional metal-organic frameworks. Nat. Commun. 11, 2690 (2020).

    CAS  Google Scholar 

  41. Zhou, D.-D. & Zhang, J.-P. On the role of flexibility for adsorptive separation. Acc. Chem. Res. 55, 2966–2977 (2022).

    CAS  Google Scholar 

  42. Krause, S., Hosono, N. & Kitagawa, S. Chemistry of soft porous crystals: structural dynamics and gas adsorption properties. Angew. Chem. Int. Ed. 59, 15325–15341 (2020).

    CAS  Google Scholar 

  43. Wayner, D. D. M. & Arnold, D. R. Substituent effects on benzylic radical hydrogen hyperfine coupling constants. Part 4. The effect of branching of the alkyl substituent. Can. J. Chem. 63, 2378–2383 (1985).

    CAS  Google Scholar 

  44. Van Wüllen, C. Molecular structure and binding energies of monosubstituted hexacarbonyls of chromium, molybdenum, and tungsten: relativistic density functional study. J. Comput. Chem. 18, 1985–1992 (1997).

    Google Scholar 

  45. Coudert, F.-X., Jeffroy, M., Fuchs, A. H., Boutin, A. & Mellot-Draznieks, C. Thermodynamics of guest-induced structural transitions in hybrid organic-inorganic frameworks. J. Am. Chem. Soc. 130, 14294–14302 (2008).

    CAS  Google Scholar 

  46. Weiss, J. N. The Hill equation revisited: uses and misuses. FASEB J. 11, 835–841 (1997).

    CAS  Google Scholar 

  47. Van Albada, G. A., De Graaff, R. A. G., Haasnoot, J. G. & Reedijk, J. Synthesis, spectroscopic characterization, and magneticproperties of unusual 3,5-dialkyl-1,2,4-triazole compounds containing N-bridging isothiocyanato ligands. X-ray structure of trinuclear bis[(μ-thiocyanato-N)bis(μ-3,5-diethyl-1,2,4-triazole-N1,N2)bis(thiocyanato-N)(3,5-diethyl-1,2,4-triazole-N1)nickel(ii)-N,N1,N1']nickel(ii) dihydrate. Inorg. Chem. 23, 1404–1408 (1984).

    Google Scholar 

  48. Xue, H., Twamley, B. & Shreeve, J. M. The first 1-alkyl-3-perfluoroalkyl-4,5-dimethyl-1,2,4-triazolium salts. J. Org. Chem. 69, 1397–1400 (2004).

    CAS  Google Scholar 

  49. Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Rad. 12, 537–541 (2005).

    CAS  Google Scholar 

  50. Rehr, J. J., Kas, J. J., Vila, F. D., Prange, M. P. & Jorissen, K. Parameter-free calculations of X-ray spectra with FEFF9. Phys. Chem. Chem. Phys. 12, 5503–5513 (2010).

    CAS  Google Scholar 

  51. Moosavi, S. M. et al. A data-science approach to predict the heat capacity of nanoporous materials. Nat. Mater. 21, 1419–1425 (2022).

    CAS  Google Scholar 

  52. Bernardes, C. E. S., Santos, L. M. N. B. F. & da Piedade, M. E. M. A new calorimetric system to measure heat capacities of solids by the drop method. Meas. Sci. Technol. 17, 1405 (2006).

    CAS  Google Scholar 

  53. Huang, N.-Y. et al. Direct synthesis of an aliphatic amine functionalized metal-organic framework for efficient CO2 removal and CH4 purification. CrystEngComm 20, 5969–5975 (2018).

    CAS  Google Scholar 

  54. Ye, Z.-M. et al. A hydrogen-bonded yet hydrophobic porous molecular crystal for molecular-sieving-like separation of butane and isobutane. Angew. Chem. Int. Ed. 59, 23322–23328 (2020).

    CAS  Google Scholar 

  55. Kühne, T. D. et al. CP2K: an electronic structure and molecular dynamics software package—Quickstep: efficient and accurate electronic structure calculations. J. Chem. Phys. 152, 194103 (2020).

    Google Scholar 

  56. Xiao, M. & Lu, T. Generalized charge decomposition analysis (GCDA) method. J. Adv. Phys. Chem. 4, 111–124 (2015).

    CAS  Google Scholar 

  57. Frisch, M. J. et al. Gaussian09 (Gaussian, 2009).

  58. Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).

    Google Scholar 

Download references

Acknowledgements

J.-P.Z. acknowledges support by the National Natural Science Foundation of China (22231012, 22090061 and 21821003) and the XPLORER PRIZE. We thank J.X. Jiang for help with the infrared spectroscopy experiments and Z.F. Ke for help with the computational simulation.

Author information

Authors and Affiliations

Authors

Contributions

J.-P.Z. conceived and designed the research. X.-W.Z., C.W. and Z.-W.M. performed the syntheses and measurements. C.W., X.-W.Z., X.-X.C. and W.-X.Z. carried out the structural analyses. X.-W.Z. carried out the breakthrough experiments and theoretical calculations. C.W. collected the infrared spectra. X.-W.Z., C.W. and J.-P.Z. wrote the manuscript, and all authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Jie-Peng Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Satoshi Horike and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–116 and Tables 1–22.

Supplementary Data

Computational models.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, XW., Wang, C., Mo, ZW. et al. Quasi-open Cu(i) sites for efficient CO separation with high O2/H2O tolerance. Nat. Mater. 23, 116–123 (2024). https://doi.org/10.1038/s41563-023-01729-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-023-01729-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing