Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The impact of UV light on synthetic photochemistry and photocatalysis

Abstract

During the past 15 years, an increasing number of research groups have embraced visible-light-mediated synthetic transformations as a powerful strategy for the construction and functionalization of organic molecules. This trend has followed the advent and development of photocatalysis, which often operates under mild visible-light irradiation. Nowadays, the general perception of UV-light photochemistry is often as an out-of-fashion approach that is difficult to perform and leads to unselective reaction pathways. Here we wish to propose an alternative and more realistic point of view to the scientific community. First, we will provide an overview of the use of UV light in modern photochemistry, highlighting the pivotal role it still plays in the development of new, efficient synthetic methods. We will then show how the high levels of mechanistic understanding reached for UV-light-driven processes have been key in the implementation of the related visible-light-driven transformations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Selected examples of the UV-light direct excitation strategy in synthetic photochemistry.
Fig. 2: Four photocatalysts discussed in this Perspective.
Fig. 3: UV-light-driven transformations and the development of new visible-light catalytic methods.

Similar content being viewed by others

References

  1. Roth, H. D. The beginnings of organic photochemistry. Angew. Chem. Int. Ed. 28, 1193–1207 (1989).

    Article  Google Scholar 

  2. Ciamician, G. The photochemistry of the future. Science 36, 385–394 (1912).

    Article  CAS  PubMed  Google Scholar 

  3. Turro, N. J. & Schuster, G. Photochemical reactions as a tool in organic syntheses. Science 187, 303–312 (1975).

    Article  CAS  PubMed  Google Scholar 

  4. Hoffmann, N. Photochemical reactions as key steps in organic synthesis. Chem. Rev. 108, 1052–1103 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Turro, N. J., Ramamurthy, V. & Scaiano, J. C. in Modern Molecular Photochemistry of Organic Molecules 319–382 (University Science Books, 2010).

  6. Nicewicz, D. A. & MacMillan, D. W. C. Merging photoredox catalysis with organocatalysis: the direct asymmetric alkylation of aldehydes. Science 322, 77–80 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schultz, D. M. & Yoon, T. P. Solar synthesis: prospects in visible light photocatalysis. Science 343, 1239176 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Twilton, J. et al. The merger of transition metal and photocatalysis. Nat. Rev. Chem. 1, 0052 (2017).

    Article  CAS  Google Scholar 

  9. Buglioni, L., Raymenants, F., Slattery, A., Zondag, S. D. A. & Noël, T. Technological innovations in photochemistry for organic synthesis: flow chemistry, high-throughput experimentation, scale-up and photoelectrochemistry. Chem. Rev. 122, 2752–2906 (2022).

    Article  CAS  PubMed  Google Scholar 

  10. Griesbeck, A. G., Abe, M. & Bondock, S. Selectivity control in electron spin inversion processes: regio- and stereochemistry of Paternò-Büchi photocycloadditions as a powerful tool for mapping intersystem crossing processes. Acc. Chem. Res. 37, 919–928 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Inoue, Y. Asymmetric photochemical reactions in solution. Chem. Rev. 92, 741–770 (1992).

    Article  CAS  Google Scholar 

  12. Toda, F. Solid state organic chemistry: efficient reactions, remarkable yields and stereoselectivity. Acc. Chem. Res. 28, 480–486 (1995).

    Article  CAS  Google Scholar 

  13. Ramamurthy, V. & Sivaguru, J. Supramolecular photochemistry as a potential synthetic tool: photocycloaddition. Chem. Rev. 116, 9914–9993 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Havinga, E. & Schlatmann, J. L. M. A. Remarks on the specificities of the photochemical and thermal transformations in the vitamin D field. Tetrahedron 16, 146–152 (1961).

    Article  Google Scholar 

  15. Hammond, G. S. & Saltiel, J. Photosensitized cis-trans isomerization of the stilbenes. J. Am. Chem. Soc. 84, 4983–4984 (1962).

    Article  CAS  Google Scholar 

  16. Ayitou, A. J.-L. & Sivaguru, J. Light-induced transfer of molecular chirality in solution: enantiospecific photocyclization of molecularly chiral acrylanilides. J. Am. Chem. Soc. 131, 5036–5037 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Kandappa, S. K. et al. Using restricted bond rotations to enforce excited-state behavior of organic molecules. Synlett 33, 1123–1134 (2022).

    Article  CAS  Google Scholar 

  18. Ahuja, S., Raghunathan, R., Kumarasamy, E., Jockusch, S. & Sivaguru, J. Realizing the photoene reaction with alkenes under visible light irradiation and bypassing the favored [2 + 2]-photocycloaddition. J. Am. Chem. Soc. 140, 13185–13189 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. Ayitou, A. J.-L. & Sivaguru, J. Reactive spin state dependent enantiospecific photocyclization of axially chiral α-substituted acrylanilides. Chem. Commun. 47, 2568–2570 (2011).

    Article  CAS  Google Scholar 

  20. Inoue, Y. in Chiral Photochemistry Vol. 11 (eds Inoue, Y. & Ramamurthy, V.) 129–177 (CRC Press, 2004).

  21. Oddy, M. J., Kusza, D. A. & Petersen, W. F. Visible-light mediated metal-free 6π-photocyclization of N-acrylamides: thioxanthone triplet energy transfer enables the synthesis of 3,4-dihydroquinolin-2-ones. Org. Lett. 23, 8963–8967 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Kumarasamy, E., Jesuraj, J. L., Omlid, J. N., Ugrinov, A. & Sivaguru, J. Light-induced enantiospecific 4π ring closure of axially chiral 2-pyridones: enthalpic and entropic effects promoted by H-bonding. J. Am. Chem. Soc. 133, 17106–17109 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Ayitou, A. J.-L., Jesuraj, J. L., Barooah, N., Ugrinov, A. & Sivaguru, J. Enantiospecific photochemical Norrish/Yang type II reaction of nonbiaryl atropchiral α-oxoamides in solution—axial to point chirality transfer. J. Am. Chem. Soc. 131, 11314–11315 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Masuda, Y., Ishida, N. & Murakami, M. Light-driven carboxylation of o-alkylphenyl ketones with CO2. J. Am. Chem. Soc. 137, 14063–14066 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Dell’Amico, L., Vega-Peñaloza, A., Cuadros, S. & Melchiorre, P. Enantioselective organocatalytic Diels-Alder trapping of photochemically generated hydroxy-o-quinodimethanes. Angew. Chem. Int. Ed. 55, 3313–3317 (2016).

    Article  Google Scholar 

  26. Dell’Amico, L., Fernández-Alvarez, V. M., Maseras, F. & Melchiorre, P. Light-driven enantioselective organocatalytic β-benzylation of enals. Angew. Chem. Int. Ed. 56, 3304–3308 (2017).

    Article  Google Scholar 

  27. Cuadros, S., Dell’Amico, L. & Melchiorre, P. Forging fluorine-containing quaternary stereocenters by a light-driven organocatalytic aldol desymmetrization process. Angew. Chem. Int. Ed. 56, 11875–11879 (2017).

    Article  CAS  Google Scholar 

  28. Mateos, J. et al. A microfluidic photoreactor enables 2-methylbenzophenone light-driven reactions with superior performance. Chem. Commun. 54, 6820–6823 (2018).

    Article  CAS  Google Scholar 

  29. Mateos, J. et al. Naphthochromenones: organic bimodal photocatalysts engaging in both oxidative and reductive quenching processes. Angew. Chem. Int. Ed. 59, 1302–1312 (2020).

    Article  CAS  Google Scholar 

  30. Plutschack, M. B., Pieber, B., Gilmore, K. & Seeberger, P. H. The Hitchhiker’s Guide to flow chemistry parallel. Chem. Rev. 117, 11796–11893 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Woo, J. et al. Scaffold hopping by net photochemical carbon deletion of azaarenes. Science 376, 527–532 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Albini, A. & Alpegiani, M. The photochemistry of the N-oxide function. Chem. Rev. 84, 43–71 (1984).

    Article  CAS  Google Scholar 

  33. Mateos, J. et al. Unveiling the impact of the light source and steric factors on [2 + 2] heterocycloaddition reactions. Nat. Synth. 2, 26–36 (2023).

    Article  Google Scholar 

  34. Austin, K. A. B., Herdtweck, E. & Bach, T. Intramolecular [2 + 2] photocycloaddition of substituted isoquinolones: enantioselectivity and kinetic resolution induced by a chiral template. Angew. Chem. Int. Ed. 50, 8416–8419 (2011).

    Article  CAS  Google Scholar 

  35. Coote, S. C. & Bach, T. Enantioselective intermolecular [2 + 2] photocycloadditions of isoquinolone mediated by a chiral hydrogen-bonding template. J. Am. Chem. Soc. 135, 14948–14951 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Brenninger, C., Jolliffe, J. D. & Bach, T. Chromophore activation of α,β-unsaturated carbonyl compounds and its application to enantioselective photochemical reactions. Angew. Chem. Int. Ed. 57, 14338–14349 (2018).

    Article  CAS  Google Scholar 

  37. Brimioulle, R. & Bach, T. Enantioselective Lewis acid catalysis of intramolecular enone [2 + 2] photocycloaddition reactions. Science 342, 840–843 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Strieth-Kalthoff, F., James, M. J., Teders, M., Pitzer, L. & Glorius, F. Energy transfer catalysis mediated by visible light: principles, applications, directions. Chem. Soc. Rev. 47, 7190–7202 (2018).

    Article  CAS  PubMed  Google Scholar 

  39. Juris, A. et al. Ru(II) polypyridine complexes: photophysics, photochemistry, eleclrochemistry and chemiluminescence. Coord. Chem. Rev. 84, 85–277 (1988).

    Article  CAS  Google Scholar 

  40. Lowry, M. S. et al. Single-layer electroluminescent devices and photoinduced hydrogen production from an ionic iridium(III) complex. Chem. Mater. 17, 5712–5719 (2005).

    Article  CAS  Google Scholar 

  41. Timpe, H.-J. & Kronfeld, K.-P. Light-induced polymer and polymerization reactions XXXIII: direct photoinitiation of methyl methacrylate polymerization by excited states of ketones. J. Photochem. Photobiol. A 46, 253–267 (1989).

    Article  CAS  Google Scholar 

  42. Kumarasamy, E. et al. Transposed Paternò–Büchi reaction. J. Am. Chem. Soc. 139, 655–662 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. Kumarasamy, E., Kandappa, S. K., Raghunathan, R., Jockusch, S. & Sivaguru, J. Realizing an aza Paternò–Büchi reaction. Angew. Chem. Int. Ed. 56, 7056–7061 (2017).

    Article  CAS  Google Scholar 

  44. Becker, M. R., Richardson, A. D. & Schindler, C. S. Functionalized azetidines via visible light-enabled aza Paternò–Büchi reactions. Nat. Commun. 10, 5095 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kandappa, S. K., Valloli, L. K., Ahuja, S., Parthiban, J. & Sivaguru, J. Taming the excited state reactivity of imines—from non-radiative decay to aza Paternò–Büchi reaction. Chem. Soc. Rev. 50, 1617–1641 (2021).

    Article  CAS  PubMed  Google Scholar 

  46. Kumagai, T., Kawamura, Y. & Mukai, T. Photochemical reaction of 3-aryl-2-isoxazolines with methylated benzenes. Tetrahedron Lett. 24, 2279–2282 (1983).

    Article  CAS  Google Scholar 

  47. Becker, M. R., Wearing, E. R. & Schindler, C. S. Synthesis of azetidines via visible-light-mediated intermolecular [2 + 2] photocycloadditions. Nat. Chem. 12, 898–905 (2020).

    Article  CAS  PubMed  Google Scholar 

  48. Poplata, S., Tröster, A., Zou, Y.-Q. & Bach, T. Recent advances in the synthesis of cyclobutanes by olefin [2 + 2] photocycloaddition reactions. Chem. Rev. 116, 9748–9815 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Liebermann, C. Ueber polythymochinon. Ber. Dtsch. Chem. Ges. 10, 2177–2179 (1877).

    Article  Google Scholar 

  50. Gamlin, J. N. et al. The ionic auxiliary concept in solid state organic photochemistry. Acc. Chem. Res. 29, 203–209 (1996).

    Article  CAS  Google Scholar 

  51. Brimioulle, R., Bauer, A. & Bach, T. Enantioselective Lewis acid catalysis in intramolecular [2 + 2] photocycloaddition reactions: a mechanistic comparison between representative coumarin and enone substrates. J. Am. Chem. Soc. 137, 5170–5176 (2015).

    Article  CAS  PubMed  Google Scholar 

  52. Vallavoju, N., Selvakumar, S., Jockusch, S., Sibi, M. P. & Sivaguru, J. Enantioselective organo-photocatalysis mediated by atropisomeric thiourea derivatives. Angew. Chem. Int. Ed. 53, 5604–5608 (2014).

    Article  CAS  Google Scholar 

  53. Blum, T. R., Miller, Z. D., Bates, D. M., Guzei, I. A. & Yoon, T. P. Enantioselective photochemistry through Lewis acid-catalyzed triplet energy transfer. Science 354, 1391–1395 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kumarasamy, E., Raghunathan, R., Jockusch, S., Ugrinov, A. & Sivaguru, J. Tailoring atropisomeric maleimides for stereospecific [2 + 2] photocycloaddition—photochemical and photophysical investigations leading to visible-light photocatalysis. J. Am. Chem. Soc. 136, 8729–8737 (2014).

    Article  CAS  PubMed  Google Scholar 

  55. Prinzbach, H., Eberbach, W. & von Veh, G. Photochemical isomerization of the tricyclo [3,2,1,02,4]octene system—a homovinylcyclopropane system. Angew. Chem. Int. Ed. 4, 436–437 (1965).

    Article  Google Scholar 

  56. Kleinmans, R. et al. Intermolecular [2π + 2σ]-photocycloaddition enabled by triplet energy transfer. Nature 605, 477–482 (2022).

    Article  CAS  PubMed  Google Scholar 

  57. Gozem, S., Luk, H. L., Schapiro, I. & Olivucci, M. Theory and simulation of the ultrafast double-bond isomerization of biological chromophores. Chem. Rev. 117, 13502–13565 (2017).

    Article  CAS  PubMed  Google Scholar 

  58. Turro, N. J., Ramamurthy, V. & Scaiano, J. C. in Modern Molecular Photochemistry of Organic Molecules 705–746 & 1018–1031 (University Science Books, 2010).

  59. Nevesely, T., Wienhold, M., Molloy, J. J. & Gilmour, R. Advances in the E → Z isomerization of alkenes using small molecule photocatalysts. Chem. Rev. 122, 2650–2694 (2022).

    Article  CAS  PubMed  Google Scholar 

  60. Molloy, J. J. et al. Boron-enabled geometric isomerization of alkenes via selective energy-transfer catalysis. Science 369, 302–306 (2020).

    Article  CAS  PubMed  Google Scholar 

  61. Adorinni, S. et al. Self-assembly of benzophenone-diphenylalanine conjugate into a nanostructured photocatalyst. Chem. Commun. 59, 7619–7622 (2023).

    Article  CAS  Google Scholar 

  62. Drucker, C. S., Toscano, V. G. & Weiss, R. G. General method for the determination of steric effects during collisional energy transfer. Partial photoresolution of penta-2,3-diene. J. Am. Chem. Soc. 95, 6482–6484 (1973).

    Article  CAS  Google Scholar 

  63. Hölzl-Hobmeier, A. et al. Catalytic deracemization of chiral allenes by sensitized excitation with visible light. Nature 564, 240–243 (2018).

    Article  PubMed  Google Scholar 

  64. De Mayo, P., Takeshita, H. & Sattar, A. B. M. A. The photochemical synthesis of 1,5-diketones and their cyclisation: a new annulation process. Proc. Chem. Soc. 119, D0376A (1962).

    Google Scholar 

  65. De Mayo, P. Enone photoannelation. Acc. Chem. Res. 4, 41–47 (1971).

    Article  Google Scholar 

  66. Disanayaka, B. W. & Weedon, A. C. Application of the de Mayo reaction to the preparation of tricyclo[6.3.0.02,6]undecanes: a photochemical synthesis of (±)-hirsutene. J. Org. Chem. 52, 2905–2910 (1987).

    Article  CAS  Google Scholar 

  67. Zhang, W., Zhang, L. & Luo, S. Catalytic asymmetric visible-light de Mayo reaction by ZrCl4-chiral phosphoric acid complex. J. Am. Chem. Soc. 145, 14227–14232 (2023).

    Article  CAS  PubMed  Google Scholar 

  68. Hasebe, M. & Tsuchiya, T. Photochemical generation of aliphatic radicals from benzophenone oxime esters: simple synthesis of alkylbenzenes and alkylpyridines. Tetrahedron Lett. 27, 3239–3242 (1986).

    Article  CAS  Google Scholar 

  69. Soni, V. K. et al. Reactivity tuning for radical-radical cross-coupling via selective photocatalytic energy transfer: access to amine building blocks. ACS Catal. 9, 10454–10463 (2019).

    Article  CAS  Google Scholar 

  70. Patra, T., Bellotti, P., Strieth-Kalthoff, F. & Glorius, F. Photosensitized intermolecular carboimination of alkenes through the persistent radical effect. Angew. Chem. Int. Ed. 59, 3172–3177 (2020).

    Article  CAS  Google Scholar 

  71. Tan, G. et al. Photochemical single-step synthesis of beta-amino acid derivatives from alkenes and (hetero)arenes. Nat. Chem. 14, 1174–1184 (2022).

    Article  CAS  PubMed  Google Scholar 

  72. Protti, S. & Fagnoni, M. The sunny side of chemistry: green synthesis by solar light. Photochem. Photobiol. Sci. 8, 1499–1516 (2009).

    Article  CAS  PubMed  Google Scholar 

  73. Oelgemöller, M. Solar photochemical synthesis: from the beginnings of organic photochemistry to the solar manufacturing of commodity chemicals. Chem. Rev. 116, 9664–9682 (2016).

    Article  PubMed  Google Scholar 

  74. Williams, J. D. & Kappe, C. O. Recent advances toward sustainable flow photochemistry. Curr. Opin. Green Sustain. Chem. 25, 100351 (2020).

    Article  Google Scholar 

  75. Schroeder, E. & Christopher, P. Chemical production using light: are sustainable photons cheap enough? ACS Energy Lett. 7, 880–884 (2022).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by MUR (Ministero dell’Università) PRIN 2020927WY3_002 and European Research Council (ERC) Starting Grant 2021 SYNPHOCAT 101040025 (L.D.). G.G. thanks the MUR for a Young Researchers, Seal of Excellence fellowship (PNRR) funded by the European Union—NextGeneration EU. J.S. thanks the National Science Foundation for generous support for his research programme (CHE-1955524).

Author information

Authors and Affiliations

Authors

Contributions

L.D. and J.S. conceived the manuscript and identified the general concepts. The manuscript was written with contributions from all authors. All authors gave approval for the final version of the manuscript.

Corresponding authors

Correspondence to Jayaraman Sivaguru or Luca Dell’Amico.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Axel Griesbeck and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goti, G., Manal, K., Sivaguru, J. et al. The impact of UV light on synthetic photochemistry and photocatalysis. Nat. Chem. (2024). https://doi.org/10.1038/s41557-024-01472-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41557-024-01472-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing