Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Donor–acceptor mutually diluted heterojunctions for layer-by-layer fabrication of high-performance organic solar cells

Abstract

The photoactive layer of organic solar cells consists of p-type electron donors and n-type electron acceptors, which phase separate to form fine and continuous networks for charge transport. The impact of the donor–acceptor interaction on the microstructure and optoelectronics of the photoactive layer remains unclear. In this work, a tiny amount (1 wt%) of donor PM6 is added into the non-fullerene acceptor (NFA) C8-R or L8-BO (or vice versa) to form a donor (or acceptor) diluted heterojunction. The structural order is improved through dipole–dipole interaction between the donor and the acceptor owing to their opposite electronegativity. We fabricate a pseudo-bilayer heterojunction solar cell based on NFA-diluted donor (that is, donor + 1% NFA) and donor-diluted NFA (that is, NFA + 1% donor) layers: the device exhibits superior power conversion efficiencies compared with their bulk heterojunction and conventional pseudo-bilayer counterparts. We demonstrate an efficiency of 19.4% (certified 19.1%) and 17.6% for 100 and 300 nm-thick PM6 + 1% L8-BO/L8-BO + 1% PM6 solar cells, respectively.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Materials, optoelectronic properties and structural order of PM6 mediated by C8-12.
Fig. 2: Donor–acceptor mutual dilution-mediated optoelectronic properties and structural order.
Fig. 3: Photovoltaic properties of OSCs.
Fig. 4: Versatility of donor- and acceptor-diluted heterojunctions.

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in the published article and its Supplementary Information and source data files. Source data are provided with this paper.

References

  1. Hou, J. et al. Organic solar cells based on non-fullerene acceptors. Nat. Mater. 17, 119–128 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Yan, C. et al. Non-fullerene acceptors for organic solar cells. Nat. Rev. Mater. 3, 18003 (2018).

    Article  ADS  CAS  Google Scholar 

  3. Wadsworth, A. et al. Critical review of the molecular design progress in non-fullerene electron acceptors towards commercially viable organic solar cells. Chem. Soc. Rev. 48, 1596–1625 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Zhu, L. et al. Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology. Nat. Mater. 21, 656–663 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Zhou, J. et al. Bicontinuous donor and acceptor fibril networks enable 19.2% efficiency pseudo‐bulk heterojunction organic solar cells. Interdiscip. Mater. https://doi.org/10.1002/idm2.12129 (2023).

    Article  Google Scholar 

  6. Zhan, L. et al. Multiphase morphology with enhanced carrier lifetime via quaternary strategy enables high‐efficiency, thick‐film, and large‐area organic photovoltaics. Adv. Mater. 34, 2206269 (2022).

    Article  CAS  Google Scholar 

  7. Wei, Y. et al. Binary organic solar cells breaking 19% via manipulating the vertical component distribution. Adv. Mater. 34, 2204718 (2022).

    Article  CAS  Google Scholar 

  8. Xu, X. et al. Sequential deposition of multicomponent bulk heterojunctions increases efficiency of organic solar cells. Adv. Mater. 35, 2208997 (2023).

    Article  CAS  Google Scholar 

  9. Allen, T. et al. Passivating contacts for crystalline silicon solar cells. Nat. Energy 4, 914–928 (2019).

    Article  ADS  CAS  Google Scholar 

  10. Correa-Baena, J.-P. et al. Promises and challenges of perovskite solar cells. Science 358, 739–744 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Gillett, A. J. et al. The role of charge recombination to triplet excitons in organic solar cells. Nature 597, 666–671 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Benduhn, J. et al. Intrinsic non-radiative voltage losses in fullerene-based organic solar cells. Nat. Energy 2, 17053 (2017).

    Article  ADS  CAS  Google Scholar 

  13. Zhang, X. et al. High fill factor organic solar cells with increased dielectric constant and molecular packing density. Joule 6, 444–457 (2022).

    Article  CAS  Google Scholar 

  14. Lee, O. P. et al. Efficient small molecule bulk heterojunction solar cells with high fill factors via pyrene-directed molecular self-assembly. Adv. Mater. 23, 5359–5363 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Brabec, C. J., Heeney, M., McCulloch, I. & Nelson, J. Influence of blend microstructure on bulk heterojunction organic photovoltaic performance. Chem. Soc. Rev. 40, 1185–1199 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Wadsworth, A. et al. The bulk heterojunction in organic photovoltaic, photodetector, and photocatalytic applications. Adv. Mater. 32, 2001763 (2020).

    Article  CAS  Google Scholar 

  17. Wang, J. et al. Binary organic solar cells with 19.2% efficiency enabled by solid additive. Adv. Mater. 35, 2301583 (2023).

    Article  CAS  Google Scholar 

  18. Fu, J. et al. 19.31% binary organic solar cell and low non-radiative recombination enabled by non-monotonic intermediate state transition. Nat. Commun. 14, 1760 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. McDowell, C. et al. Solvent additives: key morphology‐directing agents for solution‐processed organic solar cells. Adv. Mater. 30, 1707114 (2018).

    Article  Google Scholar 

  20. Liang, Q. et al. Recent advances of solid additives used in organic solar cells: toward efficient and stable solar cells. ACS Appl. Energy Mater. 6, 31–50 (2023).

    Article  CAS  Google Scholar 

  21. Yang, W. et al. Simultaneous enhanced efficiency and thermal stability in organic solar cells from a polymer acceptor additive. Nat. Commun. 11, 1218 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang, Z. et al. Polymerized small‐molecule acceptor as an interface modulator to increase the performance of all‐small‐molecule solar cells. Adv. Energy Mater. 12, 2270011 (2022).

    Article  MathSciNet  Google Scholar 

  23. Lu, H. et al. Simultaneously enhancing exciton/charge transport in organic solar cells by an organoboron additive. Adv. Mater. 34, 2205926 (2022).

    Article  CAS  Google Scholar 

  24. Li, W. et al. Correlating the electron-donating core structure with morphology and performance of carbon-oxygen-bridged ladder-type non-fullerene acceptor based organic solar cells. Nano Energy 61, 318–326 (2019).

    Article  CAS  Google Scholar 

  25. Li, W. et al. Molecular order control of non-fullerene acceptors for high efficiency polymer solar cells. Joule 3, 819–833 (2019).

    Article  CAS  Google Scholar 

  26. Morokuma, K. Why do molecules interact? The origin of electron donor–acceptor complexes, hydrogen bonding and proton affinity. Acc. Chem. Res. 10, 294–300 (1977).

    Article  CAS  Google Scholar 

  27. Amemori, S., Kikuchi, K. & Mizuno, M. Poly(dimethylsiloxane) and oligo(dimethylsiloxane) solvent effects on aromatic donor-acceptor interactions. Chem. Commun. 57, 1141–1144 (2021).

    Article  CAS  Google Scholar 

  28. Reczek, J. J. & Iverson, B. L. Using aromatic donor acceptor interactions to affect macromolecular assembly. Macromolecules 39, 5601–5603 (2006).

    Article  ADS  CAS  Google Scholar 

  29. Vandewal, K. et al. Increased open-circuit voltage of organic solar cells by reduced donor–acceptor interface area. Adv. Mater. 26, 3839–3843 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. He, C. et al. Versatile sequential casting processing for highly efficient and stable binary organic photovoltaics. Adv. Mater. 34, 2203379 (2022).

    Article  CAS  Google Scholar 

  31. Jeong, D.-H. et al. Sequentially fluorinated polythiophene donors for high‐performance organic solar cells with 16.4% efficiency. Adv. Energy Mater. 12, 2201603 (2022).

    Article  CAS  Google Scholar 

  32. Wei, Y. et al. A universal method for constructing high efficiency organic solar cells with stacked structures. Energy Environ. Sci. 14, 2314–2321 (2021).

    Article  CAS  Google Scholar 

  33. Zhan, L. et al. Layer‐by‐layer processed ternary organic photovoltaics with efficiency over 18%. Adv. Mater. 33, 2007231 (2021).

    Article  CAS  Google Scholar 

  34. Hestand, N. J. & Spano, F. C. Expanded theory of H- and J-molecular aggregates: the effects of vibronic coupling and intermolecular charge transfer. Chem. Rev. 118, 7069–7163 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. Liao, H.-C. et al. Bi-hierarchical nanostructures of donor-acceptor copolymer and fullerene for high efficient bulk heterojunction solar cells. Energy Environ. Sci. 6, 1938–1948 (2013).

    Article  CAS  Google Scholar 

  36. Holzwarth, U. & Gibson, N. The Scherrer equation versus the ‘Debye-Scherrer equation’. Nat. Nanotechnol. 6, 534 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Jiang, Y. et al. Suppressing electron-phonon coupling in organic photovoltaics for high-efficiency power conversion. Nat. Commun. 14, 5079 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jiang, K. et al. Suppressed recombination loss in organic photovoltaics adopting a planar–mixed heterojunction architecture. Nat. Energy 7, 1076–1086 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  39. Duan, T. et al. Electronic configuration tuning of centrally extended non-fullerene acceptors enabling organic solar cells with efficiency approaching 19%. Angew. Chem. Int. Ed. 62, e202308832 (2023).

    Article  CAS  Google Scholar 

  40. Li, D. et al. Non-fullerene acceptor pre-aggregates enable high efficiency pseudo-bulk heterojunction organic solar cells. Sci. China Chem. 65, 373–381 (2022).

    Article  ADS  CAS  Google Scholar 

  41. Li, D. et al. Fibrillization of non‐fullerene acceptors enables 19% efficiency pseudo‐bulk heterojunction organic solar cells. Adv. Mater. 35, 2208211 (2023).

    Article  CAS  Google Scholar 

  42. Li, C. et al. Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells. Nat. Energy 6, 605–613 (2021).

    Article  ADS  CAS  Google Scholar 

  43. Wang, L. et al. Alkyl chain tuning of non-fullerene electron acceptors toward 18.2% efficiency binary organic solar cells. Chem. Mater. 33, 8854–8862 (2021).

    Article  CAS  Google Scholar 

  44. Guo, C. et al. Cold-aging and solvent vapor mediated aggregation control toward 18% efficiency binary organic solar cells. Adv. Energy Mater. 11, 2102000 (2021).

    Article  ADS  CAS  Google Scholar 

  45. Zhou, Z. et al. Subtle molecular tailoring induces significant morphology optimization enabling over 16% efficiency organic solar cells with efficient charge generation. Adv. Mater. 32, 1906324 (2020).

    Article  CAS  Google Scholar 

  46. Liu, L. et al. Graphdiyne derivative as multifunctional solid additive in binary organic solar cells with 17.3% efficiency and high reproductivity. Adv. Mater. 32, 1907604 (2020).

    Article  CAS  Google Scholar 

  47. Cui, Y. et al. Single-junction organic photovoltaic cells with approaching 18% efficiency. Adv. Mater. 32, 1908205 (2020).

    Article  CAS  Google Scholar 

  48. Yao, J. et al. Cathode engineering with perylene-diimide interlayer enabling over 17% efficiency single-junction organic solar cells. Nat. Commun. 11, 2726 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hong, L. et al. 18.5% efficiency organic solar cells with a hybrid planar/bulk heterojunction. Adv. Mater. 33, 2103091 (2021).

    Article  CAS  Google Scholar 

  50. Li, C. et al. Achieving record-efficiency organic solar cells upon tuning the conformation of solid additives. J. Am. Chem. Soc. 144, 14731–14739 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhou, M. et al. 19.10% efficiency and 80.5% fill factor layer-by-layer organic solar cells realized by 4-bis(2-thienyl)pyrrole-2,5-dione based polymer additives for inducing vertical segregation morphology. Adv. Mater. 35, 2208279 (2023).

    Article  CAS  Google Scholar 

  52. Liao, Q. et al. Tailoring and modifying an organic electron acceptor toward the cathode interlayer for highly efficient organic solar cells. Adv. Mater. 32, 1906557 (2020).

    Article  CAS  Google Scholar 

  53. Liu, T. et al. Asymmetric acceptors with fluorine and chlorine substitution for organic solar cells toward 16.83% efficiency. Adv. Funct. Mater. 30, 2000456 (2020).

    Article  MathSciNet  CAS  Google Scholar 

  54. Lin, F. et al. A non-fullerene acceptor with enhanced intermolecular π-core interaction for high-performance organic solar cells. J. Am. Chem. Soc. 142, 15246–15251 (2020).

    Article  CAS  PubMed  Google Scholar 

  55. Qi, F. et al. Over 17% efficiency binary organic solar cells with photoresponses reaching 1,000 nm enabled by selenophene-fused nonfullerene acceptors. ACS Energy Lett. 6, 9–15 (2021).

    Article  CAS  Google Scholar 

  56. Chai, G. et al. Fine-tuning of side-chain orientations on nonfullerene acceptors enables organic solar cells with 17.7% efficiency. Energy Environ. Sci. 14, 3469–3479 (2021).

    Article  CAS  Google Scholar 

  57. Chen, H. et al. 17.6%-efficient quasiplanar heterojunction organic solar cells from a chlorinated 3D network acceptor. Adv. Mater. 33, 2102778 (2021).

    Article  CAS  Google Scholar 

  58. Meng, H. et al. 18.77% efficiency organic solar cells promoted by aqueous solution processed cobalt (II) acetate hole transporting layer. Angew. Chem. Int. Ed. 60, 22554–22561 (2021).

    Article  CAS  Google Scholar 

  59. Zhang, J. et al. Precise control of selenium functionalization in non-fullerene acceptors enabling high-efficiency organic solar cells. Angew. Chem. Int. Ed. 134, e202206930 (2022).

    Article  Google Scholar 

  60. Guo, L. et al. Halogenated thiophenes serve as solvent additives in mediating morphology and achieving efficient organic solar cells. Energy Environ. Sci. 15, 5137–5148 (2022).

    Article  CAS  Google Scholar 

  61. Zhang, G. et al. Co-La-based hole-transporting layers for binary organic solar cells with 18.82% efficiency. Angew. Chem. Int. Ed. 135, e202216304 (2023).

    Article  Google Scholar 

  62. Zhao, X. et al. Double asymmetric core optimizes crystal packing to enable selenophene-based acceptor with over 18% efficiency in binary organic solar cells. Angew. Chem. Int. Ed. 135, e202216340 (2023).

    Article  Google Scholar 

  63. Meng, H. et al. Nickel (II) nitrate hole-transporting layers for single-junction bulk heterojunction organic solar cells with a record 19.02% efficiency. Angew. Chem. Int. Ed. 62, e202301958 (2023).

    Article  CAS  Google Scholar 

  64. Liang, H. et al. A rare case of brominated small molecule acceptors for high-efficiency organic solar cells. Nat. Commun. 14, 4707 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (52273196, 52073221 and 52203238) and the Key Research and Development Program of Hubei Province (2023BAB116). We thank Y. Sun at Beihang University and F. Gao at Linköping University for helpful discussion. We also thank beamline BL14B1 and BL16B1 at Shanghai Synchrotron Radiation Facility (China) for providing beamtime to perform GIWAXS and GISAXS measurements and L. Zhou and L. Cui at Wuhan University of Technology for XPS measurements.

Author information

Authors and Affiliations

Authors

Contributions

L.W. synthesized materials, performed device fabrication and collected data. C.C. and Y.F. conducted molecular dynamics simulations. J.C., C.C. and W.L. performed synchrotron X-ray measurements. W.S., Z.G., Y.S., B.Z. and C.L. conducted optoelectronic measurements. C.G. and D. Li conducted morphology characterizations. W.L. and D. Liu assisted with experimental design and data analysis. All authors were involved in results discussion. L.W., W.L. and T.W. wrote the paper with all authors commenting and revising the paper. T.W. supervised the project.

Corresponding author

Correspondence to Tao Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Energy thanks Mariano Campooy-Quiles and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–42, Tables 1–12 and references.

Reporting Summary

Supplementary Data 1

Mobilities behind Supplementary Tables 3, 4 and 10 and photovoltaic parameters behind Supplementary Tables 7, 8 and 12.

Source data

Source Data Fig. 3

Photovoltaic parameters and charge mobilities behind Fig. 3d–i.

Source Data Table 1

Photovoltaic parameters behind Table 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Chen, C., Fu, Y. et al. Donor–acceptor mutually diluted heterojunctions for layer-by-layer fabrication of high-performance organic solar cells. Nat Energy 9, 208–218 (2024). https://doi.org/10.1038/s41560-023-01436-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-023-01436-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing