Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The soil microbiome governs the response of microbial respiration to warming across the globe

Abstract

The sensitivity of soil microbial respiration to warming (Q10) remains a major source of uncertainty surrounding the projections of soil carbon emissions to the atmosphere as the factors driving Q10 patterns across ecosystems have been assessed in isolation from each other. Here we report the results of a warming experiment using soils from 332 sites across all continents and major biomes to simultaneously evaluate the main drivers of global Q10 patterns. Compared with biochemical recalcitrance, mineral protection, substrate quantity and environmental factors, the soil microbiome (that is, microbial biomass and bacterial taxa) explained the largest portion of variation in Q10 values. Our work provides solid evidence that soil microbiomes largely govern the responses of soil heterotrophic respiration to warming and thus need to be explicitly accounted for when assessing land carbon–climate feedbacks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Global survey of soils to investigate the temperature sensitivity of soil respiration (Q10).
Fig. 2: Distribution and predictors of temperature sensitivity of soil respiration (Q10).
Fig. 3: Correlations between drivers and temperature sensitivity of soil respiration (Q10) values across ecosystem types.
Fig. 4: Major drivers of the temperature sensitivity of soil respiration (Q10).

Similar content being viewed by others

Data availability

The raw data associated with this study are available at https://doi.org/10.6084/m9.figshare.20776243 (ref. 75).

Code availability

The code associated with this study is available at https://doi.org/10.6084/m9.figshare.20776243 (ref. 75).

References

  1. Huang, H., Calabrese, S. & Rodriguez-Iturbe, I. Variability of ecosystem carbon source from microbial respiration is controlled by rainfall dynamics. Proc. Natl Acad. Sci. USA 118, e2115283118 (2021).

    Article  CAS  Google Scholar 

  2. García-Palacios, P. et al. Evidence for large microbial-mediated losses of soil carbon under anthropogenic warming. Nat. Rev. Earth Environ. 2, 507–517 (2021).

    Article  Google Scholar 

  3. Meyer, N., Welp, G. & Amelung, W. The temperature sensitivity (Q10) of soil respiration: controlling factors and spatial prediction at regional scale based on environmental soil classes. Glob. Biogeochem. Cycles 32, 306–323 (2018).

    Article  CAS  Google Scholar 

  4. Mahecha, M. D. et al. Global convergence in the temperature sensitivity of respiration at ecosystem level. Science 329, 838–840 (2010).

    Article  CAS  Google Scholar 

  5. Haaf, D., Six, J. & Doetterl, S. Global patterns of geo-ecological controls on the response of soil respiration to warming. Nat. Clim. Change 11, 623–627 (2021).

    Article  Google Scholar 

  6. Hursh, A. et al. The sensitivity of soil respiration to soil temperature, moisture, and carbon supply at the global scale. Glob. Change Biol. 23, 2090–2103 (2017).

    Article  Google Scholar 

  7. Karhu, K. et al. Temperature sensitivity of soil respiration rates enhanced by microbial community response. Nature 513, 81–84 (2014).

    Article  CAS  Google Scholar 

  8. Zhou, J. et al. Microbial mediation of carbon-cycle feedbacks to climate warming. Nat. Clim. Change 2, 106–110 (2012).

    Article  CAS  Google Scholar 

  9. Crowther, T. W. et al. The global soil community and its influence on biogeochemistry. Science 365, 6455 (2019).

    Article  Google Scholar 

  10. Allison, S. D., Chacon, S. S. & German, D. P. Substrate concentration constraints on microbial decomposition. Soil Biol. Biochem. 79, 43–49 (2014).

    Article  CAS  Google Scholar 

  11. Dungait, J. A. J., Hopkins, D. W., Gregory, A. S. & Whitmore, A. P. Soil organic matter turnover is governed by accessibility not recalcitrance. Glob. Change Biol. 18, 1781–1796 (2012).

    Article  Google Scholar 

  12. Conant, R. T. et al. Temperature and soil organic matter decomposition rates—synthesis of current knowledge and a way forward. Glob. Change Biol. 17, 3392–3404 (2011).

    Article  Google Scholar 

  13. Qin, S. et al. Temperature sensitivity of SOM decomposition governed by aggregate protection and microbial communities. Sci. Adv. 5, eaau1218 (2019).

    Article  CAS  Google Scholar 

  14. Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173 (2006).

    Article  CAS  Google Scholar 

  15. Fierer, N. et al. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc. Natl Acad. Sci. USA 109, 21390–21395 (2012).

    Article  CAS  Google Scholar 

  16. Bond-Lamberty, B. & Thomson, A. Temperature-associated increases in the global soil respiration record. Nature 464, 579–582 (2010).

    Article  CAS  Google Scholar 

  17. Song, J. et al. A meta-analysis of 1,119 manipulative experiments on terrestrial carbon-cycling responses to global change. Nat. Ecol. Evol. 3, 1309–1320 (2019).

    Article  Google Scholar 

  18. Delgado-Baquerizo, M. et al. A global atlas of the dominant bacteria found in soil. Science 359, 320–325 (2018).

    Article  CAS  Google Scholar 

  19. Wang, X. et al. Are ecological gradients in seasonal Q10 of soil respiration explained by climate or by vegetation seasonality? Soil Biol. Biochem. 42, 1728–1734 (2010).

    Article  CAS  Google Scholar 

  20. Gentsch, N. et al. Temperature response of permafrost soil carbon is attenuated by mineral protection. Glob. Change Biol. 24, 3401–3415 (2018).

    Article  Google Scholar 

  21. Wang, C. et al. The temperature sensitivity of soil: microbial biodiversity, growth, and carbon mineralization. ISME J. 15, 2738–2747 (2021).

    Article  CAS  Google Scholar 

  22. Wieder, W. R. et al. Explicitly representing soil microbial processes in Earth system models. Glob. Biogeochem. Cycles 29, 1782–1800 (2015).

    Article  CAS  Google Scholar 

  23. Wan, J. & Crowther, T. W. Uniting the scales of microbial biogeochemistry with trait‐based modelling. Funct. Ecol. 36, 1457–1472 (2022).

    Article  CAS  Google Scholar 

  24. Maestre, F. T. et al. Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proc. Natl Acad. Sci. USA 112, 15684–15689 (2015).

    Article  CAS  Google Scholar 

  25. Fierer, N., Colman, B. P., Schimel, J. P. & Jackson, R. B. Predicting the temperature dependence of microbial respiration in soil: a continental-scale analysis. Glob. Biogeochem. Cycles 20, GB3026 (2006).

    Article  Google Scholar 

  26. Wagai, R. et al. Linking temperature sensitivity of soil organic matter decomposition to its molecular structure, accessibility, and microbial physiology. Glob. Change Biol. 19, 1114–1125 (2013).

    Article  Google Scholar 

  27. Li, W. et al. Responses of Q10 to anthropogenic soil redistribution: synthetic effects of SOM composition and r/K-shifts of microbial community. Soil Tillage Res. 223, 105477 (2022).

    Article  Google Scholar 

  28. Zimmermann, M., Leifeld, J., Conen, F., Bird, M. I. & Meir, P. Can composition and physical protection of soil organic matter explain soil respiration temperature sensitivity? Biogeochemistry 107, 423–436 (2012).

    Article  Google Scholar 

  29. Soong, J. L. et al. Microbial carbon limitation: The need for integrating microorganisms into our understanding of ecosystem carbon cycling. Glob. Change Biol. 26, 1953–1961 (2020).

    Article  Google Scholar 

  30. Allison, S. D., Wallenstein, M. D. & Bradford, M. A. Soil-carbon response to warming dependent on microbial physiology. Nat. Geosci. 3, 336–340 (2010).

    Article  CAS  Google Scholar 

  31. Stone, B. W. G. et al. Life history strategies among soil bacteria—dichotomy for few, continuum for many. ISME J. 17, 611–619 (2023).

    Article  CAS  Google Scholar 

  32. Kirschbaum, M. The temperature dependence of organic-matter decomposition—still a topic of debate. Soil Biol. Biochem. 38, 2510–2518 (2006).

    Article  CAS  Google Scholar 

  33. Bradford, M. A. et al. Managing uncertainty in soil carbon feedbacks to climate change. Nat. Clim. Change 6, 751–758 (2016).

    Article  Google Scholar 

  34. Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article  Google Scholar 

  35. Whittaker, R. H. Communities and Ecosystems (Macmillan, 1970).

  36. Valentin Ș. & Levin, S. plotbiomes: R package for plotting Whittaker biomes with ggplot2 (v1.0.0). https://doi.org/10.5281/zenodo.7145245 (2018).

  37. Maestre, F. T. et al. Plant species richness and ecosystem multifunctionality in global drylands. Science 335, 214–218 (2012).

    Article  CAS  Google Scholar 

  38. Delgado-Baquerizo, M. et al. Changes in belowground biodiversity during ecosystem development. Proc. Natl Acad. Sci. USA 116, 6891–6896 (2019).

    Article  CAS  Google Scholar 

  39. Campbell, C. D., Chapman, S. J., Cameron, C. M., Davidson, M. S. & Potts, J. M. A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil. Appl. Environ. Microbiol. 69, 3593–3599 (2003).

    Article  CAS  Google Scholar 

  40. Han Weng, Z. et al. Biochar built soil carbon over a decade by stabilizing rhizodeposits. Nat. Clim. Change 7, 371–376 (2017).

    Article  Google Scholar 

  41. García-Palacios, P., Milla, R., Álvaro-Sánchez, M., Martín-Robles, N. & Maestro, M. Application of a high-throughput laboratory method to assess litter decomposition rates in multiple-species experiments. Soil Biol. Biochem. 57, 929–932 (2013).

    Article  Google Scholar 

  42. Dacal, M., Bradford, M. A., Plaza, C., Maestre, F. T. & García-Palacios, P. Soil microbial respiration adapts to ambient temperature in global drylands. Nat. Ecol. Evol. 3, 232–238 (2019).

    Article  Google Scholar 

  43. García-Palacios, P. et al. Pathways regulating decreased soil respiration with warming in a biocrust-dominated dryland. Glob. Change Biol. 24, 4645–4656 (2018).

    Article  Google Scholar 

  44. Fraser, F. C. et al. On the origin of carbon dioxide released from rewetted soils. Soil Biol. Biochem. 101, 1–5 (2016).

    Article  CAS  Google Scholar 

  45. Blagodatskaya, E. & Kuzyakov, Y. Active microorganisms in soil: critical review of estimation criteria and approaches. Soil Biol. Biochem. 67, 192–211 (2013).

    Article  CAS  Google Scholar 

  46. Margenot, A. J., Calderón, F. J., Bowles, T. M., Parikh, S. J. & Jackson, L. E. Soil organic matter functional group composition in relation to organic carbon, nitrogen, and phosphorus fractions in organically managed tomato fields. Soil Sci. Soc. Am. J. 79, 772–782 (2015).

    Article  CAS  Google Scholar 

  47. Thevenot, M., Dignac, M.-F. & Rumpel, C. Fate of lignins in soils: a review. Soil Biol. Biochem. 42, 1200–1211 (2010).

    Article  CAS  Google Scholar 

  48. Bingham, A. H. & Cotrufo, M. F. Organic nitrogen storage in mineral soil: implications for policy and management. Sci. Total Environ. 551–552, 116–126 (2016).

    Article  Google Scholar 

  49. Sokol, N. W. & Bradford, M. A. Microbial formation of stable soil carbon is more efficient from belowground than aboveground input. Nat. Geosci. 12, 46–53 (2019).

    Article  CAS  Google Scholar 

  50. Harris, D., Horwáth, W. R. & van Kessel, C. Acid fumigation of soils to remove carbonates prior to total organic carbon or carbon-13 isotopic analysis. Soil Sci. Soc. Am. J. 65, 1853–1856 (2001).

    Article  CAS  Google Scholar 

  51. Anderson, J. M. & Ingram, J. S. Tropical Soil Biology and Fertility: A Handbook of Methods (CAB International, 1993).

    Google Scholar 

  52. Bligh, E. G. & Dyer, W. J. A rapid method of total lipid extraction and purification. Can. J. Biochem Physiol. 37, 911–917 (1959).

    Article  CAS  Google Scholar 

  53. Buyer, J. S. & Sasser, M. High throughput phospholipid fatty acid analysis of soils. Appl. Soil Ecol. 61, 127–130 (2012).

    Article  Google Scholar 

  54. Frostegård, A. & Bååth, E. The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol. Fertil. Soils 22, 59–65 (1996).

    Article  Google Scholar 

  55. Rinnan, R. & Bååth, E. Differential utilization of carbon substrates by bacteria and fungi in tundra soil. Appl. Environ. Microbiol. 75, 3611–3620 (2009).

    Article  CAS  Google Scholar 

  56. Herlemann, D. P. et al. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 5, 1571–1579 (2011).

    Article  CAS  Google Scholar 

  57. Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).

    Article  CAS  Google Scholar 

  58. Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).

    Article  CAS  Google Scholar 

  59. Edgar, R. C. & Flyvbjerg, H. Error filtering, pair assembly and error correction for next-generation sequencing reads. Bioinformatics 31, 3476–3482 (2015).

    Article  CAS  Google Scholar 

  60. Egidi, E. et al. A few Ascomycota taxa dominate soil fungal communities worldwide. Nat. Commun. 10, 2369 (2019).

    Article  Google Scholar 

  61. Kettler, T. A., Doran, J. W. & Gilbert, T. L. Simplified method for soil particle-size determination to accompany soil-quality analyses. Soil Sci. Soc. Am. J. 65, 849–852 (2001).

    Article  CAS  Google Scholar 

  62. Bell, C. W. et al. High-throughput fluorometric measurement of potential soil extracellular enzyme activities. J. Vis. Exp. https://doi.org/10.3791/50961 (2013).

    Article  Google Scholar 

  63. Legendre, P. & Legendre, L. Numerical Ecology. (Elsevier Science BV: 2012).

    Google Scholar 

  64. Oksanen, J. vegan: an introduction to ordination. https://cran.r-project.org/web/packages/vegan/vignettes/intro-vegan.pdf (2020).

  65. Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

    Article  Google Scholar 

  66. Wei, C.-L. et al. Global patterns and predictions of seafloor biomass using random forests. PLoS ONE 5, e15323 (2010).

    Article  CAS  Google Scholar 

  67. Benito, B. M. spatialRF: easy spatial regression with random forest measurement. Zenodo. https://doi.org/10.5281/zenodo.4745208 (2021).

  68. James, G., Witten, D., Hastie, T. & Tibshirani, R. An Introduction to Statistical Learning (Springer, 2013).

  69. Andersen, R. Modern Methods for Robust Regression (Sage, 2008).

  70. Yegorov, O. Robust fitting of linear model. R package version 1.2. http://cran.nexr.com/web/packages/rlm/rlm.pdf (2016).

  71. Burnham, K. P. & Anderson, D. R. Model selection and multimodel inference: a practical information-theoretic approach. J. Wildl. Manag. 67, 655 (2003).

    Article  Google Scholar 

  72. Burnham, K. P., Anderson, D. R. & Huyvaert, K. P. Erratum to: AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav. Ecol. Sociobiol. 65, 415–415 (2011).

    Article  Google Scholar 

  73. Barton, K. MuMIn: multi-model inference. R package version 1.43. https://cran.r-project.org/web/packages/MuMIn/MuMIn.pdf (2020).

  74. Schermelleh-Engel, K., Moosbrugger, H. & Müller, H. Evaluating the fit of structural equation models: tests of significance and descriptive goodness-of-fit measures. Methods Psychol. Res. Online 8, 23–74 (2003).

    Google Scholar 

  75. Sáez-Sandino, T. The soil microbiome governs the response of microbial respiration to warming across the globe. (2023); https://doi.org/10.6084/m9.figshare.20776243

Download references

Acknowledgements

T.S.-S. and A.G. were supported by FEDER/Ministerio de Ciencia, Innovación y Universidades-Agencia Estatal de Investigación/Proyect (CGL2017-88124-R). M.D.-B. was supported by the BES grant agreement number LRB17\1019 (MUSGONET), innovation programme under Marie Sklodowska-Curie Grant Agreement 702057 (CLIMIFUN), Ramón y Cajal grant (RYC2018-025483-I), a project from the Spanish Ministry of Science and Innovation (PID2020-115813RA-I00; SOIL4GROWTH) and a project PAIDI 2020 from the Junta de Andalucía (P20_00879). F.T.M. is supported by the European Research Council grant 647038 (BIODESERT), Generalitat Valenciana grant CIDEGENT/2018/041, by the Spanish Ministry of Science and Innovation (grant PID2020-116578RB-I00) and by the contract between ETH Zurich and University of Alicante ‘Mapping terrestrial ecosystem structure at the global scale’. E.G. acknowledges funding from Generalitat Valenciana and Europen Social Fund grant (APOSTD/2021/188). T.S.-S., A.G. and M.D.-B. were also supported by TED2021-130908B-C41 (URBANCHANGE). N.E. gratefully acknowledges the support of iDiv, which is funded by the German Research Foundation (DFG – FZT 118, 202548816), as well as by the DFG (Ei 862/29-1; Ei 862/31-1). C.C.-D. is supported by a Post-doc Research Scholarship in the context of the FCT funded project SoilRecon with reference BIPD_01_2021_FCT-PTDC/BIA-CBI/2340/ 2020 and acknowledges the Center for Research and Development in Agrifood Systems and Sustainability (CISAS) with references UIDB/05937/2020 and UIDP/05937/2020, also funded by FCT national funds. We thank the researchers originally involved in the BIODESERT, CLIMIFUN and MUSGONET projects.

Author information

Authors and Affiliations

Authors

Contributions

T.S.-S., P.G.-P. and M.D.-B. conceptualized the project. M.D.-B., F.T.M. and A.G. acquired funding. T.S.-S., M.D.-B., P.G.-P., F.T.M., C.P., E.G., B.K.S., J.W., C.C.-D., N.E. and A.G. conducted the investigation. T.S.-S. wrote the paper with all authors contributing to the drafts.

Corresponding authors

Correspondence to Tadeo Sáez-Sandino or Manuel Delgado-Baquerizo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Climate Change thanks Yiqi Luo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–10 and Tables 1–4.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sáez-Sandino, T., García-Palacios, P., Maestre, F.T. et al. The soil microbiome governs the response of microbial respiration to warming across the globe. Nat. Clim. Chang. 13, 1382–1387 (2023). https://doi.org/10.1038/s41558-023-01868-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41558-023-01868-1

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology