Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Controlling persistent luminescence in nanocrystalline phosphors

Abstract

Persistent luminescent phosphors can store light energy in advance and release it with a long-lasting afterglow emission. With their ability to eliminate in situ excitation and store energy for long periods of time, they are promising for broad applications, including background-free bioimaging, high-resolution radiography, conformal electronics imaging and multilevel encryption. This Review provides an overview of various strategies for trap manipulation in persistent luminescent nanomaterials. We highlight key examples in the design and preparation of nanomaterials with tunable persistent luminescence, particularly in the near-infrared range. In subsequent sections, we cover the most current developments and trends concerning the use of these nanomaterials in biological applications. Moreover, we assess their advantages and disadvantages compared with conventional luminescent materials for biological applications. We also discuss future research directions and challenges, such as insufficient brightness at the single-particle level, and possible solutions to these challenges.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Common defects and strategies for trap manipulation in persistent luminescent materials.
Fig. 2: General strategies for tuning persistent luminescence in the UV, visible and NIR regions.
Fig. 3: Common strategies to improve persistent luminescence of nanophosphors.
Fig. 4: Persistent luminescent nanomaterials for autofluorescence-free biological applications.

Similar content being viewed by others

References

  1. Lastusaari, M. et al. The Bologna Stone: history’s first persistent luminescent material. Eur. J. Mineral. 24, 885–890 (2012).

    Article  CAS  Google Scholar 

  2. Hölsä, J. Persistent luminescence beats the afterglow: 400 years of persistent luminescence. Electrochem. Soc. Interface 18, 42–45 (2009).

    Article  Google Scholar 

  3. Shionoya, S., Yen, W. M. & Yamamoto, H. Phosphor Handbook (CRC Press, 2018).

  4. Li, Z. et al. Direct aqueous-phase synthesis of sub-10 nm “luminous pearls” with enhanced in vivo renewable near-infrared persistent luminescence. J. Am. Chem. Soc. 137, 5304–5307 (2015).

  5. Huang, K. et al. Three-dimensional colloidal controlled growth of core–shell heterostructured persistent luminescence nanocrystals. Nano Lett. 21, 4903–4910 (2021).

    Article  CAS  Google Scholar 

  6. Pei, P. et al. X-ray-activated persistent luminescence nanomaterials for NIR-II imaging. Nat. Nanotechnol. 16, 1011–1018 (2021).

    Article  CAS  Google Scholar 

  7. Zhuang, Y., Wang, L., Lv, Y., Zhou, T.-L. & Xie, R.-J. Optical data storage and multicolor emission readout on flexible films using deep-trap persistent luminescence materials. Adv. Funct. Mater. 28, 1705769 (2018).

    Article  Google Scholar 

  8. Zhao, X. et al. Autofluorescence-free chemo/biosensing in complex matrixes based on persistent luminescence nanoparticles. TrAC Trends Anal. Chem. 118, 65–72 (2019).

    Article  CAS  Google Scholar 

  9. Lecuyer, T. et al. Chemically engineered persistent luminescence nanoprobes for bioimaging. Theranostics 6, 2488–2524 (2016).

    Article  CAS  Google Scholar 

  10. Huang, K. et al. Designing next generation of persistent luminescence: recent advances in uniform persistent luminescence nanoparticles. Adv. Mater. 34, 2107962 (2021).

    Article  Google Scholar 

  11. Becker, R. S. Theory and Interpretation of Fluorescence and Phosphorescence (Wiley-Interscience, 1969).

  12. Lewis, G. N. & Kasha, M. Phosphorescence and the triplet state. J. Am. Chem. Soc. 66, 2100–2116 (1944).

    Article  CAS  Google Scholar 

  13. Zhao, W., He, Z. & Tang, B. Z. Room-temperature phosphorescence from organic aggregates. Nat. Rev. Mater. 5, 869–885 (2020).

    Article  CAS  Google Scholar 

  14. Kabe, R. & Adachi, C. Organic long persistent luminescence. Nature 550, 384–387 (2017).

    Article  CAS  Google Scholar 

  15. Jinnai, K., Kabe, R., Lin, Z. & Adachi, C. Organic long-persistent luminescence stimulated by visible light in p-type systems based on organic photoredox catalyst dopants. Nat. Mater. 21, 338–344 (2022).

    Article  CAS  Google Scholar 

  16. Jiang, Y. et al. A generic approach towards afterglow luminescent nanoparticles for ultrasensitive in vivo imaging. Nat. Commun. 10, 2064 (2019).

    Article  Google Scholar 

  17. Guo, Q., Liao, L., Mei, L., Liu, H. & Hai, Y. Color-tunable photoluminescence phosphors of Ce3+ and Tb3+ co-doped Sr2La8(SiO4)6O2 for UV w-LEDs. J. Solid State Chem. 225, 149–154 (2015).

    Article  CAS  Google Scholar 

  18. Hongwei, Z., Fangtian, Y., Hongshang, P. & Huang, S. Energy transfer from Ce3+ to Tb3+, Dy3+ and Eu3+ in Na3Y(BO3)2. J. Rare Earths 33, 1051–1055 (2015).

    Article  Google Scholar 

  19. Ronda, C. & Meijerink, A. On the mechanism leading to afterglow in Gd2O2S:Pr. Opt. Mater. X 12, 100091 (2021).

    CAS  Google Scholar 

  20. Liu, F., Liang, Y. & Pan, Z. Detection of up-converted persistent luminescence in the near infrared emitted by the Zn3Ga2GeO8:Cr3+,Yb3+,Er3+ phosphor. Phys. Rev. Lett. 113, 177401 (2014).

    Article  Google Scholar 

  21. Li, Y. et al. A strategy for developing near infrared long-persistent phosphors: taking MAlO3:Mn4+,Ge4+ (M = La, Gd) as an example. J. Mater. Chem. C 2, 2019–2027 (2014).

    Article  CAS  Google Scholar 

  22. Pan, Z. et al. Facilitating low-energy activation in the near-infrared persistent luminescent phosphor Zn1+xGa2–2xSnxO4:Cr3+ via crystal field strength modulations. J. Phys. Chem. C 124, 8347–8358 (2020).

  23. Ivanovskii, A. L., Gubanov, V. A., Kurmaev, E. Z. & Shveikin, G. P. Electronic structure and the chemical bond in non-stoichiometric refractory compounds of transition metals in sub-groups IVa and Va. Russ. Chem. Rev. 52, 395 (1983).

    Article  Google Scholar 

  24. Suriyamurthy, N. & Panigrahi, B. Effects of non-stoichiometry and substitution on photoluminescence and afterglow luminescence of Sr4Al14O25:Eu2+,Dy3+ phosphor. J. Lumin. 128, 1809–1814 (2008).

    Article  CAS  Google Scholar 

  25. Abdukayum, A., Chen, J.-T., Zhao, Q. & Yan, X.-P. Functional near infrared-emitting Cr3+/Pr3+ co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging. J. Am. Chem. Soc. 135, 14125–14133 (2013).

  26. Aitasalo, T. et al. Persistent luminescence phenomena in materials doped with rare earth ions. J. Solid State Chem. 171, 114–122 (2003).

    Article  CAS  Google Scholar 

  27. Dorenbos, P. Electronic structure engineering of lanthanide activated materials. J. Mater. Chem. 22, 22344–22349 (2012).

    Article  CAS  Google Scholar 

  28. Bos, A. J. et al. Study of TL glow curves of YPO4 double doped with lanthanide ions. Radiat. Meas. 46, 1410–1416 (2011).

    Article  CAS  Google Scholar 

  29. Duan, H., Dong, Y., Huang, Y., Hu, Y. & Chen, X. The important role of oxygen vacancies in Sr2MgSi2O7 phosphor. Phys. Lett. A 380, 1056–1062 (2016).

    Article  CAS  Google Scholar 

  30. Bessière, A., Lecointre, A., Priolkar, K. & Gourier, D. Role of crystal defects in red long-lasting phosphorescence of CaMgSi2O6:Mn diopsides. J. Mater. Chem. 22, 19039–19046 (2012).

    Article  Google Scholar 

  31. Du, J., Feng, A. & Poelman, D. Temperature dependency of trap‐controlled persistent luminescence. Laser Photon. Rev. 14, 2000060 (2020).

    Article  CAS  Google Scholar 

  32. Ou, X. et al. High-resolution X-ray luminescence extension imaging. Nature 590, 410–415 (2021).

    Article  CAS  Google Scholar 

  33. Gao, Q. et al. Manipulating trap filling of persistent phosphors upon illumination by using a blue light-emitting diode. J. Mater. Chem. C 8, 6988–6992 (2020).

    Article  CAS  Google Scholar 

  34. Zhuang, Y. et al. X-ray-charged bright persistent luminescence in NaYF4:Ln3+@ NaYF4 nanoparticles for multidimensional optical information storage. Light. Sci. Appl. 10, 132 (2021).

    Article  CAS  Google Scholar 

  35. Zhuang, Y., Katayama, Y., Ueda, J. & Tanabe, S. A brief review on red to near-infrared persistent luminescence in transition-metal-activated phosphors. Opt. Mater. 36, 1907–1912 (2014).

    Article  CAS  Google Scholar 

  36. Li, Y. et al. Folic acid-conjugated chromium(III) doped nanoparticles consisting of mixed oxides of zinc, gallium and tin, and possessing near-infrared and long persistent phosphorescence for targeted imaging of cancer cells. Microchim. Acta 182, 1827–1834 (2015).

    Article  CAS  Google Scholar 

  37. Katayama, Y., Kayumi, T., Ueda, J. & Tanabe, S. Enhanced persistent red luminescence in Mn2+-doped (Mg,Zn)GeO3 by electron trap and conduction band engineering. Opt. Mater. 79, 147–151 (2018).

    Article  CAS  Google Scholar 

  38. Wei, X. et al. Longer and stronger: improving persistent luminescence in size-tuned zinc gallate nanoparticles by alcohol-mediated chromium doping. ACS Nano 14, 12113–12124 (2020).

    Article  CAS  Google Scholar 

  39. Wu, Y. et al. Near-infrared long-persistent phosphor of Zn3Ga2Ge2O10:Cr3+ sintered in different atmosphere. Spectrochim. Acta A 151, 385–389 (2015).

    Article  CAS  Google Scholar 

  40. Luo, H., Cao, J., Li, X., Wang, X. & Peng, M. Topological tailoring of structure and defects to enhance red to near-infrared afterglow from Mn2+-doped germanate photonic glasses. J. Mater. Chem. C 6, 11525–11535 (2018).

    Article  CAS  Google Scholar 

  41. Qin, X. et al. A novel NIR long phosphorescent phosphor: SrSnO3:Bi2+. RSC Adv. 5, 101347–101352 (2015).

    Article  CAS  Google Scholar 

  42. Nie, J. et al. Tunable long persistent luminescence in the second near-infrared window via crystal field control. Sci. Rep. 7, 12392 (2017).

    Article  Google Scholar 

  43. Eliseeva, S. V. & Bünzli, J.-C. G. Lanthanide luminescence for functional materials and bio-sciences. Chem. Soc. Rev. 39, 189–227 (2010).

    Article  CAS  Google Scholar 

  44. Rojas-Hernandez, R. E., Rubio-Marcos, F., Rodriguez, M. Á. & Fernandez, J. F. Long lasting phosphors: SrAl2O4:Eu,Dy as the most studied material. Renew. Sustain. Energy Rev. 81, 2759–2770 (2018).

  45. Yu, N., Liu, F., Li, X. & Pan, Z. Near infrared long-persistent phosphorescence in SrAl2O4:Eu2+,Dy3+,Er3+ phosphors based on persistent energy transfer. Appl. Phys. Lett. 95, 231110 (2009).

    Article  Google Scholar 

  46. Xu, J., Murata, D., Katayama, Y., Ueda, J. & Tanabe, S. Cr3+/Er3+ co-doped LaAlO3 perovskite phosphor: a near-infrared persistent luminescence probe covering the first and third biological windows. J. Mater. Chem. B 5, 6385–6393 (2017).

    Article  CAS  Google Scholar 

  47. You, F., Bos, A. J., Shi, Q., Huang, S. & Dorenbos, P. Electron transfer process between Ce3+ donor and Yb3+ acceptor levels in the bandgap of Y3Al5O12 (YAG). J. Condens. Matter Phys. 23, 215502 (2011).

    Article  Google Scholar 

  48. Xu, J., Tanabe, S., Sontakke, A. D. & Ueda, J. Near-infrared multi-wavelengths long persistent luminescence of Nd3+ ion through persistent energy transfer in Ce3+, Cr3+ co-doped Y3Al2Ga3O12 for the first and second bio-imaging windows. Appl. Phys. Express 107, 081903 (2015).

    Google Scholar 

  49. Srivastava, B. B., Gupta, S. K., Mohan, S. & Mao, Y. Molten salt assisted annealing for making colloidal ZnGa2O4:Cr nanocrystals with high persistent luminescence. Chem. Eur. J. 27, 11398–11405 (2021).

    Article  CAS  Google Scholar 

  50. Wei, X. et al. Continuous flow synthesis of persistent luminescent chromium-doped zinc gallate nanoparticles. J. Phys. Chem. Lett. 12, 7067–7075 (2021).

    Article  CAS  Google Scholar 

  51. Fu, L. et al. Enhancement of long-lived luminescence in nanophosphors by surface defect passivation. Chem. Commun. 56, 6660–6663 (2020).

  52. Zou, W., Visser, C., Maduro, J. A., Pshenichnikov, M. S. & Hummelen, J. C. Broadband dye-sensitized upconversion of near-infrared light. Nat. Photon. 6, 560–564 (2012).

    Article  CAS  Google Scholar 

  53. Li, Z. et al. Enhancing rechargeable persistent luminescence via organic dye sensitization. Angew. Chem. Int. Ed. 60, 15886–15890 (2021).

    Article  CAS  Google Scholar 

  54. Amendola, V., Pilot, R., Frasconi, M., Marago, O. M. & Iatì, M. A. Surface plasmon resonance in gold nanoparticles: a review. J. Condens. Matter Phys. 29, 203002 (2017).

    Article  Google Scholar 

  55. Hai, O. et al. Plasma effect: a simple method for improving the persistent luminescence and light response range of persistent luminescent materials. J. Lumin. 217, 116785 (2020).

    Article  CAS  Google Scholar 

  56. Hai, O. et al. Enhancement of the persistent luminescence of Sr2MgSi2O7:Eu2+,Dy3+ by Cu nanoparticles. J. Lumin. 220, 116965 (2020).

    Article  CAS  Google Scholar 

  57. Srivastava, B. B., Kuang, A. & Mao, Y. Persistent luminescent sub-10 nm Cr doped ZnGa2O4 nanoparticles by a biphasic synthesis route. Chem. Commun. 51, 7372–7375 (2015).

    Article  CAS  Google Scholar 

  58. Zhan-Jun, L., Hong-Wu, Z., Meng, S., Jiang-Shan, S. & Hai-Xia, F. A facile and effective method to prepare long-persistent phosphorescent nanospheres and its potential application for in vivo imaging. J. Mater. Chem. 22, 24713–24720 (2012).

  59. Li, Z. et al. In vivo repeatedly charging near‐infrared‐emitting mesoporous SiO2/ZnGa2O4:Cr3+ persistent luminescence nanocomposites. Adv. Sci. 2, 1500001 (2015).

    Article  Google Scholar 

  60. Liu, Y. et al. Mesoporous TiO2 mesocrystals: remarkable defects-induced crystallite-interface reactivity and their in situ conversion to single crystals. ACS Cent. Sci. 1, 400–408 (2015).

    Article  CAS  Google Scholar 

  61. Baziulyte-Paulaviciene, D., Traskina, N., Vargalis, R., Katelnikovas, A. & Sakirzanovas, S. Thermal decomposition synthesis of Er3+-activated NaYbF4 upconverting microparticles for optical temperature sensing. J. Lumin. 215, 116672 (2019).

    Article  CAS  Google Scholar 

  62. Hu, Y. et al. X-ray-excited super-long green persistent luminescence from Tb3+ monodoped β-NaYF4. J. Phys. Chem. C 124, 24940–24948 (2020).

    Article  CAS  Google Scholar 

  63. Xue, Z. et al. X-ray-activated near-infrared persistent luminescent probe for deep-tissue and renewable in vivo bioimaging. ACS Appl. Mater. Interfaces 9, 22132–22142 (2017).

    Article  CAS  Google Scholar 

  64. Relvas, M. et al. Trends in Cr3+ red emissions from ZnGa2O4 nanostructures produced by pulsed laser ablation in a liquid medium. J. Phys. Chem. Solids 129, 413–423 (2019).

    Article  CAS  Google Scholar 

  65. Maldiney, T. et al. In vivo optical imaging with rare earth doped Ca2Si5N8 persistent luminescence nanoparticles. Opt. Mater. Express 2, 261–268 (2012).

  66. Li, Y.-J. & Yan, X.-P. Synthesis of functionalized triple-doped zinc gallogermanate nanoparticles with superlong near-infrared persistent luminescence for long-term orally administrated bioimaging. Nanoscale 8, 14965–14970 (2016).

    Article  CAS  Google Scholar 

  67. Maldiney, T. et al. The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells. Nat. Mater. 13, 418–426 (2014).

    Article  CAS  Google Scholar 

  68. Wu, B.-Y., Wang, H.-F., Chen, J.-T. & Yan, X.-P. Fluorescence resonance energy transfer inhibition assay for α-fetoprotein excreted during cancer cell growth using functionalized persistent luminescence nanoparticles. J. Am. Chem. Soc. 133, 686–688 (2010).

    Article  Google Scholar 

  69. Chen, N. et al. Real‐time monitoring of dynamic microbial Fe(III) respiration metabolism with a living cell‐compatible electron‐sensing probe. Angew. Chem. Int. Ed. 61, e202115572 (2022).

    CAS  Google Scholar 

  70. Wu, B.-Y. & Yan, X.-P. Bioconjugated persistent luminescence nanoparticles for Föster resonance energy transfer immunoassay of prostate specific antigen in serum and cell extracts without in situ excitation. Chem. Commun. 51, 3903–3906 (2015).

  71. Healy, D. A., Hayes, C. J., Leonard, P., McKenna, L. & O’Kennedy, R. Biosensor developments: application to prostate-specific antigen detection. Trends Biotechnol. 25, 125–131 (2007).

    Article  CAS  Google Scholar 

  72. Xue, Z. et al. A 980 nm laser-activated upconverted persistent probe for NIR-to-NIR rechargeable in vivo bioimaging. Nanoscale 9, 7276–7283 (2017).

  73. Zhou, Z. et al. Rechargeable and LED-activated ZnGa2O4:Cr3+ near-infrared persistent luminescence nanoprobes for background-free biodetection. Nanoscale 9, 6846–6853 (2017).

    Article  CAS  Google Scholar 

  74. Zou, R. et al. Silica shell-assisted synthetic route for mono-disperse persistent nanophosphors with enhanced in vivo recharged near-infrared persistent luminescence. Nano Res. 10, 2070–2082 (2017).

  75. Maldiney, T. et al. Effect of core diameter, surface coating, and PEG chain length on the biodistribution of persistent luminescence nanoparticles in mice. ACS Nano 5, 854–862 (2011).

    Article  CAS  Google Scholar 

  76. Chen, L.-J., Yang, C.-X. & Yan, X.-P. Liposome-coated persistent luminescence nanoparticles as luminescence trackable drug carrier for chemotherapy. Anal. Chem. 89, 6936–6939 (2017).

    Article  CAS  Google Scholar 

  77. Sun, S.-K. et al. Turning solid into gel for high-efficient persistent luminescence-sensitized photodynamic therapy. Biomaterials 218, 119328 (2019).

    Article  CAS  Google Scholar 

  78. Abdurahman, R., Yang, C.-X. & Yan, X.-P. Conjugation of a photosensitizer to near infrared light renewable persistent luminescence nanoparticles for photodynamic therapy. Chem. Commun. 52, 13303–13306 (2016).

  79. Ma, Q. et al. Near-infrared-light-mediated high-throughput information encryption based on the inkjet printing of upconversion nanoparticles. Inorg. Chem. Front. 4, 1166–1172 (2017).

    Article  CAS  Google Scholar 

  80. Kim, S.-J., Choi, M., Hong, G. & Hahn, S. K. Controlled afterglow luminescent particles for photochemical tissue bonding. Light Sci. Appl. 11, 314 (2022).

    Article  CAS  Google Scholar 

  81. Alkauskas, A., McCluskey, M. D. & Van de Walle, C. G. Tutorial: defects in semiconductors—combining experiment and theory. Int. J. Appl. Phys. 119, 181101 (2016).

    Article  Google Scholar 

  82. Li, H. et al. Theory‐guided defect tuning through topochemical reactions for accelerated discovery of UVC persistent phosphors. Adv. Opt. Mater. 8, 1901727 (2020).

    Article  CAS  Google Scholar 

  83. Liu, Z., Zhu, D., Raju, L. & Cai, W. Tackling photonic inverse design with machine learning. Adv. Sci. 8, 2002923 (2021).

    Article  Google Scholar 

  84. Poon, W. et al. Elimination pathways of nanoparticles. ACS Nano 13, 5785–5798 (2019).

    Article  CAS  Google Scholar 

  85. de Chermont, Q. l. M. et al. Nanoprobes with near-infrared persistent luminescence for in vivo imaging. Proc. Natl Acad. Sci. USA 104, 9266–9271 (2007).

  86. Teston, E. et al. Non‐aqueous sol–gel synthesis of ultra small persistent luminescence nanoparticles for near‐infrared in vivo imaging. Chem. Eur. J. 21, 7350–7354 (2015).

    Article  CAS  Google Scholar 

  87. Zou, R. et al. Magnetic-NIR persistent luminescent dual-modal ZGOCS@MSNs@Gd2O3 core–shell nanoprobes for in vivo imaging. Chem. Mater. 29, 3938–3946 (2017).

    Article  CAS  Google Scholar 

  88. Wang, J., Li, J., Yu, J., Zhang, H. & Zhang, B. Large hollow cavity luminous nanoparticles with near-infrared persistent luminescence and tunable sizes for tumor afterglow imaging and chemo-/photodynamic therapies. ACS Nano 12, 4246–4258 (2018).

    Article  CAS  Google Scholar 

  89. Gao, Y.-F. et al. Large-pore mesoporous-silica-assisted synthesis of high-performance ZnGa2O4:Cr3+/Sn4+@MSNs multifunctional nanoplatform with optimized optical probe mass ratio and superior residual pore volume for improved bioimaging and drug delivery. Chem. Eng. Sci. 420, 130021 (2021).

    Article  CAS  Google Scholar 

  90. Lin, Y. et al. Multiple emission bands NIR-persistent luminescence mSiO2@Zn0.6Ca0.4Ga2O4:Cr3+,Yb3+ nanoparticles for biological applications. J. Mater. Chem. B 9, 1131–1137 (2021).

    Article  CAS  Google Scholar 

  91. Jiang, R. et al. X-ray/red-light excited ZGGO:Cr,Nd nanoprobes for NIR-I/II afterglow imaging. Dalton Trans. 49, 6074–6083 (2020).

    Article  CAS  Google Scholar 

  92. Ma, C. et al. The second near-infrared window persistent luminescence for anti-counterfeiting application. Cryst. Growth Des. 20, 1859–1867 (2020).

    Article  CAS  Google Scholar 

  93. Zheng, S. et al. X-ray recharged long afterglow luminescent nanoparticles MgGeO3:Mn2+,Yb3+,Li+ in the first and second biological windows for long-term bioimaging. Nanoscale 12, 14037–14046 (2020).

    Article  CAS  Google Scholar 

  94. Wu, L. et al. Synthesis and optical properties of a Y3(Al/Ga)5O12:Ce3+,Cr3+,Nd3+ persistent luminescence nanophosphor: a promising near-infrared-II nanoprobe for biological applications. Nanoscale 12, 14180–14187 (2020).

    Article  CAS  Google Scholar 

  95. Liu, B.-M. et al. Low-dose X-ray-stimulated LaGaO3:Sb,Cr near-infrared persistent luminescence nanoparticles for deep-tissue and renewable in vivo bioimaging. Chem. Eng. Sci. 404, 127133 (2021).

  96. Chen, X. et al. Trap energy upconversion-like near-infrared to near-infrared light rejuvenateable persistent luminescence. Adv. Mater. 33, 2008722 (2021).

    Article  CAS  Google Scholar 

  97. Li, J. et al. Porous GdAlO3:Cr3+,Sm3+ drug carrier for real-time long afterglow and magnetic resonance dual-mode imaging. J. Lumin. 199, 363–371 (2018).

    Article  CAS  Google Scholar 

  98. Resch-Genger, U., Grabolle, M., Cavaliere-Jaricot, S., Nitschke, R. & Nann, T. Quantum dots versus organic dyes as fluorescent labels. Nat. Methods 5, 763–775 (2008).

    Article  CAS  Google Scholar 

  99. Zimmer, M. Green fluorescent protein (GFP): applications, structure, and related photophysical behavior. Chem. Rev. 102, 759–782 (2002).

    Article  CAS  Google Scholar 

  100. Chalfie, M. & Kain, S. R. Green Fluorescent Protein: Properties, Applications and Protocols (John Wiley & Sons, 2005).

  101. Xu, Y. et al. Tuning molecular aggregation to achieve highly bright AIE dots for NIR-II fluorescence imaging and NIR-I photoacoustic imaging. Chem. Sci. 11, 8157–8166 (2020).

    Article  CAS  Google Scholar 

  102. Liu, H. et al. AIE bioconjugates for biomedical applications. Adv. Opt. Mater. 8, 2000162 (2020).

    Article  CAS  Google Scholar 

  103. Xu, W., Wang, D. & Tang, B. Z. NIR‐II AIEgens: a win–win integration towards bioapplications. Angew. Chem. Int. Ed. 133, 7552–7563 (2021).

    Article  Google Scholar 

  104. Zhi, J., Zhou, Q., Shi, H., An, Z. & Huang, W. Organic room temperature phosphorescence materials for biomedical applications. Chem. Asian J. 15, 947–957 (2020).

    Article  CAS  Google Scholar 

  105. Lim, S. Y., Shen, W. & Gao, Z. Carbon quantum dots and their applications. Chem. Soc. Rev. 44, 362–381 (2015).

    Article  CAS  Google Scholar 

  106. Jamieson, T. et al. Biological applications of quantum dots. Biomaterials 28, 4717–4732 (2007).

    Article  CAS  Google Scholar 

  107. Smith, A. M., Duan, H., Mohs, A. M. & Nie, S. Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv. Drug Deliv. Rev. 60, 1226–1240 (2008).

  108. Torelli, M. D., Nunn, N. A. & Shenderova, O. A. A perspective on fluorescent nanodiamond bioimaging. Small 15, 1902151 (2019).

    Article  CAS  Google Scholar 

  109. Claveau, S., Bertrand, J.-R. & Treussart, F. Fluorescent nanodiamond applications for cellular process sensing and cell tracking. Micromachines 9, 247 (2018).

    Article  Google Scholar 

  110. Wang, L., Draz, M. S., Wang, W., Liao, G. & Xu, Y. The quality of in vivo upconversion fluorescence signals inside different anatomic structures. J. Biomed. Nanotechnol. 11, 325–333 (2015).

  111. Wang, J., Ma, Q., Wang, Y., Shen, H. & Yuan, Q. Recent progress in biomedical applications of persistent luminescence nanoparticles. Nanoscale 9, 6204–6218 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Agency for Science, Technology and Research (grant no. A1983c0038); the National Research Foundation, the Prime Minister’s Office of Singapore under its Investigatorship Programme (award no. NRF-NRFI05-2019-0003); the National Natural Science Foundation of China (nos 10804099, 21804119, 21771135 and 21871071); the Key Projects of Zhejiang Natural Science Foundation (project no. LZ18B050002); and the China Scholarship Council (no. 201408330001).

Author information

Authors and Affiliations

Authors

Contributions

L.L. and Z.P. wrote this review, and X.L. edited it. J.C., K.S. and X.Q. assisted in the preparation of the manuscript.

Corresponding authors

Correspondence to Zaifa Pan or Xiaogang Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, L., Chen, J., Shao, K. et al. Controlling persistent luminescence in nanocrystalline phosphors. Nat. Mater. 22, 289–304 (2023). https://doi.org/10.1038/s41563-022-01468-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-022-01468-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing