Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An active and durable molecular catalyst for aqueous polysulfide-based redox flow batteries

Abstract

Aqueous redox flow battery (RFB) is one of the most promising technologies for grid-scale energy storage systems. Polysulfides are particularly attractive active materials owing to their low cost and high capacity, but the low energy efficiency and low operating current density limit their practical applications. Here we report an active and durable molecule catalyst, riboflavin sodium phosphate (FMN-Na), to transform sluggish polysulfide reduction reactions to fast redox reactions of FMN-Na via homogeneous catalysis. The FMN-Na catalyst substantially reduces the overpotential of a polysulfide–ferrocyanide RFB (S-Fe RFB) from more than 800 mV to 241 mV at 30 mA cm2. A catalysed S-Fe flow cell was demonstrated for 2,000 cycles at 40 mA cm2 with a low decay rate of 0.00004% per cycle (0.0017% per day). A catalysed polysulfide–iodide RFB operated for 1,300 cycles under 40 mA cm2 without capacity decay. This work addresses the bottleneck of polysulfide-based RFBs for long-duration energy storage applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The design principle for molecular catalysts on polysulfide reduction.
Fig. 2: Electrochemical performance and cycling stability of S-Fe and S-I flow cells.
Fig. 3: Operando UV-vis study on the FMN3−/FMN5− concentration evolution.
Fig. 4: Extended cycling stability of catalysed S-Fe flow cells.
Fig. 5: Extended cycling stability of catalysed S-I flow cells.
Fig. 6: Theoretical calculation on the reaction mechanism of FMN-Na and K2S4.

Similar content being viewed by others

Data availability

The datasets analysed and generated during the current study are included in the paper and its Supplementary Information.

References

  1. Dunn, B., Kamath, H. & Tarascon, J.-M. Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011).

    Article  Google Scholar 

  2. Yao, Y., Lei, J., Shi, Y., Ai, F. & Lu, Y.-C. Assessment methods and performance metrics for redox flow batteries. Nat. Energy 6, 582–588 (2021).

    Article  Google Scholar 

  3. Yang, Z. et al. Electrochemical energy storage for green grid. Chem. Rev. 111, 3577–3613 (2011).

    Article  Google Scholar 

  4. Park, M., Ryu, J., Wang, W. & Cho, J. Material design and engineering of next-generation flow-battery technologies. Nat. Rev. Mater. 2, 16080 (2016).

    Article  Google Scholar 

  5. Lei, J., Jiang, L. & Lu, Y.-C. Emerging aqueous manganese-based batteries: fundamental understanding, challenges, and opportunities. Chem. Phys. Rev. 4, 021307 (2023).

    Article  Google Scholar 

  6. Ai, F. et al. Heteropoly acid negolytes for high-power-density aqueous redox flow batteries at low temperatures. Nat. Energy 7, 417–426 (2022).

    Article  Google Scholar 

  7. Sum, E., Rychcik, M. & Skyllas-Kazacos, M. Investigation of the V(V)/V(IV) system for use in the positive half-cell of a redox battery. J. Power Sources 16, 85–95 (1985).

    Article  Google Scholar 

  8. Lei, J., Yao, Y., Wang, Z. & Lu, Y.-C. Towards high-areal-capacity aqueous zinc–manganese batteries: promoting MnO2 dissolution by redox mediators. Energy Environ. Sci. 14, 4418–4426 (2021).

    Article  Google Scholar 

  9. Skyllas‐Kazacos, M., Rychcik, M., Robins, R. G., Fane, A. G. & Green, M. A. New all‐vanadium redox flow cell. J. Electrochem. Soc. 133, 1057–1058 (1986).

    Article  Google Scholar 

  10. Zhang, S. et al. Recent progress in polysulfide redox-flow batteries. Batter. Supercaps 2, 627–637 (2019).

    Article  Google Scholar 

  11. Li, Z. et al. Air-breathing aqueous sulfur flow battery for ultralow-cost long-duration electrical storage. Joule 1, 306–327 (2017).

    Article  Google Scholar 

  12. Xia, Y. et al. A cost-effective alkaline polysulfide-air redox flow battery enabled by a dual-membrane cell architecture. Nat. Commun. 13, 2388 (2022).

    Article  Google Scholar 

  13. Su, L., Badel, A. F., Cao, C., Hinricher, J. J. & Brushett, F. R. Toward an inexpensive aqueous polysulfide–polyiodide redox flow battery. Ind. Eng. Chem. Res. 56, 9783–9792 (2017).

    Article  Google Scholar 

  14. Liu, J. et al. Sulfur-based aqueous batteries: electrochemistry and strategies. J. Am. Chem. Soc. 143, 15475–15489 (2021).

    Article  Google Scholar 

  15. Li, Z., Weng, G., Zou, Q., Cong, G. & Lu, Y.-C. A high-energy and low-cost polysulfide/iodide redox flow battery. Nano Energy 30, 283–292 (2016).

    Article  Google Scholar 

  16. Lei, J., Yao, Y., Huang, Y. & Lu, Y.-C. A highly reversible low-cost aqueous sulfur–manganese redox flow battery. ACS Energy Lett. 8, 429–435 (2023).

    Article  Google Scholar 

  17. Li, Z. & Lu, Y.-C. Polysulfide-based redox flow batteries with long life and low levelized cost enabled by charge-reinforced ion-selective membranes. Nat. Energy 6, 517–528 (2021).

    Article  Google Scholar 

  18. Zhao, P., Zhang, H., Zhou, H. & Yi, B. Nickel foam and carbon felt applications for sodium polysulfide/bromine redox flow battery electrodes. Electrochim. Acta 51, 1091–1098 (2005).

    Article  Google Scholar 

  19. Gao, M. et al. Successive ionic layer adsorption and reaction–deposited copper sulfide electrocatalyst for high-power polysulfide-based aqueous flow batteries. Mater. Today Energy 18, 100540 (2020).

    Article  Google Scholar 

  20. Gross, M. M. & Manthiram, A. Aqueous polysulfide–air battery with a mediator-ion solid electrolyte and a copper sulfide catalyst for polysulfide redox. ACS Appl. Energy Mater. 1, 7230–7236 (2018).

    Article  Google Scholar 

  21. Ma, D. et al. Highly active nanostructured CoS2/CoS heterojunction electrocatalysts for aqueous polysulfide/iodide redox flow batteries. Nat. Commun. 10, 3367 (2019).

    Article  Google Scholar 

  22. Wei, X. et al. An aqueous redox flow battery based on neutral alkali metal ferri/ferrocyanide and polysulfide electrolytes. J. Electrochem. Soc. 163, A5150 (2015).

    Article  Google Scholar 

  23. Stephens, I. E. L., Ducati, C. & Fray, D. J. Correlating microstructure and activity for polysulfide reduction and oxidation at WS2 electrocatalysts. J. Electrochem. Soc. 160, A757–A768 (2013).

    Article  Google Scholar 

  24. Qin, Y., Li, X., Liu, W. & Lei, X. High-performance aqueous polysulfide-iodide flow battery realized by an efficient bifunctional catalyst based on copper sulfide. Mater. Today Energy 21, 100746 (2021).

    Article  Google Scholar 

  25. Chen, B. et al. Doping engineering of M-N-C electrocatalyst based membrane-electrode assembly for high-performance aqueous polysulfides redox flow batteries. Adv. Sci. 10, 2206949 (2023).

    Article  Google Scholar 

  26. Haapanen, O. & Sharma, V. A modeling and simulation perspective on the mechanism and function of respiratory complex I. Biochim. Biophys. Acta Bioenerg. 1859, 510–523 (2018).

    Article  Google Scholar 

  27. Vanoni, M. A. Iron-sulfur flavoenzymes: the added value of making the most ancient redox cofactors and the versatile flavins work together. Open Biol. 11, 210010 (2021).

    Article  Google Scholar 

  28. de Vries, S., Dörner, K., Strampraad, M. J. F. & Friedrich, T. Electron tunneling rates in respiratory complex I are tuned for efficient energy conversion. Angew. Chem. Int. Ed. 54, 2844–2848 (2015).

    Article  Google Scholar 

  29. Durchschein, K., Hall, M. & Faber, K. Unusual reactions mediated by FMN-dependent ene- and nitro-reductases. Green. Chem. 15, 1764–1772 (2013).

    Article  Google Scholar 

  30. Tan, S. L. J., Kan, J. M. & Webster, R. D. Differences in proton-coupled electron-transfer reactions of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) between buffered and unbuffered aqueous solutions. J. Phys. Chem. B 117, 13755–13766 (2013).

    Article  Google Scholar 

  31. Orita, A., Verde, M. G., Sakai, M. & Meng, Y. S. A biomimetic redox flow battery based on flavin mononucleotide. Nat. Commun. 7, 13230 (2016).

    Article  Google Scholar 

  32. Páez, T. et al. The redox-mediated nickel–metal hydride flow battery. Adv. Energy Mater. 12, 2102866 (2022).

    Article  Google Scholar 

  33. Zhou, M. et al. Nernstian-potential-driven redox-targeting reactions of battery materials. Chem. 3, 1036–1049 (2017).

    Article  Google Scholar 

  34. Chen, Y. et al. A stable and high-capacity redox targeting-based electrolyte for aqueous flow batteries. Joule 3, 2255–2267 (2019).

    Article  Google Scholar 

  35. Feng, R. et al. Proton-regulated alcohol oxidation for high-capacity ketone-based flow battery anolyte. Joule 7, 1609–1622 (2023).

    Article  Google Scholar 

  36. Heelis, P. F. The photophysical and photochemical properties of flavins (isoalloxazines). Chem. Soc. Rev. 11, 15–39 (1982).

    Article  Google Scholar 

  37. Lee, K. J., Elgrishi, N., Kandemir, B. & Dempsey, J. L. Electrochemical and spectroscopic methods for evaluating molecular electrocatalysts. Nat. Rev. Chem. 1, 0039 (2017).

    Article  Google Scholar 

  38. Helm, M. L., Stewart, M. P., Bullock, R. M., DuBois, M. R. & DuBois, D. L. A synthetic nickel electrocatalyst with a turnover frequency above 100,000 s−1 for H2 production. Science 333, 863–866 (2011).

    Article  Google Scholar 

  39. Schöfberger, W. et al. A bifunctional electrocatalyst for oxygen evolution and oxygen reduction reactions in water. Angew. Chem. Int. Ed. 55, 2350–2355 (2016).

    Article  Google Scholar 

  40. Kamyshny, A., Goifman, A., Gun, J., Rizkov, D. & Lev, O. Equilibrium distribution of polysulfide ions in aqueous solutions at 25 °C: a new approach for the study of polysulfides’ equilibria. Environ. Sci. Technol. 38, 6633–6644 (2004).

    Article  Google Scholar 

  41. Hu, M., Wang, A. P., Luo, J., Wei, Q. & Liu, T. L. Cycling performance and mechanistic insights of ferricyanide electrolytes in alkaline redox flow batteries. Adv. Energy Mater. 13, 2203762 (2023).

    Article  Google Scholar 

  42. Goulet, M.-A. & Aziz, M. J. Flow battery molecular reactant stability determined by symmetric cell cycling methods. J. Electrochem. Soc. 165, A1466 (2018).

    Article  Google Scholar 

  43. Smith, S. B. & Bruice, T. C. Mechanisms of isoalloxazine (flavine) hydrolysis. J. Am. Chem. Soc. 97, 2875–2881 (1975).

    Article  Google Scholar 

  44. Surrey, A. R. & Nachod, F. C. Alkaline hydrolysis of riboflavin. J. Am. Chem. Soc. 73, 2336–2338 (1951).

    Article  Google Scholar 

  45. Grajek, H. Resonance energy transfer between FMN molecules in the presence of dimers: a review. J. Mol. Liq. 209, 169–186 (2015).

    Article  Google Scholar 

  46. Zhang, D.-W., Tian, J., Chen, L., Zhang, L. & Li, Z.-T. Dimerization of conjugated radical cations: an emerging non-covalent interaction for self-assembly. Chem. Asian J. 10, 56–68 (2015).

    Article  Google Scholar 

  47. Goulet, M.-A. et al. Extending the lifetime of organic flow batteries via redox state management. J. Am. Chem. Soc. 141, 8014–8019 (2019).

    Article  Google Scholar 

  48. Kosower, E. M. & Cotter, J. L. Stable free radicals. II. The reduction of 1-methyl-4-cyanopyridinium ion to methylviologen cation radical. J. Am. Chem. Soc. 86, 5524–5527 (1964).

    Article  Google Scholar 

  49. Chen, Y., Gao, X., Johnson, L. R. & Bruce, P. G. Kinetics of lithium peroxide oxidation by redox mediators and consequences for the lithium–oxygen cell. Nat. Commun. 9, 767 (2018).

    Article  Google Scholar 

  50. Yang, Y.-M., Yu, H.-Z., Sun, X.-H. & Dang, Z.-M. Density functional theory calculations on S—S bond dissociation energies of disulfides. J. Phys. Org. Chem. 29, 6–13 (2016).

    Article  Google Scholar 

  51. Kruse, H., Goerigk, L. & Grimme, S. Why the Standard B3LYP/6-31G* model chemistry should not be used in DFT calculations of molecular thermochemistry: understanding and correcting the problem. J. Org. Chem. 77, 10824–10834 (2012).

    Article  Google Scholar 

  52. Frisch, M. J. et al. Gaussian 09, Revision D. 01 (Gaussian, Inc., 2013).

  53. Stephens, P. J., Devlin, F. J., Chabalowski, C. F. & Frisch, M. J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 98, 11623–11627 (1994).

    Article  Google Scholar 

Download references

Acknowledgements

The work described in this paper was supported by Research Grants Council of the Hong Kong Special Administrative Region under grant nos. N_CUHK435/18 (received by Y.-C.L.), RFS2223-4S03 (received by Y.-C.L.) and C1002-21GF (received by Y.-C.L. and J.F.). Y.-C.L. acknowledges the support from Xplorer Prize by New Cornerstone Science Foundation.

Author information

Authors and Affiliations

Authors

Contributions

J.L. and Y.-C.L. conceived the projects, analysed the data and wrote the manuscript. J.L. conducted the electrochemical measurements and material characterizations. Y.Y., Y.S. and K.L.L. assisted with the electrochemical measurements. Y.Z. and J.F. conducted the theoretical calculation.

Corresponding author

Correspondence to Yi-Chun Lu.

Ethics declarations

Competing interests

J.L. and Y.-C.L. are inventors of a patent application (US Patent application number 17/705,171) on the molecular catalysts described herein. The other authors declare no competing interests.

Peer review

Peer review information

Nature Energy thanks Xiaodong Lei and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–38, Notes 1 and 2, Table 1 and references.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, J., Zhang, Y., Yao, Y. et al. An active and durable molecular catalyst for aqueous polysulfide-based redox flow batteries. Nat Energy 8, 1355–1364 (2023). https://doi.org/10.1038/s41560-023-01370-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-023-01370-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing