Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Drug dependence in cancer is exploitable by optimally constructed treatment holidays

An Author Correction to this article was published on 12 December 2023

This article has been updated

Abstract

Cancers with acquired resistance to targeted therapy can become simultaneously dependent on the presence of the targeted therapy drug for survival, suggesting that intermittent therapy may slow resistance. However, relatively little is known about which tumours are likely to become dependent and how to schedule intermittent therapy optimally. Here we characterized drug dependence across a panel of over 75 MAPK-inhibitor-resistant BRAFV600E mutant melanoma models at the population and single-clone levels. Melanocytic differentiated models exhibited a much greater tendency to give rise to drug-dependent progeny than their dedifferentiated counterparts. Mechanistically, acquired loss of microphthalmia-associated transcription factor in differentiated melanoma models drives ERK–JunB–p21 signalling to enforce drug dependence. We identified the optimal scheduling of ‘drug holidays’ using simple mathematical models that we validated across short and long timescales. Without detailed knowledge of tumour characteristics, we found that a simple adaptive therapy protocol can produce near-optimal outcomes using only measurements of total population size. Finally, a spatial agent-based model showed that optimal schedules derived from exponentially growing cells in culture remain nearly optimal in the context of tumour cell turnover and limited environmental carrying capacity. These findings may guide the implementation of improved evolution-inspired treatment strategies for drug-dependent cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Melanocytic melanoma is primed for addiction to MAPK inhibition upon resistance.
Fig. 2: Dedifferentiated melanoma is resistant to ERK-induced cell cycle arrest.
Fig. 3: Adaptive loss of MITF is a driver of drug dependence in MAPKi-resistant melanoma.
Fig. 4: Scheduling drug exposure can optimize growth inhibition in dependent cell lines.
Fig. 5: Optimal scheduling can be approximated with a mixed cell population of unknown growth rates.
Fig. 6: Optimal schedules derived from a well-mixed model approximate those derived from an ABM incorporating cell turnover, spatial competition and carrying capacity.

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article (and its supplementary information files). Source data are provided with this paper.

Code availability

All code used in this study will be available on GitHub.

Change history

References

  1. Larkin, J. et al. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N. Engl. J. Med. 381, 1535–1546 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Kreft, S. et al. MAPKinase inhibition after failure of immune checkpoint blockade in patients with advanced melanoma—an evaluation of the multicenter prospective skin cancer registry ADOREG. Eur. J. Cancer 167, 32–41 (2022).

    Article  CAS  PubMed  Google Scholar 

  3. Atkins, M. B. et al. Combination dabrafenib and trametinib versus combination nivolumab and ipilimumab for patients with advanced BRAF-mutant melanoma: the DREAMseq Trial—ECOG-ACRIN EA6134. J. Clin. Oncol. 41, 186–197 (2023).

    Article  CAS  PubMed  Google Scholar 

  4. Welsh, S. J., Rizos, H., Scolyer, R. A. & Long, G. V. Resistance to combination BRAF and MEK inhibition in metastatic melanoma: where to next? Eur. J. Cancer 62, 76–85 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Das Thakur, M. et al. Modelling vemurafenib resistance in melanoma reveals a strategy to forestall drug resistance. Nature 494, 251–255 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sun, C. et al. Reversible and adaptive resistance to BRAF(V600E) inhibition in melanoma. Nature 508, 118–122 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Hong, A. et al. Exploiting drug addiction mechanisms to select against MAPKi-resistant melanoma. Cancer Discov. 8, 74–93 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Moriceau, G. et al. Tunable-combinatorial mechanisms of acquired resistance limit the efficacy of BRAF/MEK cotargeting but result in melanoma drug addiction. Cancer Cell 27, 240–256 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kong, X. et al. Cancer drug addiction is relayed by an ERK2-dependent phenotype switch. Nature 550, 270–274 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Algazi, A. P. et al. Continuous versus intermittent BRAF and MEK inhibition in patients with BRAF-mutated melanoma: a randomized phase 2 trial. Nat. Med. 26, 1564–1568 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Arozarena, I. & Wellbrock, C. Phenotype plasticity as enabler of melanoma progression and therapy resistance. Nat. Rev. Cancer 19, 377–391 (2019).

    Article  CAS  PubMed  Google Scholar 

  12. Tsoi, J. et al. Multi-stage differentiation defines melanoma subtypes with differential vulnerability to drug-induced iron-dependent oxidative stress. Cancer Cell 33, 890–904.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Landsberg, J. et al. Melanomas resist T-cell therapy through inflammation-induced reversible dedifferentiation. Nature 490, 412–416 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Mehta, A. et al. Immunotherapy resistance by inflammation-induced dedifferentiation. Cancer Discov. 8, 935–943 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kim, Y. J. et al. Melanoma dedifferentiation induced by IFN-γ epigenetic remodeling in response to anti-PD-1 therapy. J. Clin. Invest. 131, e145859 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Müller, J. et al. Low MITF/AXL ratio predicts early resistance to multiple targeted drugs in melanoma. Nat. Commun. 5, 5712 (2014).

    Article  PubMed  Google Scholar 

  17. Konieczkowski, D. J. et al. A melanoma cell state distinction influences sensitivity to MAPK pathway inhibitors. Cancer Discov. 4, 816–827 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Johannessen, C. M. et al. A melanocyte lineage program confers resistance to MAP kinase pathway inhibition. Nature 504, 138–142 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Enriquez-Navas, P. M. et al. Exploiting evolutionary principles to prolong tumor control in preclinical models of breast cancer. Sci. Transl. Med. 8, 327ra24 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Silva, A. S. et al. Evolutionary approaches to prolong progression-free survival in breast cancer. Cancer Res. 72, 6362–6370 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gatenby, R. A., Silva, A. S., Gillies, R. J. & Frieden, B. R. Adaptive therapy. Cancer Res. 69, 4894–4903 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Smalley, I. et al. Leveraging transcriptional dynamics to improve BRAF inhibitor responses in melanoma. eBioMedicine 48, 178–190 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lin, K. H. et al. Using antagonistic pleiotropy to design a chemotherapy-induced evolutionary trap to target drug resistance in cancer. Nat. Genet. 52, 408–417 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhao, B. et al. Exploiting temporal collateral sensitivity in tumor clonal evolution. Cell 165, 234–246 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Maltas, J. & Wood, K. B. Pervasive and diverse collateral sensitivity profiles inform optimal strategies to limit antibiotic resistance. PLoS Biol 17, e3000515, https://doi.org/10.1371/journal.pbio.3000515 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Maltas, J., Krasnick, B. & Wood, K. B. Using selection by nonantibiotic stressors to sensitize bacteria to antibiotics. Mol. Biol. Evol. 37, 1394–1406 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. West, J., Ma, Y. & Newton, P. K. Capitalizing on competition: an evolutionary model of competitive release in metastatic castration resistant prostate cancer treatment. J. Theor. Biol. 455, 249–260 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wargo, A. R. et al. Competitive release and facilitation of drug-resistant parasites after therapeutic chemotherapy in a rodent malaria model. Proc. Natl Acad. Sci. USA 104, 19914–19919, https://doi.org/10.1073/pnas.0707766104 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kaznatcheev, A., Peacock, J., Basanta, D., Marusyk, A. & Scott, J. G. Fibroblasts and alectinib switch the evolutionary games played by non-small cell lung cancer. Nat. Ecol. Evol. 3, 450–456 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Farrokhian N. et al. Measuring competitive exclusion in non-small cell lung cancer. Sci Adv. 8, eabm7212 (2022); https://science.org/doi/10.1126/sciadv.abm7212

  31. Korolev, K. S., Xavier, J. B. & Gore, J. Turning ecology and evolution against cancer. Nat. Rev. Cancer 14, 371–380 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Li, Y., Cheng, H. S., Chng, W. J. & Tergaonkar, V. Activation of mutant TERT promoter by RAS–ERK signaling is a key step in malignant progression of BRAF-mutant human melanomas. Proc. Natl Acad. Sci. USA 113, 14402–14407 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Khaliq, M., Manikkam, M., Martinez, E. D. & Fallahi-Sichani, M. Epigenetic modulation reveals differentiation state specificity of oncogene addiction. Nat. Commun. 12, 1536 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tsherniak, A. et al. Defining a cancer dependency map. Cell 170, 564–576.e16 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Luebker, S. A. & Koepsell, S. A. Diverse mechanisms of BRAF inhibitor resistance in melanoma identified in clinical and preclinical studies. Front. Oncol. 9, 268 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Rizos, H. et al. BRAF inhibitor resistance mechanisms in metastatic melanoma: spectrum and clinical impact. Clin. Cancer Res. 20, 1965–1977 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Ito, T. et al. Paralog knockout profiling identifies DUSP4 and DUSP6 as a digenic dependence in MAPK pathway-driven cancers. Nat. Genet. 53, 1664–1672 (2021).

    Article  CAS  PubMed  Google Scholar 

  38. Gutierrez-Prat N. et al. DUSP4 protects BRAF- and NRAS-mutant melanoma from oncogene overdose through modulation of MITF. Life Sci. Alliance 5, e202101235 (2022); https://www.life-science-alliance.org/content/5/9/e202101235

  39. Cho, E., Lou, H. J., Kuruvilla, L., Calderwood, D. A. & Turk, B. E. PPP6C negatively regulates oncogenic ERK signaling through dephosphorylation of MEK. Cell Rep. 34, 108928 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ji, Z. et al. MITF modulates therapeutic resistance through EGFR signaling. J. Invest. Dermatol. 135, 1863–1872 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Labrie, M., Brugge, J. S., Mills, G. B. & Zervantonakis, I. K. Therapy resistance: opportunities created by adaptive responses to targeted therapies in cancer. Nat. Rev. Cancer 22, 323–339 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shaffer, S. M. et al. Rare cell variability and drug-induced reprogramming as a mode of cancer drug resistance. Nature 546, 431–435 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Su, Y. et al. Single-cell analysis resolves the cell state transition and signaling dynamics associated with melanoma drug-induced resistance. Proc. Natl Acad. Sci. USA 114, 13679–13684 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nyberg, W. A. et al. The bromodomain protein TRIM28 controls the balance between growth and invasiveness in melanoma. EMBO Rep. 24, e54944 (2023).

    Article  CAS  PubMed  Google Scholar 

  45. Kavran, A. J. et al. Intermittent treatment of BRAFV600E melanoma cells delays resistance by adaptive resensitization to drug rechallenge. Proc. Natl Acad. Sci. USA 119, e2113535119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Strobl, M. A. R. et al. Spatial structure impacts adaptive therapy by shaping intra-tumoral competition. Commun. Med. 2, 46 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yu, H. A. et al. Phase 2 study of intermittent pulse dacomitinib in patients with advanced non-small cell lung cancers. Lung Cancer 112, 195–199 (2017).

    Article  PubMed  Google Scholar 

  48. Killarney, S. T. et al. Executioner caspases restrict mitochondrial RNA-driven type I IFN induction during chemotherapy-induced apoptosis. Nat. Commun. 14, 1399 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Martz, C. A. et al. Systematic identification of signaling pathways with potential to confer anticancer drug resistance. Sci. Signal. 7, ra121 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Hart, T. et al. Evaluation and design of genome-wide CRISPR/SpCas9 knockout screens. G3 7, 2719–2727 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Guzmán, C. et al. ColonyArea: an ImageJ plugin to automatically quantify colony formation in clonogenic assays. PLoS One 9, e92444, https://doi.org/10.1371/journal.pone.0092444 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Barbie, D. A. et al. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature 462, 108–112 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Reich, M. et al. GenePattern 2.0. Nat. Genet. 38, 500–501 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Bravo, R. R. et al. Hybrid Automata Library: a flexible platform for hybrid modeling with real-time visualization. PLoS Comput. Biol. 16, e1007635 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by Duke University School of Medicine start-up funds and the Duke Cancer Institute (K.C.W.), and received grant support from an anonymous donor to the Duke Cancer Institute (K.C.W.), National Institutes of Health awards R01CA207083 and R01CA263593 (K.C.W.), NIH R35GM124875 (K.B.W) and the Duke Medical Scientist Training Program (T32 GM007171 to S.T.K.).

Author information

Authors and Affiliations

Authors

Contributions

K.B.W and K.C.W. conceptualized the project. K.B.W., J.M., S.T.K., K.R.S. and K.C.W. were responsible for the methodology. Mechanistic and validation studies were performed by J.M., S.T.K., K.R.S., R.W. and M.A.R.S. Data were curated by J.M., S.T.K. and K.R.S. J.M., S.T.K. and K.R.S. were responsible for visualization. The original draft was written by K.B.W., J.M., K.R.S. and K.C.W. All authors reviewed and edited the paper. K.B.W. and K.C.W. supervised the project.

Corresponding authors

Correspondence to Kris C. Wood or Kevin B. Wood.

Ethics declarations

Competing interests

K.C.W. is a founder, consultant and equity holder at Tavros Therapeutics and Celldom and has performed consulting work for Guidepoint Global, Bantam Pharmaceuticals and Apple Tree Partners. All other authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Andriy Marusyk and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–4 and supplementary discussion on mutation rates.

Reporting Summary

Supplementary Data 1

List of melanocytic subtype genes, ssGSEA of melanoma cell lines with melanocytic gene set and top 100 JunB target genes.

Supplementary Data 2

Uncropped and unprocessed western blot images for the supplementary data. We included labels to identify which blot is from which figure.

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maltas, J., Killarney, S.T., Singleton, K.R. et al. Drug dependence in cancer is exploitable by optimally constructed treatment holidays. Nat Ecol Evol 8, 147–162 (2024). https://doi.org/10.1038/s41559-023-02255-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-023-02255-x

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer