Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Socio-cultural practices may have affected sex differences in stature in Early Neolithic Europe

Abstract

The rules and structure of human culture impact health as much as genetics or environment. To study these relationships, we combine ancient DNA (n = 230), skeletal metrics (n = 391), palaeopathology (n = 606) and dietary stable isotopes (n = 873) to analyse stature variation in Early Neolithic Europeans from North Central, South Central, Balkan and Mediterranean regions. In North Central Europe, stable isotopes and linear enamel hypoplasias indicate high environmental stress across sexes, but female stature is low, despite polygenic scores identical to males, and suggests that cultural factors preferentially supported male recovery from stress. In Mediterranean populations, sexual dimorphism is reduced, indicating male vulnerability to stress and no strong cultural preference for males. Our analysis indicates that biological effects of sex-specific inequities can be linked to cultural influences at least as early as 7,000 yr ago, and culture, more than environment or genetics, drove height disparities in Early Neolithic Europe.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Migrations of early farmers into Europe.
Fig. 2: Sample properties and distributions.
Fig. 3: Distributions of statures, polygenic scores and isotopes.
Fig. 4: Evidence of environmental stress in Northern Central Europe.
Fig. 5: Comparison with genetic source populations.

Similar content being viewed by others

Data availability

All non-genetic data and polygenic scores used in this analysis are provided in Supplementary Table 1. Original ancient DNA data files can be downloaded from the resources provided in the cited publications and from the Allen Ancient DNA Resource (AADR; https://reich.hms.harvard.edu/allen-ancient-dna-resource-aadr-downloadable-genotypes-present-day-and-ancient-dna-data). GWAS summary statistics can be downloaded from the Neale Lab (http://www.nealelab.is) and the sibling GWAS summary statistics from OpenGWAS (https://gwas.mrcieu.ac.uk/). Previously published osteological data can be found in the cited sources which include the LiVES database (https://doi.org/10.17171/2-12-2-1) and C. Ruff’s public dataset (https://www.hopkinsmedicine.org/fae/CBR.html). Additional data from the PCAs, ADMIXTURE analysis and sex-specific polygenic scores are available at https://github.com/mathilab/Neolithic_height.git.

Code availability

R code used in this analysis is available at https://github.com/mathilab/Neolithic_height.git.

References

  1. Harpak, A. & Przeworski, M. The evolution of group differences in changing environments. PLoS Biol. 19, e3001072 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Martin, A. R. et al. Clinical use of current polygenic risk scores may exacerbate health disparities. Nat. Genet. 51, 584–591 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Roseman, C. C. Detecting interregionally diversifying natural selection on modern human cranial form by using matched molecular and morphometric data. Proc. Natl Acad. Sci. 101, 12824–12829 (2004).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Whitlock, M. C. Evolutionary inference from QST. Mol. Ecol. 17, 1885–1896 (2008).

    Article  PubMed  Google Scholar 

  5. Savell, K. R. R., Auerbach, B. M. & Roseman, C. C. Constraint, natural selection, and the evolution of human body form. Proc. Natl Acad. Sci. USA 113, 9492–9497 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Berg, J. J. & Coop, G. A population genetic signal of polygenic adaptation. PLoS Genet. 10, e1004412 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Mathieson, I. et al. Genome-wide patterns of selection in 230 ancient Eurasians. Nature 528, 499–503 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yengo, L. et al. Meta-analysis of genome-wide association studies for height and body mass index in ~700000 individuals of European ancestry. Hum. Mol. Genet. 27, 3641–3649 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cox, S. L. et al. Predicting skeletal stature using ancient DNA. Am. J. Biol. Anthropol. 177, 162–174 (2022).

    Article  Google Scholar 

  10. Marciniak, S. et al. An integrative skeletal and paleogenomic analysis of stature variation suggests relatively reduced health for early European farmers. Proc. Natl Acad. Sci. 119, e2106743119 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Cox, S. L., Ruff, C. B., Maier, R. M. & Mathieson, I. Genetic contributions to variation in human stature in prehistoric Europe. Proc. Natl Acad. Sci. USA 116, 21484–21492 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bickle, P. & Whittle, A. (eds) The First Farmers of Central Europe (Oxbow, 2013).

  13. Bakels, C. C. The Western European Loess Belt: Agrarian History, 5300 BC–AD 1000 (Springer, 2009).

  14. Bentley, R. A. et al. Community differentiation and kinship among Europe’s first farmers. Proc. Natl Acad. Sci. USA 109, 9326–9330 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nicklisch, N., Oelze, V. M., Schierz, O., Meller, H. & Alt, K. W. A healthier smile in the past? Dental caries and diet in early neolithic farming communities from Central Germany. Nutrients 14, 1831 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Knipper, C. in Der Zahn der Zeit – Mensch und Kultur im Spiegel interdisziplinärer Forschung. Festschrift für Kurt W. Alt (eds Meyer, C. et al.) 211–225 (Veröffentlichungen des LDA und Archäologie Sachsen-Anhalt, 2020).

  17. Haak, W. et al. Massive migration from the steppe was a source for Indo-European languages in Europe. Nature 522, 207–211 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lipson, M. et al. Parallel palaeogenomic transects reveal complex genetic history of early European farmers. Nature 551, 368–372 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mathieson, I. et al. The genomic history of southeastern Europe. Nature 555, 197–203 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Antonio, M. L. et al. Ancient Rome: a genetic crossroads of Europe and the Mediterranean. Science 366, 708–714 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Martiniano, R. et al. The population genomics of archaeological transition in west Iberia: investigation of ancient substructure using imputation and haplotype-based methods. PLoS Genet. 13, e1006852 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Privé, F., Arbel, J. & Vilhjálmsson, B. J. LDpred2: better, faster, stronger. Bioinformatics 36, 5424–5431 (2020).

    Article  PubMed Central  Google Scholar 

  23. Howe, L. J. et al. Within-sibship genome-wide association analyses decrease bias in estimates of direct genetic effects. Nat. Genet. 54, 581–592 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sohail, M. et al. Polygenic adaptation on height is overestimated due to uncorrected stratification in genome-wide association studies. Elife 8, e39702 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Berg, J. J. et al. Reduced signal for polygenic adaptation of height in UK Biobank. Elife 8, e39725 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Vercellotti, G. et al. Exploring the multidimensionality of stature variation in the past through comparisons of archaeological and living populations. Am. J. Phys. Anthropol. 155, 229–242 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Roseman, C. C. & Auerbach, B. M. Ecogeography, genetics, and the evolution of human body form. J. Hum. Evol. 78, 80–90 (2015).

    Article  PubMed  Google Scholar 

  28. Stock, J. T. et al. Long-term trends in human body size track regional variation in subsistence transitions and growth acceleration linked to dairying. Proc. Natl Acad. Sci. USA 120, e2209482119 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rosenstock, E., Ebert, J., Martin, R. & Groß, M. LiVES collection of osteological anthropometry digest. LiVES COstA Digest. Edition Topoi. https://doi.org/10.17171/2-12-2-1 (2019).

  30. Randall, J. C. et al. Sex-stratified genome-wide association studies including 270,000 individuals show sexual dimorphism in genetic loci for anthropometric traits. PLOS Genet. 9, e1003500 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bernabeu, E. et al. Sex differences in genetic architecture in the UK Biobank. Nat. Genet. 53, 1283–1289 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Zhu, C. et al. Amplification is the primary mode of gene-by-sex interaction in complex human traits. Cell Genom. 3, 100297 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bogaard, A. Neolithic Farming in Central Europe: An Archaeobotanical Study of Crop Husbandry Practices (Routledge, 2004).

  34. Schier, W. in 6000 BC: Transformation and Change in the Near East and Europe (eds Biehl, P. & Rosenstock, E.) 372–392 (Cambridge Univ. Press, 2022).

  35. Betti, L. et al. Climate shaped how Neolithic farmers and European hunter-gatherers interacted after a major slowdown from 6,100 BCE to 4,500 BCE. Nat. Hum. Behav. 4, 1004–1010 (2020).

    Article  PubMed  Google Scholar 

  36. Dürrwächter, C., Craig, O. E., Collins, M. J., Burger, J. & Alt, K. W. Beyond the grave: variability in Neolithic diets in Southern Germany? J. Archaeol. Sci. 33, 39–48 (2006).

    Article  Google Scholar 

  37. Oelze, V. M. et al. Early Neolithic diet and animal husbandry: stable isotope evidence from three Linearbandkeramik (LBK) sites in Central Germany. J. Archaeol. Sci. 38, 270–279 (2011).

    Article  Google Scholar 

  38. Bentley, R. A. et al. in The First Farmers in Central Europe: Diversity in LBK Lifeways (eds Bickle, P. & Whittle, A.) 251–290 (Oxbow Books, 2013).

  39. Denaire, A. et al. The cultural project: formal chronological modelling of the Early and Middle Neolithic sequence in Lower Alsace. J. Archaeol. Method Theory 24, 1072–1149 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Gillis, R. E. et al. Stable isotopic insights into crop cultivation, animal husbandry, and land use at the Linearbandkeramik site of Vráble-Vel’ké Lehemby (Slovakia). Archaeol. Anthropol. Sci. 12, 256 (2020).

    Article  Google Scholar 

  41. Nicklisch, N. et al. Holes in teeth—dental caries in Neolithic and Early Bronze Age populations in Central Germany. Ann. Anat. 203, 90–99 (2016).

    Article  PubMed  Google Scholar 

  42. Gillis, R. E. et al. The evolution of dual meat and milk cattle husbandry in Linearbandkeramik societies. Proc. R. Soc. B 284, 20170905 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Salque, M. et al. Earliest evidence for cheese making in the sixth millennium BC in northern Europe. Nature 493, 522–525 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  44. Münster, A. et al. 4000 years of human dietary evolution in central Germany, from the first farmers to the first elites. PloS ONE 13, e0194862 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ghosh, S. Protein quality in the first thousand days of life. Food Nutr. Bull. 37, S14–S21 (2016).

    Article  PubMed  Google Scholar 

  46. Gray, J. P. & Wolfe, L. D. Height and sexual dimorphism of stature among human societies. Am. J. Phys. Anthropol. 53, 441–456 (1980).

    Article  CAS  PubMed  Google Scholar 

  47. Guatelli-Steinberg, D. & Lukacs, J. R. Interpreting sex differences in enamel hypoplasia in human and non-human primates: developmental, environmental, and cultural considerations. Am. J. Phys. Anthropol. 110, 73–126 (1999).

    Article  Google Scholar 

  48. Lubell, D., Jackes, M. & Meiklejohn, C. Archaeology and human biology of the Mesolithic–Neolithic transition in southern Portugal: a preliminary report. In The Mesolithic in Europe. Proc. Third International Symposium 632–640 (John Donaldson Publishers Ltd, 1990).

  49. McFadden, C. & Oxenham, M. F. A paleoepidemiological approach to the osteological paradox: investigating stress, frailty and resilience through cribra orbitalia. Am. J. Phys. Anthropol. 173, 205–217 (2020).

    Article  PubMed  Google Scholar 

  50. German, A. & Hochberg, Z. Sexual dimorphism of size ontogeny and life history. Front. Pediatr. https://doi.org/10.3389/fped.2020.00387 (2020).

  51. Stini, W. in The Analysis of Prehistoric Diets (ed. Stini, W.) 191–226 (Academic Press, 1985).

  52. Brauer, G. in Sexual Dimorphism in Homo sapiens: A Question of Size (ed. Hall, R.) 245–259 (Praeger, 1982).

  53. Vlassoff, C. Gender differences in determinants and consequences of health and illness. J. Health Popul. Nutr. 25, 47–61 (2007).

    PubMed  PubMed Central  Google Scholar 

  54. Dehingia, N. & Raj, A. Sex differences in covid-19 case fatality: do we know enough? Lancet Glob. Health 9, e14–e15 (2021).

    Article  CAS  PubMed  Google Scholar 

  55. Takahashi, T. et al. Sex differences in immune responses that underlie covid-19 disease outcomes. Nature 588, 315–320 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  56. Frayer, D. W. & Wolpoff, M. H. Sexual dimorphism. Annu. Rev. Anthropol. 14, 429–473 (1985).

    Article  Google Scholar 

  57. Gaulin, S. J. & Boster, J. S. Human marriage systems and sexual dimorphism in stature. Am. J. Phys. Anthropol. 89, 467–475 (1992).

    Article  CAS  PubMed  Google Scholar 

  58. Ruff, C. B. (ed.) Skeletal Variation and Adaptation in Europeans: Upper Paleolithic to the Twentieth Century (John Wiley & Sons, 2018).

  59. Marwaha, R. K. et al. Nationwide reference data for height, weight and body mass index of Indian schoolchildren. Nat. Med. J. India 24, 269–277 (2011).

    Google Scholar 

  60. Abdulrazzaq, Y. M., Moussa, M. A. & Nagelkerke, N. National growth charts for the United Arab Emirates. J. Epidemiol. 18, 295–303 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Moradi, A. & Guntupalli, A. M. in Gender and Discrimination: Health, Nutritional Status, and Role of Women in India (eds Pal, M. et al.) 537–552 (Oxford Univ. Press, 2009).

  62. Kanazawa, S. & Novak, D. L. Human sexual dimorphism in size may be triggered by environmental cues. J. Biosoc. Sci. 37, 657–665 (2005).

    Article  PubMed  Google Scholar 

  63. Baten, J. & Murray, J. E. Heights of men and women in 19th-century Bavaria: economic, nutritional, and disease influences. Explor. Econ. Hist. 37, 351–369 (2000).

    Article  Google Scholar 

  64. Castellucci, H. et al. Gender inequality and sexual height dimorphism in Chile. J. Biosoc. Sci. 53, 38–54 (2021).

    Article  PubMed  Google Scholar 

  65. Jayachandran, S. & Pande, R. Why are Indian children so short? The role of birth order and son preference. Am. Econ. Rev. 107, 2600–2629 (2017).

    Article  PubMed  Google Scholar 

  66. Bentley, R. A. et al. Prehistoric migration in Europe: strontium isotope analysis of early Neolithic skeletons. Curr. Anthropol. 43, 799–804 (2002).

    Article  Google Scholar 

  67. Bickle, P. Thinking gender differently: new approaches to identity difference in the central European Neolithic. Camb. Archaeol. J. 30, 201–218 (2020).

    Article  Google Scholar 

  68. Garvin, H. M. The Effects of Living Conditions on Human Cranial and Postcranial Sexual Dimorphism. Ph.D. thesis, The Johns Hopkins Univ. (2012).

  69. Papathanasiou, A. in Human Bioarchaeology of the Transition to Agriculture (eds Pinhasi, R. & Stock, J. T.) 87–106 (John Wiley & Sons, 2011).

  70. Papathanasiou, A. Health status of the Neolithic population of Alepotrypa Cave, Greece. Am. J. Phys. Anthropol. 126, 377–390 (2005).

    Article  PubMed  Google Scholar 

  71. Silva, A. M. & Cunha, E. in Actas del V Congreso Nacional de Paleopatologia 353–356 (Asociación de Española de Paleopatología, 2001).

  72. Cucina, A. Brief communication: diachronic investigation of linear enamel hypoplasia in prehistoric skeletal samples from Trentino, Italy. Am. J. Phys. Anthropol. 119, 283–287 (2002).

    Article  PubMed  Google Scholar 

  73. Brunel, S. et al. Ancient genomes from present-day France unveil 7,000 years of its demographic history. Proc. Natl Acad. Sci. USA 117, 12791–12798 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  74. Childebayeva, A. et al. Population genetics and signatures of selection in Early Neolithic European farmers. Mol. Biol. Evol. 39, msac108 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Fernandes, D. M. et al. The spread of steppe and Iranian-related ancestry in the islands of the western Mediterranean. Nat. Ecol. Evol. 4, 334–345 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Fregel, R. et al. Ancient genomes from North Africa evidence prehistoric migrations to the Maghreb from both the Levant and Europe. Proc. Natl Acad. Sci. USA 115, 6774–6779 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  77. Fu, Q. et al. The genetic history of Ice Age Europe. Nature 534, 200–205 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gamba, C. et al. Genome flux and stasis in a five millennium transect of European prehistory. Nat. Commun. 5, 5257 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  79. González-Fortes, G. et al. Paleogenomic evidence for multi-generational mixing between Neolithic farmers and Mesolithic hunter-gatherers in the Lower Danube Basin. Curr. Biol. 27, 1801–1810.e10 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Hofmanová, Z. et al. Early farmers from across Europe directly descended from Neolithic Aegeans. Proc. Natl Acad. Sci. USA 113, 6886–6891 (2016).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  81. Jones, E. R. et al. Upper Palaeolithic genomes reveal deep roots of modern Eurasians. Nat. Commun. 6, 8912 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  82. Lazaridis, I. et al. Genetic origins of the Minoans and Mycenaeans. Nature 548, 214–218 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  83. Marcus, J. H. et al. Genetic history from the Middle Neolithic to present on the Mediterranean island of Sardinia. Nat. Commun. 11, 939 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  84. Nikitin, A. G. et al. Interactions between earliest Linearbandkeramik farmers and central European hunter gatherers at the dawn of European Neolithization. Sci. Rep. 9, 19544 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  85. Olalde, I. et al. A common genetic origin for early farmers from Mediterranean Cardial and Central European LBK cultures. Mol. Biol. Evol. 32, 3132–3142 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Olalde, I. et al. The genomic history of the Iberian Peninsula over the past 8000 years. Science 363, 1230–1234 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  87. Rivollat, M. et al. Ancient genome-wide DNA from France highlights the complexity of interactions between Mesolithic hunter-gatherers and Neolithic farmers. Sci. Adv. 6, eaaz5344 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  88. Valdiosera, C. et al. Four millennia of Iberian biomolecular prehistory illustrate the impact of prehistoric migrations at the far end of Eurasia. Proc. Natl Acad. Sci. USA 115, 3428–3433 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  89. Villalba-Mouco, V. et al. Survival of Late Pleistocene hunter-gatherer ancestry in the Iberian Peninsula. Curr. Biol. 29, 1169–1177.e7 (2019).

    Article  CAS  PubMed  Google Scholar 

  90. UK Biobank GWAS Results (Neale Lab, accessed 20 October 2021); http://www.nealelab.is/uk-biobank

  91. Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4, 7 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. PLoS Genet. 2, e190 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Lazaridis, I. et al. Ancient human genomes suggest three ancestral populations for present-day europeans. Nature 513, 409–413 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  94. Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hujić, A. Das Kind in uns unter der Lupe der Isotopie, Allometrie und Pathologie. Zusammenhang zwischen δ15N und δ13C als Eiweißproxy und dem Knochenwachstum bei linienbandkeramischen Individuen aus Stuttgart-Mühlhausen, ‘Viesenhäuser Hof’ und Schwetzingen unter Berücksichtigung verschiedener Indikatoren für Nährstoffversorgung. Ph.D. thesis, Freie Univ. https://doi.org/10.17169/refubium-5564 (2016).

  96. Nicklisch, N. Spurensuche am Skelett: Paläodemografische und epidemiologische Untersuchungen an neolithischen und frühbronzezeitlichen Bestattungen aus dem Mittelelbe-Saale-Gebiet im Kontext populationsdynamischer Prozesse (Landesamt für Denkmalpflege und Archäologie Sachsen-Anhalt, Landesmuseum, 2017).

  97. Meyer, C. et al. Early Neolithic executions indicated by clustered cranial trauma in the mass grave of Halberstadt. Nat. Commun. 9, 2472 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  98. Rosenstock, E. et al. Human stature in the Near East and Europe ca. 10,000–1000 BC: its spatiotemporal development in a Bayesian errors-in-variables model. Archaeol. Anthropol. Sci. 11, 5657–5690 (2019).

    Article  Google Scholar 

  99. Ruff, C. B. et al. Stature and body mass estimation from skeletal remains in the European Holocene. Am. J. Phys. Anthropol. 148, 601–617 (2012).

    Article  PubMed  Google Scholar 

  100. Acsádi, G., Nemeskéri, J. & Balás, K. History of Human Life Span and Mortality (Akademiai Kiado Budapest, 1970).

  101. Krishan, K. et al. A review of sex estimation techniques during examination of skeletal remains in forensic anthropology casework. Forensic Sci. Int. 261, 165.e1–8 (2016).

    Article  Google Scholar 

  102. Ash, A. et al. Regional differences in health, diet and weaning patterns amongst the first Neolithic farmers of central Europe. Sci. Rep. 6, 29458 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  103. Lillie, M. Vedrovice: demography and palaeopathology in an early farming population. Anthropologie 46, 135–152 (2008).

    Google Scholar 

  104. Whittle, A. et al. in The First Farmers in Central Europe: Diversity in LBK Lifeways (eds Bickle, P. & Whittle, A.) 49–100 (Oxbow Books, 2013).

  105. Brickley, M. B. Cribra orbitalia and porotic hyperostosis: a biological approach to diagnosis. Am. J. Phys. Anthropol. 167, 896–902 (2018).

    Article  PubMed  Google Scholar 

  106. Scheibner, A. Prähistorische Ernährung in Vorderasien und Europa. Eine kulturgeschichtliche Synthese auf der Basis ausgewählter Quellen. Schriften zum Lebensstandard in der Vorgeschichte 1 (Berliner Archäologische Forschungen, Leidorf, 2016).

  107. O’Brien, D. M. Stable isotope ratios as biomarkers of diet for health research. Annu. Rev. Nutr. 35, 565–594 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Richards, M. P., Montgomery, J., Nehlich, O. & Grimes, V. Isotopic analysis of humans and animals from Vedrovice. Anthropologie 46, 185–194 (2008).

    Google Scholar 

  109. Bickle, P. et al. in The First Farmers in Central Europe: Diversity in LBK Lifeways (eds Bickle, P. & Whittle, A.) 159–204 (Oxbow Books, 2013).

  110. Hofmann, D. et al. in The First Farmers in Central Europe: Diversity in LBK Lifeways (eds Bickle, P. & Whittle, A.) 205–250 (Oxbow Books, 2013).

  111. Morey, R. D. & Rouder, J. N. BayesFactor: computation of Bayes factors for common designs. R package v.0.9.12-4.4 (The Comprehensive R Archive Network, 2022).

  112. Rouder, J. N. & Morey, R. D. Default Bayes factors for model selection in regression. Multivariate Behav. Res. 47, 877–903 (2012).

    Article  PubMed  Google Scholar 

  113. R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).

  114. Gronenborn, D., Horejs, B. Map: Expansion of Farming in Western Eurasia, 9600–4000 cal BC (update vers. 2021.2) (RGZM/ÖAI, 2021); https://www.academia.edu/9424525/Map_Expansion_of_farming_in_western_Eurasia_9600_4000_cal_BC_update_vers_2021_2_

Download references

Acknowledgements

This work was supported by a grant from the National Science Foundation (BCS2123627) to I.M. Metric skeletal data collection from Stuttgart-Mühlhausen and Schwetzingen was funded by the Deutsche Forschungsgemeinschaft (DFG; German Research Foundation) (RO 4148/1-1). The investigations of the skeletal collections from Derenburg, Karsdorf and Halberstadt were supported by DFG grants (Al 287/7-1 and 7-3 to K.W.A. and Me 3245/1-1 and 1-3 to H.M.). The content is the responsibility of the authors and does not necessarily represent the official view of the NSF or other funders. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

S.L.C. designed the study, collected data, performed analysis and wrote the paper; I.M. designed the study and wrote the paper; N.N. and K.W.A. contributed data and archaeological background; E.R. contributed data and performed analysis; M.F., J.W., H.M. and W.H. contributed data. All authors edited and approved the final version.

Corresponding authors

Correspondence to Samantha L. Cox or Iain Mathieson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Reviewer recognition

Nature Human Behaviour thanks Penny Bickle, Michael Rivera and George Perry for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–7.

Reporting Summary

Supplementary Table 1

All data used for the main analysis.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cox, S.L., Nicklisch, N., Francken, M. et al. Socio-cultural practices may have affected sex differences in stature in Early Neolithic Europe. Nat Hum Behav 8, 243–255 (2024). https://doi.org/10.1038/s41562-023-01756-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41562-023-01756-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing