Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ionic modulation and ionic coupling effects in MoS2 devices for neuromorphic computing

Abstract

Coupled ionic–electronic effects present intriguing opportunities for device and circuit development. In particular, layered two-dimensional materials such as MoS2 offer highly anisotropic ionic transport properties, facilitating controlled ion migration and efficient ionic coupling among devices. Here, we report reversible modulation of MoS2 films that is consistent with local 2H–1T′ phase transitions by controlling the migration of Li+ ions with an electric field, where an increase/decrease in the local Li+ ion concentration leads to the transition between the 2H (semiconductor) and 1T′ (metal) phases. The resulting devices show excellent memristive behaviour and can be directly coupled with each other through local ionic exchange, naturally leading to synaptic competition and synaptic cooperation effects observed in biology. These results demonstrate the potential of direct modulation of two-dimensional materials through field-driven ionic processes, and can lead to future electronic and energy devices based on coupled ionic–electronic effects and biorealistic implementation of artificial neural networks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Electric field control of reversible 2H–1T′ phase transition in LixMoS2 films.
Fig. 2: 2H/1T′ phase composition tuning in LixMoS2.
Fig. 3: LixMoS2 film morphology changes caused by Li+ ion redistribution.
Fig. 4: Implementation of synaptic competition among LixMoS2 devices.
Fig. 5: Implementation of synaptic cooperation among LixMoS2 devices.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Fiori, G. et al. Electronics based on two-dimensional materials. Nat. Nanotech. 9, 768–779 (2014).

    Article  CAS  Google Scholar 

  2. Mak, K. F. & Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photon. 10, 216–226 (2016).

    Article  CAS  Google Scholar 

  3. Schaibley, J. R. et al. Valleytronics in 2D materials. Nat. Rev. Mater. 1, 16055 (2016).

    Article  CAS  Google Scholar 

  4. Hong, J. et al. Layer-dependent anisotropic electronic structure of freestanding quasi-two-dimensional MoS2. Phys. Rev. B 93, 075440 (2016).

    Article  Google Scholar 

  5. Gong, C. et al. Electronic and optoelectronic applications based on 2D novel anisotropic transition metal dichalcogenides. Adv. Sci. 4, 1700231 (2017).

    Article  Google Scholar 

  6. Jung, Y., Zhou, Y. & Cha, J. J. Intercalation in two-dimensional transition metal chalcogenides. Inorg. Chem. Front. 3, 452–463 (2016).

    Article  CAS  Google Scholar 

  7. Voiry, D., Mohite, A. & Chhowalla, M. Phase engineering of transition metal dichalcogenides. Chem. Soc. Rev. 44, 2702–2712 (2015).

    Article  CAS  Google Scholar 

  8. Wang, L., Xu, Z., Wang, W. & Bai, X. Atomic mechanism of dynamic electrochemical lithiation processes of MoS2 nanosheets. J. Am. Chem. Soc. 136, 6693–6697 (2014).

    Article  CAS  Google Scholar 

  9. Chhowalla, M. et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013).

    Article  Google Scholar 

  10. Sun, X., Wang, Z., Li, Z. & Fu, Y. Q. Origin of structural transformation in mono- and bi-layered molybdenum disulfide. Sci. Rep. 6, 26666 (2016).

    Article  CAS  Google Scholar 

  11. Kappera, R. et al. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 13, 1128–1134 (2014).

    Article  CAS  Google Scholar 

  12. Cho, S. et al. Phase patterning for ohmic homojunction contact in MoTe2. Science 349, 625–628 (2015).

    Article  CAS  Google Scholar 

  13. Lin, Y.-C., Dumcenco, D. O., Huang, Y.-S. & Suenaga, K. Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nat. Nanotech. 9, 391–396 (2014).

    Article  CAS  Google Scholar 

  14. Yang, H., Kim, S. W., Chhowalla, M. & Lee, Y. H. Structural and quantum-state phase transitions in van der Waals layered materials. Nat. Phys. 13, 931–937 (2017).

    Article  CAS  Google Scholar 

  15. Choe, D.-H., Sung, H.-J. & Chang, K. J. Understanding topological phase transition in monolayer transition metal dichalcogenides. Phys. Rev. B 93, 125109 (2016).

    Article  Google Scholar 

  16. Wang, Y. et al. Structural phase transition in monolayer MoTe2 driven by electrostatic doping. Nature 550, 487–491 (2017).

    Article  CAS  Google Scholar 

  17. Ma, Y. et al. Reversible semiconducting-to-metallic phase transition in chemical vapor deposition grown monolayer WSe2 and applications for devices. ACS Nano 9, 7383–7391 (2015).

    Article  CAS  Google Scholar 

  18. Stephenson, T., Li, Z., Olsen, B. & Mitlin, D. Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites. Energy Environ. Sci. 7, 209–231 (2014).

    Article  CAS  Google Scholar 

  19. Xu, X., Liu, W., Kim, Y. & Cho, J. Nanostructured transition metal sulfides for lithium ion batteries: progress and challenges. Nano Today 9, 604–630 (2014).

    Article  CAS  Google Scholar 

  20. Li, Y., Wu, D., Zhou, Z., Cabrera, C. R. & Chen, Z. Enhanced Li adsorption and diffusion on MoS2 zigzag nanoribbons by edge effects: a computational study. J. Phys. Chem. Lett. 3, 2221–2227 (2012).

    Article  CAS  Google Scholar 

  21. Wang, H. et al. Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction. Proc. Natl Acad. Sci. USA 110, 19701–19706 (2013).

    Article  CAS  Google Scholar 

  22. Xia, J. et al. Phase evolution of lithium intercalation dynamics in 2H-MoS2. Nanoscale 9, 7533–7540 (2017).

    Article  CAS  Google Scholar 

  23. Xiong, F. et al. Li Intercalation in MoS2: in situ observation of its dynamics and tuning optical and electrical properties. Nano Lett. 15, 6777–6784 (2015).

    Article  CAS  Google Scholar 

  24. Leng, K. et al. Phase restructuring in transition metal dichalcogenides for highly stable energy storage. ACS Nano 10, 9208–9215 (2016).

    Article  CAS  Google Scholar 

  25. Jo, S. H. et al. Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10, 1297–1301 (2010).

    Article  CAS  Google Scholar 

  26. Du, G. et al. Superior stability and high capacity of restacked molybdenum disulfide as anode material for lithium ion batteries. Chem. Commun. 46, 1106–1108 (2010).

    Article  CAS  Google Scholar 

  27. Melitz, W., Shen, J., Kummel, A. C. & Lee, S. Kelvin probe force microscopy and its application. Surf. Sci. Rep. 66, 1–27 (2011).

    Article  CAS  Google Scholar 

  28. Wang, F. et al. Chemical distribution and bonding of lithium in intercalated graphite: identification with optimized electron energy loss spectroscopy. ACS Nano 5, 1190–1197 (2011).

    Article  CAS  Google Scholar 

  29. Rasamani, K. D., Alimohammadi, F. & Sun, Y. Interlayer-expanded MoS2. Mater. Today 20, 83–91 (2017).

    Article  CAS  Google Scholar 

  30. Valov, I. et al. Nanobatteries in redox-based resistive switches require extension of memristor theory. Nat. Commun. 4, 1771 (2013).

    Article  CAS  Google Scholar 

  31. Park, G.-S. et al. In situ observation of filamentary conducting channels in an asymmetric Ta2O5−x/TaO2−x bilayer structure. Nat. Commun. 4, 2382 (2013).

    Article  Google Scholar 

  32. Yang, Y. et al. Observation of conducting filament growth in nanoscale resistive memories. Nat. Commun. 3, 732 (2012).

    Article  Google Scholar 

  33. Fonseca, R. in Synaptic Tagging and Capture (ed. Sajikumar, S.) 29–44 (Springer, New York, 2015).

  34. Muller, D., Hefft, S. & Figurov, A. Heterosynaptic interactions between UP and LTD in CA1 hippocampal slices. Neuron 14, 599–605 (1995).

    Article  CAS  Google Scholar 

  35. Nishiyama, M., Hong, K., Mikoshiba, K., Poo, M.-M. & Kato, K. Calcium stores regulate the polarity and input specificity of synaptic modification. Nature 408, 584–588 (2000).

    Article  CAS  Google Scholar 

  36. Royer, S. & Paré, D. Conservation of total synaptic weight through balanced synaptic depression and potentiation. Nature 422, 518–522 (2003).

    Article  CAS  Google Scholar 

  37. Bailey, C. H., Giustetto, M., Huang, Y.-Y., Hawkins, R. D. & Kandel, E. R. Is heterosynaptic modulation essential for stabilizing hebbian plasticity and memory. Nat. Rev. Neurosci. 1, 11–20 (2000).

    Article  CAS  Google Scholar 

  38. Sheridan, P. M. et al. Sparse coding with memristor networks. Nat. Nanotech. 12, 784–789 (2017).

    Article  CAS  Google Scholar 

  39. Borghetti, J. et al. ‘Memristive’ switches enable ‘stateful’ logic operations via material implication. Nature 464, 873–876 (2010).

    Article  CAS  Google Scholar 

  40. Yu, Y. et al. Gate-tunable phase transitions in thin flakes of 1T-TaS2. Nat. Nanotech. 10, 270–276 (2015).

    Article  CAS  Google Scholar 

  41. Zhu, J. et al. Ion gated synaptic transistors based on 2D van der Waals crystals with tunable diffusive dynamics. Adv. Mater. 30, 1800195 (2018).

    Article  Google Scholar 

  42. He, K., Poole, C., Mak, K. F. & Shan, J. Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2. Nano Lett. 13, 2931–2936 (2013).

    Article  CAS  Google Scholar 

  43. Conley, H. J. et al. Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett. 13, 3626–3630 (2013).

    Article  CAS  Google Scholar 

  44. Sangwan, V. K. et al. Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide. Nature 554, 500 (2018).

    Article  CAS  Google Scholar 

  45. Zhu, L. Q., Wan, C. J., Guo, L. Q., Shi, Y. & Wan, Q. Artificial synapse network on inorganic proton conductor for neuromorphic systems. Nat. Commun. 5, 3158 (2014).

    Article  Google Scholar 

  46. Yang, Y., Chen, B. & Lu, D. W. Memristive physically evolving networks enabling the emulation of heterosynaptic plasticity. Adv. Mater. 27, 7720–7727 (2015).

    Article  CAS  Google Scholar 

  47. Wang, Z. et al. Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat. Mater. 16, 101–108 (2016).

    Article  Google Scholar 

  48. Zhu, X., Lee, J. & Lu, D. W. Iodine vacancy redistribution in organic–inorganic halide perovskite films and resistive switching effects. Adv. Mater. 29, 1700527 (2017).

    Article  Google Scholar 

  49. Zhu, X., Du, C., Jeong, Y. & Lu, D. W. Emulation of synaptic metaplasticity in memristors. Nanoscale 9, 45–51 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank K. Sun and A. Hunter for their help with the TEM measurements, and W. Ma, S. Lee, Q. Cui, J. Guo and Y. Li for helpful discussions and their assistance during the experiments. This work was supported in part by the National Science Foundation through grant numbers ECCS-1708700 and CCF-1617315.

Author information

Authors and Affiliations

Authors

Contributions

X.Z. and W.D.L. designed the project and constructed the research frame. X.Z. and D.L. fabricated the devices and performed the measurements. X.Z., X.L. and W.D.L. analysed the experimental data. W.D.L directed the project. All authors discussed the results and implications and commented on the manuscript at all stages.

Corresponding author

Correspondence to Wei D. Lu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–27, Supplementary Notes 1,2, Supplementary References 1–9

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Li, D., Liang, X. et al. Ionic modulation and ionic coupling effects in MoS2 devices for neuromorphic computing. Nature Mater 18, 141–148 (2019). https://doi.org/10.1038/s41563-018-0248-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-018-0248-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing