Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Megaherbivores provide biotic resistance against alien plant dominance

Abstract

While human-driven biological invasions are rapidly spreading, finding scalable and effective control methods poses an unresolved challenge. Here, we assess whether megaherbivores—herbivores reaching ≥1,000 kg of body mass—offer a nature-based solution to plant invasions. Invasive plants are generally adapted to maximize vegetative growth. Megaherbivores, with broad dietary tolerances, could remove large biomass of established plants, facilitating new plant growth. We used a massive dataset obtained from 26,838 camera stations and 158,979 vegetation plots to assess the relationships between megaherbivores, native plants and alien plants across India (~121,330 km2). We found a positive relationship between megaherbivore abundance and native plant richness and abundance, and a concomitant reduction in alien plant abundance. This relationship was strongest in protected areas with midproductive ecosystem and high megaherbivore density but it was lost in areas where thicket-forming alien plants predominated (>40% cover). By incorporating the role of ecosystem productivity, plants traits and densities of megaherbivores on megaherbivore–vegetation relationships, our study highlights a function of megaherbivores in controlling alien plant proliferation and facilitating diverse native plants in invaded ecosystems. The study shows great potential for megafauna-based trophic rewilding as a nature-based solution to counteract dominance of plant invasions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Possible relationships between megaherbivores, native plant richness, native plant cover, alien plant richness and alien plant cover.
Fig. 2: Associations between megaherbivores and vegetation parameters and their variation across the productivity gradient.

Similar content being viewed by others

Data availability

Data used in the analyses are shared on Zenodo (https://doi.org/10.5281/zenodo.8128695). Any further request regarding data should be addressed to Y.V.J. (yvjhala@gmail.com).

Code availability

R scripts to reproduce analyses are shared on Zenodo (https://doi.org/10.5281/zenodo.8128695).

References

  1. Thematic Assessment of Invasive Alien Species and Their Control (IPBES, 2018); https://ipbes.net/sites/default/files/ipbes-6-inf-10_en.pdf

  2. Diagne, C. et al. High and rising economic costs of biological invasions worldwide. Nature 592, 571–576 (2021).

    CAS  PubMed  Google Scholar 

  3. Essl, F. et al. Drivers of future alien species impacts: an expert-based assessment. Glob. Change Biol. 26, 4880–4893 (2020).

    Google Scholar 

  4. Pyšek, P. et al. Scientists’ warning on invasive alien species. Biol. Rev. 95, 1511–1534 (2020).

    PubMed  Google Scholar 

  5. Chong, K. Y. et al. Are terrestrial biological invasions different in the Tropics? Annu. Rev. Ecol. Evol. Syst. 52, 291–314 (2021).

    Google Scholar 

  6. Barlow, J. et al. The future of hyperdiverse tropical ecosystems. Nature 559, 517–526 (2018).

    CAS  PubMed  Google Scholar 

  7. Dirzo, R. et al. Defaunation in the anthropocene. Science 345, 401–406 (2014).

    CAS  PubMed  Google Scholar 

  8. Borer, E. T. et al. Herbivores and nutrients control grassland plant diversity via light limitation. Nature 508, 517–520 (2014).

    CAS  PubMed  Google Scholar 

  9. Pausas, J. G. & Bond, W. J. On the three major recycling pathways in terrestrial ecosystems. Trends Ecol. Evol. 35, 767–775 (2020).

    PubMed  Google Scholar 

  10. Castorena, M., Olson, M. E., Enquist, B. J. & Fajardo, A. Toward a general theory of plant carbon economics. Trends Ecol. Evol. 37, 829–837 (2022).

  11. Owen-Smith, R. N. Megaherbivores: The Influence of Very Large Body Size on Ecology (Cambridge Univ. Press, 1988).

  12. Hopcraft, J. G. C., Olff, H. & Sinclair, A. R. Herbivores, resources and risks: alternating regulation along primary environmental gradients in savannas. Trends Ecol. Evol. 25, 119–128 (2010).

    PubMed  Google Scholar 

  13. Smith, F. A., Doughty, C. E., Malhi, Y., Svenning, J.-C. & Terborgh, J. Megafauna in the Earth system. Ecography 39, 99–108 (2016).

    Google Scholar 

  14. Hempson, G. P., Archibald, S. & Bond, W. J. A continent-wide assessment of the form and intensity of large mammal herbivory in Africa. Science 350, 1056–1061 (2015).

    CAS  PubMed  Google Scholar 

  15. Fløjgaard, C., Pedersen, P. B. M., Sandom, C. J., Svenning, J.-C. & Ejrnæs, R. Exploring a natural baseline for large-herbivore biomass in ecological restoration. J. Appl. Ecol. 59, 18–24 (2022).

    Google Scholar 

  16. Bond, W. J. Large parts of the world are brown or black: a different view on the ‘Green World’ hypothesis. J. Veg. Sci. 16, 261–266 (2005).

    Google Scholar 

  17. Pansu, J. et al. The generality of cryptic dietary niche differences in diverse large-herbivore assemblages. Proc. Natl Acad. Sci. USA 119, e2204400119 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Enquist, B. J., Abraham, A. J., Harfoot, M. B. J., Malhi, Y. & Doughty, C. E. The megabiota are disproportionately important for biosphere functioning. Nat. Commun. 11, 699 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Guyton, J. A. et al. Trophic rewilding revives biotic resistance to shrub invasion. Nat. Ecol. Evol. 4, 712–724 (2020).

    PubMed  Google Scholar 

  20. Mungi, N. A., Qureshi, Q. & Jhala, Y. V. Role of species richness and human impacts in resisting invasive species in tropical forests. J. Ecol. 109, 3308–3321 (2021).

    Google Scholar 

  21. Ratajczak, Z. et al. Reintroducing bison results in long-running and resilient increases in grassland diversity. Proc. Natl Acad. Sci. USA 119, e2210433119 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Koerner, S. E. et al. Change in dominance determines herbivore effects on plant biodiversity. Nat. Ecol. Evol. 2, 1925–1932 (2018).

    PubMed  Google Scholar 

  23. Rastogi, R., Qureshi, Q., Shrivastava, A. & Jhala, Y. V. Multiple invasions exert combined magnified effects on native plants, soil nutrients and alters the plant–herbivore interaction in dry tropical forest. For. Ecol. Manag. 531, 120781 (2023).

    Google Scholar 

  24. Dantas, V. L. & Pausas, J. G. Megafauna biogeography explains plant functional trait variability in the tropics. Glob. Ecol. Biogeogr. 29, 1288–1298 (2020).

    Google Scholar 

  25. Parker, J. D., Burkepile, D. E. & Hay, M. E. Opposing effects of native and exotic herbivores on plant invasions. Science 311, 1459–1461 (2006).

    CAS  PubMed  Google Scholar 

  26. Mungi, N. A., Qureshi, Q. & Jhala, Y. V. Expanding niche and degrading forests: key to the successful global invasion of Lantana camara (sensu lato). Glob. Ecol. Conserv. 23, e01080 (2020).

    Google Scholar 

  27. Jhala, Y. V., Qureshi, Q. & Yadav, S. P. Status of Leopards, Co-predators, and Megaherbivores in India, 2018 (National Tiger Conservation Authority, 2021).

  28. Largest Camera-Trap Wildlife Survey (Guinness World Record, 2021); https://www.guinnessworldrecords.com/world-records/601784-largest-camera-trap-wildlife-survey

  29. Vancuylenberg, B. W. B. Feeding behaviour of the Asiatic elephant in south-east Sri Lanka in relation to conservation. Biol. Conserv. 12, 33–54 (1977).

    Google Scholar 

  30. Blake, S. & Inkamba-Nkulu, C. Fruit, minerals, and forest elephant trails: do all roads lead to Rome? Biotropica 36, 392–401 (2004).

    Google Scholar 

  31. Fricke, E. C., Ordonez, A., Rogers, H. S. & Svenning, J.-C. The effects of defaunation on plants’ capacity to track climate change. Science 375, 210–214 (2022).

    CAS  PubMed  Google Scholar 

  32. Sankaran, M. et al. Determinants of woody cover in African savannas. Nature 438, 846–849 (2005).

    CAS  PubMed  Google Scholar 

  33. Le Roux, E. et al. Top-down limits on prey populations may be more severe in larger prey species, despite having fewer predators. Ecography 42, 1115–1123 (2019).

    Google Scholar 

  34. Karki, J. B., Jhala, Y. V. & Khanna, P. P. Grazing lawns in Terai grasslands, Royal Bardia National Park, Nepal. Biotropica 32, 423–429 (2000).

    Google Scholar 

  35. Jhala, Y. V. & Isvaran, K. The Ecology of Large Herbivores in South and Southeast Asia (eds Ahrestani, F. S. & Sankaran, M.) 151–176 (Springer, 2016).

  36. Svenning, J.-C., Munk, M. & Schweiger, A. in Rewilding (ed. Pettorelli, N.) 73–89 (Cambridge Univ. Press, 2019).

  37. Mungi, N. A. et al. Identifying knowledge gaps in the research and management of invasive species in India. Biologia 74, 623–629 (2019).

    Google Scholar 

  38. Wilson, G., Gruber, M. A. M. & Lester, P. J. Foraging relationships between elephants and Lantana camara invasion in Mudumalai Tiger Reserve, India. Biotropica 46, 194–201 (2014).

    Google Scholar 

  39. Sukumar, R. The Asian Elephant: Ecology and Management (Cambridge Univ. Press, 1992).

  40. Gubbi, S. Patterns and correlates of human–elephant conflict around a south Indian reserve. Biol. Conserv. 148, 88–95 (2012).

    Google Scholar 

  41. Banks, P. B., Byrom, A. E., Pech, R. P. & Dickman, C. R. Reinvasion is not invasion again. BioScience 68, 792–804 (2018).

    Google Scholar 

  42. Strum, S. C., Stirling, G. & Mutunga, S. K. The perfect storm: land use change promotes Opuntia stricta’s invasion of pastoral rangelands in Kenya. J. Arid Environ. 118, 37–47 (2015).

    Google Scholar 

  43. Jhala, H. Y., Qureshi, Q., Jhala, Y. V. & Black, S. A. Feasibility of reintroducing grassland megaherbivores, the greater one-horned rhinoceros, and swamp buffalo within their historic global range. Sci. Rep. 11, 4469 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Ripple, W. J. et al. Collapse of the world’s largest herbivores. Sci. Adv. 1, e1400103 (2015).

    PubMed  PubMed Central  Google Scholar 

  45. Cassidy, L. & Salerno, J. The need for a more inclusive science of elephant conservation. Conserv. Lett. 13, e12717 (2020).

    Google Scholar 

  46. Groom, R. & Harris, S. Conservation on community lands: the importance of equitable revenue sharing. Environ. Conserv. 35, 242–251 (2008).

    Google Scholar 

  47. Svenning, J.-C. et al. Science for a wilder Anthropocene: synthesis and future directions for trophic rewilding research. Proc. Natl Acad. Sci. USA 113, 898–906 (2016).

    CAS  PubMed  Google Scholar 

  48. Malhi, Y. et al. The role of large wild animals in climate change mitigation and adaptation. Curr. Biol. 32, R181–R196 (2022).

    CAS  PubMed  Google Scholar 

  49. Mormul, R. P. et al. Invasive alien species records are exponentially rising across the Earth. Biol. Invasions 24, 3249–3261 (2022).

  50. Cheema, G. S., Anand, S., Qureshi, Q. & Jhala, Y. V. CaTRAT: Camera Trap Data Repository and Analysis Tool (Wildlife Institute of India, 2018).

  51. O’Brien, T. G., Kinnaird, M. F. & Wibisono, H. T. Crouching tigers, hidden prey: Sumatran tiger and prey populations in a tropical forest landscape. Anim. Conserv. Forum 6, 131–139 (2003).

  52. Jhala, Y. V., Qureshi, Q. & Gopal, R. Field Guide: Monitoring Tigers, Co-predators, Prey and their Habitats (National Tiger Conservation Authority & Wildlife Institute of India, 2017).

  53. Daubenmire, R. Plant Communities: A Textbook of Plant Synecology (Harper & Row, 1968).

  54. Krishen, P. Jungle Trees of Central India: A Field Guide for Tree Spotters (Penguin Books, 2013).

  55. Page, N. Endemic Woody Plants of the Western Ghats (Trail Blazer, 2017).

  56. Jhala, Y. V. et al. Development and Implementation of MSTrIPES in Tiger Reserves (National Tiger Conservation Authority & Wildlife Institute of India, 2019).

  57. Khuroo, A. A. et al. Alien flora of India: taxonomic composition, invasion status and biogeographic affiliations. Biol. Invasions 14, 99–113 (2012).

    Google Scholar 

  58. Pergl, J. et al. Naturalized alien flora of the Indian states: biogeographic patterns, taxonomic structure and drivers of species richness. Biol. Invasions 20, 1625–1638 (2018).

    Google Scholar 

  59. Kennedy, C. M., Oakleaf, J. R., Theobald, D. M., Baruch-Mordo, S. & Kiesecker, J. Managing the middle: a shift in conservation priorities based on the global human modification gradient. Glob. Change Biol. 25, 811–826 (2019).

    Google Scholar 

  60. Schroeder, W., Oliva, P., Giglio, L. & Csiszar, I. A. The New VIIRS 375m active fire detection data product: algorithm description and initial assessment. Remote Sens. Environ. 143, 85–96 (2014).

    Google Scholar 

  61. Giglio, L., Descloitres, J., Justice, C. O. & Kaufman, Y. J. An enhanced contextual fire detection algorithm for MODIS. Remote Sens. Environ. 87, 273–282 (2003).

    Google Scholar 

  62. Pickens, A. H. et al. Mapping and sampling to characterize global inland water dynamics from 1999 to 2018 with full Landsat time-series. Remote Sens. Environ. 243, 111792 (2020).

    Google Scholar 

  63. Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Google Scholar 

  64. Running, S. W. & Zhao, M. Daily GPP and Annual NPP (MOD17A2/A3) Products NASA Earth Observing System MODIS Land Algorithm MOD17 User’s Guide (MODIS Land Team, 2015).

  65. India State of Forest Report 2009 (Forest Survey of India, 2009).

  66. Bates, D. et al. Package ‘lme4’: Linear mixed-effects models using S4 classes. R package version 1 (2011).

  67. Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R CoreTeam. Linear and nonlinear mixed effects models. R package version 3 (2007).

  68. Bartoń, K. MuMIn: Multi-model inference. R package version 1.43.17 (2020).

  69. Mungi, N. A. et al. Megaherbivores provide biotic resistance against alien plant dominance. Zenodo https://doi.org/10.5281/zenodo.8128695 (2023).

Download references

Acknowledgements

We consider this work a contribution to the Danish National Research Foundation Center for Ecological Dynamics in a New Biosphere (ECONOVO) and J-CS’ VILLUM Investigator project ‘Biodiversity Dynamics in a Changing World’. We thank National Tiger Conservation Authority, India, Wildlife Institute of India, Indian State Forest Departments, frontline forest staff and researchers for coordinating and participating in data collection. This work was supported by VILLUM Investigator project ‘Biodiversity Dynamics in a Changing World’ funded by VILLUM FONDEN (grant no. 16549 to J.-C.S.); Center for Ecological Dynamics in a New Biosphere (ECONOVO), funded by Danish National Research Foundation (grant no. DNRF173 to J.-C.S.); Independent Research Fund Denmark | Natural Sciences project MegaComplexity (grant no. 0135-00225B to J.-C.S.); and National Tiger Conservation Authority, New Delhi, India (Y.V.J. and Q.Q.).

Author information

Authors and Affiliations

Authors

Contributions

J.-C.S., Y.V.J., Q.Q. and N.A.M. conceived the work. N.A.M., Y.V.J. and J.-C.S. developed the methodology. N.A.M., J.-C.S. and E.L.R. conducted the investigations. N.A.M. and J.-C.S. prepared the visualizations. J.-C.S., Y.V.J. and Q.Q. acquired funding. N.A.M. and J.-C.S. wrote the original draft. E.L.R., Y.V.J., Q.Q., J.-C.S. and N.A.M. reviewed and edited the final manuscript.

Corresponding author

Correspondence to Ninad Avinash Mungi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8, Tables 1–9 and references.

Reporting Summary

Peer Review File

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mungi, N.A., Jhala, Y.V., Qureshi, Q. et al. Megaherbivores provide biotic resistance against alien plant dominance. Nat Ecol Evol 7, 1645–1653 (2023). https://doi.org/10.1038/s41559-023-02181-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-023-02181-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing