Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Visualization of CO2 electrolysis using optical coherence tomography

Abstract

Electrolysers offer an appealing technology for conversion of CO2 into high-value chemicals. However, there are few tools available to track the reactions that occur within electrolysers. Here we report an electrolysis optical coherence tomography platform to visualize the chemical reactions occurring in a CO2 electrolyser. This platform was designed to capture three-dimensional images and videos at high spatial and temporal resolutions. We recorded 12 h of footage of an electrolyser containing a porous electrode separated by a membrane, converting a continuous feed of liquid KHCO3 to reduce CO2 into CO at applied current densities of 50–800 mA cm−2. This platform visualized reactants, intermediates and products, and captured the strikingly dynamic movement of the cathode and membrane components during electrolysis. It also linked CO production to regions of the electrolyser in which CO2 was in direct contact with both membrane and catalyst layers. These results highlight how this platform can be used to track reactions in continuous flow electrochemical reactors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The eOCT platform used to image CO2 electrolysis in operando in 3D as a function of time.
Fig. 2: High-resolution eOCT and SEM images of the electrolyser components.
Fig. 3: Polarization and intensity images showing the generation of discrete CO2 and CO bubbles in a CO2 electrolyser taken by eOCT.
Fig. 4: Phase-distribution images showing the distribution of CO2(g), H2(g) and CO(g) after 3 h of electrolysis.
Fig. 5: The TPCs quantified by the eOCT platform at various operational and system conditions.
Fig. 6: Effect of pulsed-current on CO formation rates (jCO, grey), CO production observed in images captured by the eOCT (green) and number of TPCs (dark purple).

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the paper and its Supplementary Information files. We have prepared a data set related to the main manuscript available at https://doi.org/10.5281/zenodo.10531471. This study produced >2 TB of visualization data. Should any additional raw data files be needed in another format they are available from the corresponding author upon reasonable request.

Code availability

All code for data cleaning and analysis associated with the current submission is available at https://doi.org/10.5281/zenodo.10531471. All code folders contain a detailed readme file to explain their use.

References

  1. Weekes, D. M., Salvatore, D. A., Reyes, A., Huang, A. & Berlinguette, C. P. Electrolytic CO2 reduction in a flow cell. Acc. Chem. Res. 51, 910–918 (2018).

    CAS  PubMed  Google Scholar 

  2. Ren, S. et al. Molecular electrocatalysts can mediate fast, selective CO2 reduction in a flow cell. Science 365, 367–369 (2019).

    CAS  PubMed  Google Scholar 

  3. De Luna, P. et al. What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science 364, eaav3506 (2019).

    PubMed  Google Scholar 

  4. Jouny, M., Luc, W. & Jiao, F. General techno-economic analysis of CO2 electrolysis systems. Ind. Eng. Chem. Res. 57, 2165–2177 (2018).

    CAS  Google Scholar 

  5. Masel, R. I. et al. An industrial perspective on catalysts for low-temperature CO2 electrolysis. Nat. Nanotechnol. 16, 118–128 (2021).

    CAS  PubMed  Google Scholar 

  6. Whipple, D. T. & Kenis, P. J. A. Prospects of CO2 utilization via direct heterogeneous electrochemical reduction. J. Phys. Chem. Lett. 1, 3451–3458 (2010).

    CAS  Google Scholar 

  7. Li, T. et al. Electrolytic conversion of bicarbonate into CO in a flow cell. Joule 3, 1487–1497 (2019).

    CAS  Google Scholar 

  8. Zhang, Z. et al. Metallic porous electrodes enable efficient bicarbonate electrolysis. Energy Environ. Sci. 5, 705–713 (2022).

    Google Scholar 

  9. Keith, D. W., Holmes, G., St. Angelo, D. & Heidel, K. A process for capturing CO2 from the atmosphere. Joule 2, 1573–1594 (2018).

    CAS  Google Scholar 

  10. Keith, D. W. Why capture CO2 from the atmosphere? Science 325, 1654–1655 (2009).

    CAS  PubMed  Google Scholar 

  11. Li, T., Lees, E. W., Zhang, Z. & Berlinguette, C. P. Conversion of bicarbonate to formate in an electrochemical flow reactor. ACS Energy Lett. 5, 2624–2630 (2020).

    CAS  Google Scholar 

  12. Hori, Y., Kikuchi, K. & Suzuki, S. Production of CO and CH4 in electrochemical reduction of CO2 at metal electrodes in aqueous hydrogencarbonate solution. Chem. Lett. 14, 1695–1698 (1985).

    Google Scholar 

  13. Lees, E. W., Mowbray, B. A. W., Parlane, F. G. L. & Berlinguette, C. P. Gas diffusion electrodes and membranes for CO2 reduction electrolysers. Nat. Rev. Mater. 7, 55–64 (2021).

    Google Scholar 

  14. Liu, X. et al. pH effects on the electrochemical reduction of CO(2) towards C2 products on stepped copper. Nat. Commun. 10, 32 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Burdyny, T. & Smith, W. A. CO2 reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially-relevant conditions. Energy Environ. Sci. 12, 1442–1453 (2019).

    CAS  Google Scholar 

  16. Bhargava, S. S. et al. System design rules for intensifying the electrochemical reduction of CO2 to CO on Ag nanoparticles. ChemElectroChem 7, 2001 (2020).

    CAS  Google Scholar 

  17. Jeng, E. & Jiao, F. Investigation of CO2 single-pass conversion in a flow electrolyzer. React. Chem. Eng. 5, 1768–1775 (2020).

    CAS  Google Scholar 

  18. Reyes, A. et al. Managing hydration at the cathode enables efficient CO2 electrolysis at commercially relevant current densities. ACS Energy Lett. 5, 1612–1618 (2020).

    CAS  Google Scholar 

  19. Wheeler, D. G. et al. Quantification of water transport in a CO2 electrolyzer. Energy Environ. Sci. 13, 5126–5134 (2020).

    CAS  Google Scholar 

  20. Rabinowitz, J. A. & Kanan, M. W. The future of low-temperature carbon dioxide electrolysis depends on solving one basic problem. Nat. Commun. 11, 5231 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Salvatore, D. & Berlinguette, C. P. Voltage matters when reducing CO2 in an electrochemical flow cell. ACS Energy Lett. 5, 215–220 (2020).

    CAS  Google Scholar 

  22. Zhang, Z. et al. Conversion of reactive carbon solutions into CO at low voltage and high carbon efficiency. ACS Cent. Sci. 8, 749–755 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Lees, E. W., Bui, J. C., Song, D., Weber, A. Z. & Berlinguette, C. P. Continuum model to define the chemistry and mass transfer in a bicarbonate electrolyzer. ACS Energy Lett. 7, 834–842 (2022).

    CAS  Google Scholar 

  24. Weng, L.-C., Bell, A. T. & Weber, A. Z. Towards membrane-electrode assembly systems for CO2 reduction: a modeling study. Energy Environ. Sci. 12, 1950–1968 (2019).

    CAS  Google Scholar 

  25. Leonard, M. E., Clarke, L. E., Forner-Cuenca, A., Brown, S. M. & Brushett, F. R. Investigating electrode flooding in a flowing electrolyte, gas-fed carbon dioxide electrolyzer. ChemSusChem 13, 400–411 (2020).

    CAS  PubMed  Google Scholar 

  26. Kas, R. et al. In‐situ infrared spectroscopy applied to the study of the electrocatalytic reduction of CO2: theory, practice and challenges. ChemPhysChem 20, 2904–2925 (2019).

    CAS  PubMed  Google Scholar 

  27. Yang, K., Kas, R. & Smith, W. A. In situ infrared spectroscopy reveals persistent alkalinity near electrode surfaces during CO2 electroreduction. J. Am. Chem. Soc. 141, 15891–15900 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Xu, Y. et al. Low coordination number copper catalysts for electrochemical CO2 methanation in a membrane electrode assembly. Nat. Commun. 12, 2932 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang, Z. et al. pH matters when reducing CO2 in an electrochemical flow cell. ACS Energy Lett. 5, 3101–3107 (2020).

    CAS  Google Scholar 

  30. Xing, Z., Hu, L., Ripatti, D. S., Hu, X. & Feng, X. Enhancing carbon dioxide gas-diffusion electrolysis by creating a hydrophobic catalyst microenvironment. Nat. Commun. 12, 136 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Mariano, R. G., McKelvey, K., White, H. S. & Kanan, M. W. Selective increase in CO2 electroreduction activity at grain-boundary surface terminations. Science 358, 1187–1192 (2017).

    CAS  PubMed  Google Scholar 

  32. Wittstock, G., Burchardt, M., Pust, S. E., Shen, Y. & Zhao, C. Scanning electrochemical microscopy for direct imaging of reaction rates. Angew. Chem. Int. Ed. 46, 1584–1617 (2007).

    CAS  Google Scholar 

  33. Nesbitt, N. T. & Smith, W. A. Operando topography and mechanical property mapping of CO2 reduction gas-diffusion electrodes operating at high current densities. J. Electrochem. Soc. 168, 044505 (2021).

    CAS  Google Scholar 

  34. Li, T. et al. Design of next-generation ceramic fuel cells and real-time characterization with synchrotron X-ray diffraction computed tomography. Nat. Commun. 10, 1497 (2019).

    PubMed  PubMed Central  Google Scholar 

  35. Scharf, J. et al. Bridging nano- and microscale X-ray tomography for battery research by leveraging artificial intelligence. Nat. Nanotechnol. 17, 446–459 (2022).

    CAS  PubMed  Google Scholar 

  36. Ebner, M., Marone, F., Stampanoni, M. & Wood, V. Visualization and quantification of electrochemical and mechanical degradation in Li ion batteries. Science 342, 716–720 (2013).

    CAS  PubMed  Google Scholar 

  37. Withers, P. J. et al. X-ray computed tomography. Nat. Rev. Methods Primers 1, 1–21 (2021).

    Google Scholar 

  38. Disch, J. et al. High-resolution neutron imaging of salt precipitation and water transport in zero-gap CO2 electrolysis. Nat. Commun. 13, 6099 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Moss, A. B. et al. In operando investigations of oscillatory water and carbonate effects in MEA-based CO2 electrolysis devices. Joule 7, 350–365 (2023).

    CAS  Google Scholar 

  40. Iglesias van Montfort, H.-P. & Burdyny, T. Mapping spatial and temporal electrochemical activity of water and CO2 electrolysis on gas-diffusion electrodes using infrared thermography. ACS Energy Lett. 7, 2410–2419 (2022).

    CAS  Google Scholar 

  41. de Arquer, F. P. G. et al. CO2 electrolysis to multicarbon products at activities greater than 1 A cm−2. Science 367, 661–666 (2020).

    Google Scholar 

  42. Nesbitt, N. T. et al. Liquid–solid boundaries dominate activity of CO2 reduction on gas-diffusion electrodes. ACS Catal. 10, 14093–14106 (2020).

    CAS  Google Scholar 

  43. Huang, J. E. et al. CO2 electrolysis to multicarbon products in strong acid. Science 372, 1074–1078 (2021).

    CAS  PubMed  Google Scholar 

  44. Weng, L.-C., Bell, A. T. & Weber, A. Z. Modeling gas-diffusion electrodes for CO2 reduction. Phys. Chem. Chem. Phys. 20, 16973–16984 (2018).

    CAS  PubMed  Google Scholar 

  45. Li, Y. C. et al. CO2 Electroreduction from carbonate electrolyte. ACS Energy Lett. 4, 1427–1431 (2019).

    CAS  Google Scholar 

  46. Huang, D. et al. Optical coherence tomography. Science 254, 1178–1181 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Fujimoto, J. G., Pitris, C., Boppart, S. A. & Brezinski, M. E. Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy. Neoplasia 2, 9–25 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Park, B., Pierce, M., Cense, B. & de Boer, J. Real-time multi-functional optical coherence tomography. Opt. Express 11, 782–793 (2003).

    PubMed  Google Scholar 

  49. Drexler, W. et al. In vivo ultrahigh-resolution optical coherence tomography. Opt. Lett. 24, 1221–1223 (1999).

    CAS  PubMed  Google Scholar 

  50. Rollins, A., Yazdanfar, S., Kulkarni, M., Ung-Arunyawee, R. & Izatt, J. In vivo video rate optical coherence tomography. Opt. Express 3, 219–229 (1998).

    CAS  PubMed  Google Scholar 

  51. Siddiqui, M. et al. High-speed optical coherence tomography by circular interferometric ranging. Nat. Photonics 12, 111–116 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhou, K. C., Qian, R., Degan, S., Farsiu, S. & Izatt, J. A. Optical coherence refraction tomography. Nat. Photonics 13, 794–802 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Yao, G. & Wang, L. V. Two-dimensional depth-resolved Mueller matrix characterization of biological tissue by optical coherence tomography. Opt. Lett. 24, 537–539 (1999).

    CAS  PubMed  Google Scholar 

  54. Ortega-Quijano, N., Fanjul-Vélez, F. & Arce-Diego, J. L. Physically meaningful depolarization metric based on the differential Mueller matrix. Opt. Lett. 40, 3280–3283 (2015).

    PubMed  Google Scholar 

  55. Zhu, S., Jiang, B., Cai, W.-B. & Shao, M. Direct observation on reaction intermediates and the role of bicarbonate anions in CO2 electrochemical reduction reaction on Cu surfaces. J. Am. Chem. Soc. 139, 15664–15667 (2017).

    CAS  PubMed  Google Scholar 

  56. Zhu, S., Li, T., Cai, W.-B. & Shao, M. CO2 electrochemical reduction as probed through infrared spectroscopy. ACS Energy Lett. 4, 682–689 (2019).

    CAS  Google Scholar 

  57. Wen, G. et al. Continuous CO2 electrolysis using a CO2 exsolution-induced flow cell. Nat. Energy 7, 978–988 (2022).

    CAS  Google Scholar 

  58. Angulo, A., van der Linde, P., Gardeniers, H., Modestino, M. & Fernández Rivas, D. Influence of bubbles on the energy conversion efficiency of electrochemical reactors. Joule 4, 555–579 (2020).

    CAS  Google Scholar 

  59. Soto, Á. M., Maddalena, T., Fraters, A., van der Meer, D. & Lohse, D. Coalescence of diffusively growing gas bubbles. J. Fluid Mech. 846, 143–165 (2018).

    MathSciNet  CAS  Google Scholar 

  60. Lees, E. W. et al. Electrodes designed for converting bicarbonate into CO. ACS Energy Lett. 5, 2165–2173 (2020).

    CAS  Google Scholar 

  61. Li, J. et al. Efficient electrocatalytic CO2 reduction on a three-phase interface. Nat. Catal. 1, 592–600 (2018).

    CAS  Google Scholar 

  62. Lu, X. et al. Correlation between triple phase boundary and the microstructure of solid oxide fuel cell anodes: the role of composition, porosity and Ni densification. J. Power Sources 365, 210–219 (2017).

    CAS  Google Scholar 

  63. Bertei, A. et al. The fractal nature of the three-phase boundary: a heuristic approach to the degradation of nanostructured solid oxide fuel cell anodes. Nano Energy 38, 526–536 (2017).

    CAS  Google Scholar 

  64. Zhang, S. Quantitative Characterization and Modeling of the Microstructure of Solid Oxide Fuel Cell Composite Electrodes (Georgia Institute of Technology, 2010).

  65. TauFactor. MathWorks https://www.mathworks.com/matlabcentral/fileexchange/57956-taufactor (2020).

  66. Louisia, S. et al. The presence and role of the intermediary CO reservoir in heterogeneous electroreduction of CO2. Proc. Natl Acad. Sci. USA 119, e2201922119 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Lee, C. et al. Bubble formation in the electrolyte triggers voltage instability in CO2 electrolyzers. iScience 23, 101094 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Timoshenko, J. et al. Steering the structure and selectivity of CO2 electroreduction catalysts by potential pulses. Nat. Catal. 5, 259–267 (2022).

    CAS  Google Scholar 

  69. Strain, J. M., Gulati, S., Pishgar, S. & Spurgeon, J. M. Pulsed electrochemical carbon monoxide reduction on oxide-derived copper catalyst. ChemSusChem 13, 3028–3033 (2020).

    CAS  PubMed  Google Scholar 

  70. Casebolt, R., Levine, K., Suntivich, J. & Hanrath, T. Pulse check: potential opportunities in pulsed electrochemical CO2 reduction. Joule 5, 1987–2026 (2021).

    CAS  Google Scholar 

  71. Jännsch, Y. et al. Pulsed potential electrochemical CO2 reduction for enhanced stability and catalyst reactivation of copper electrodes. Electrochem. Commun. 121, 106861 (2020).

    Google Scholar 

  72. Kimura, K. W. et al. Selective electrochemical CO2 reduction during pulsed potential stems from dynamic interface. ACS Catal. 10, 8632–8639 (2020).

    CAS  Google Scholar 

  73. Mondal, M., Roy, S. & Mukhopadhyay, M. Role of in-situ generated CO2 bubbles in heterogeneous nucleation of solid solutes in the precipitation by pressure reduction of gas-expanded liquid (PPRGEL) process. Ind. Eng. Chem. Res. 56, 9331–9340 (2017).

    CAS  Google Scholar 

  74. Matsumoto, M., Isago, M. & Onoe, K. The application of micro bubbles for dissolution and crystallization of calcium carbonate in gas–liquid–solid system. Bull. Soc. Sea Water Sci. Jpn 58, 475–485 (2004).

    CAS  Google Scholar 

  75. Ko, F. K. & Wan, Y. Introduction to Nanofiber Materials (Cambridge Univ. Press, 2014).

  76. Balakrishnan, N. T. M. & Prasanth, R. Electrospinning for Advanced Energy Storage Applications (Springer, 2021).

  77. Lu, X., Qu, H. & Skorobogatiy, M. Piezoelectric micro- and nanostructured fibers fabricated from thermoplastic nanocomposites using a fiber drawing technique: comparative study and potential applications. ACS Nano 11, 2103–2114 (2017).

    CAS  PubMed  Google Scholar 

  78. Ortega-Quijano, N. & Arce-Diego, J. L. Depolarizing differential Mueller matrices. Opt. Lett. 36, 2429–2431 (2011).

    PubMed  Google Scholar 

  79. Clark Jones, R. A new calculus for the treatment of optical systems I. Description and discussion of the calculus. J. Opt. Soc. Am. 31, 488–493 (1941).

    Google Scholar 

  80. Rubin, N. A. et al. Matrix Fourier optics enables a compact full-Stokes polarization camera. Science 365, eaax1839 (2019).

    CAS  PubMed  Google Scholar 

  81. Savenkov, S. N. in Handbook of Coherent-Domain Optical Methods: Biomedical Diagnostics, Environmental Monitoring, and Materials Science (ed. Tuchin, V. V.) 1175–1253 (Springer, 2013).

  82. Tuchin, V. V. Polarized light interaction with tissues. J. Biomed. Opt. 21, 71114 (2016).

    PubMed  Google Scholar 

  83. Gil, J. J. & Ossikovski, R. Polarized Light and the Mueller Matrix Approach (CRC Press, 2017).

  84. Yamanari, M. et al. Melanin concentration and depolarization metrics measurement by polarization-sensitive optical coherence tomography. Sci. Rep. 10, 19513 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Beckmann, P. The Depolarization of Electromagnetic Waves (Golem Press, 1968).

  86. Depolarization in diffusely scattering media. SPIE https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11646/116460I/Depolarization-in-diffusely-scattering-media/10.1117/12.2577888.short (2021).

  87. Jiao, S. & Wang, L. V. Two-dimensional depth-resolved Mueller matrix of biological tissue measured with double-beam polarization-sensitive optical coherence tomography. Opt. Lett. 27, 101–103 (2002).

    PubMed  Google Scholar 

  88. Ossikovski, R. & Devlaminck, V. General criterion for the physical realizability of the differential Mueller matrix. Optics Lett. 39, 1216–1219 (2014).

    Google Scholar 

  89. Devlaminck, V., Terrier, P. & Charbois, J.-M. Differential matrix physically admissible for depolarizing media: the case of diagonal matrices. Opt. Lett. 38, 1497–1499 (2013).

    PubMed  Google Scholar 

  90. Simon, B. N. et al. A complete characterization of pre-Mueller and Mueller matrices in polarization optics. J. Opt. Soc. Am. A 27, 188–199 (2010).

    MathSciNet  CAS  Google Scholar 

  91. Jayaraman, V. et al. Rapidly swept, ultra-widely-tunable 1060 nm MEMS-VCSELs. Electron. Lett. 48, 1331–1333 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Grulkowski, I. et al. Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers. Biomed. Opt. Express 3, 2733–2751 (2012).

    PubMed  PubMed Central  Google Scholar 

  93. Yamanari, M., Uematsu, S., Ishihara, K. & Ikuno, Y. Parallel detection of Jones-matrix elements in polarization-sensitive optical coherence tomography. Biomed. Opt. Express 10, 2318–2336 (2019).

    PubMed  PubMed Central  Google Scholar 

  94. Hopkins, H. H. & Thomson, G. P. The concept of partial coherence in optics. Proc. R. Soc. Lond. A 208, 263–277 (1951).

    MathSciNet  Google Scholar 

  95. Kokhanovsky, A. Springer Series in Light Scattering: Volume 4: Light Scattering and Radiative Transfer (Springer, 2019).

  96. Mosk, A. P., Lagendijk, A., Lerosey, G. & Fink, M. Controlling waves in space and time for imaging and focusing in complex media. Nat. Photonics 6, 283–292 (2012).

    CAS  Google Scholar 

  97. Bertolotti, J. & Katz, O. Imaging in complex media. Nat. Phys. 18, 1008–1017 (2022).

    CAS  Google Scholar 

  98. Yamanari, M. et al. Estimation of Jones matrix, birefringence and entropy using Cloude–Pottier decomposition in polarization-sensitive optical coherence tomography. Biomed. Opt. Express 7, 3551–3573 (2016).

    PubMed  PubMed Central  Google Scholar 

  99. Ortega-Quijano, N., Marvdashti, T. & Ellerbee Bowden, A. K. Enhanced depolarization contrast in polarization-sensitive optical coherence tomography. Opt. Lett. 41, 2350–2353 (2016).

    PubMed  Google Scholar 

  100. Leitgeb, R. A. & Baumann, B. Multimodal optical medical imaging concepts based on optical coherence tomography. Front. Phys. 6, 114 (2018).

    Google Scholar 

  101. Egan, W. G., Hilgeman, T. & Reichman, J. Determination of absorption and scattering coefficients for nonhomogeneous media. 2: experiment. Appl. Opt. 12, 1816–1823 (1973).

    CAS  PubMed  Google Scholar 

  102. Mandracchia, B. et al. Quantitative imaging of the complexity in liquid bubbles’ evolution reveals the dynamics of film retraction. Light Sci. Appl. 8, 1–12 (2019).

    CAS  Google Scholar 

  103. Bridge, N. J., Buckingham, A. D. & Linnett, J. W. The polarization of laser light scattered by gases. Proc. R. Soc. Lond. A 295, 334–349 (1966).

    CAS  Google Scholar 

  104. Kokhanovsky, A. Springer Series in Light Scattering: Volume 2: Light Scattering, Radiative Transfer and Remote Sensing (Springer, 2017).

  105. Aksenov, E. P. Soviet Astronomy (American Institute of Physics, 1991).

  106. Shi, R. et al. Efficient wettability-controlled electroreduction of CO2 to CO at Au/C interfaces. Nat. Commun. 11, 3028 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Oxtoby, D. W. & Gelbart, W. M. Depolarized light scattering near the gas–liquid critical point. J. Chem. Phys. 60, 3359–3367 (1974).

    CAS  Google Scholar 

  108. Fabritius, T. & Myllylä, R. Investigation of swelling behaviour in strongly scattering porous media using optical coherence tomography. J. Phys. D 39, 2609 (2006).

    CAS  Google Scholar 

  109. vgg16. MathWorks https://www.mathworks.com/help/deeplearning/ref/vgg16.html (2014).

  110. Puga, J. L., Krzywinski, M. & Altman, N. Bayes’ theorem. Nat. Methods 12, 277–278 (2015).

    CAS  Google Scholar 

  111. Murphy, K. P. Naive Bayes classifiers. https://www.ic.unicamp.br/~rocha/teaching/2011s1/mc906/aulas/naive-bayes.pdf (Instituto de Computação, 2006).

  112. Rennie, J. D. M., Shih, L., Teevan, J. & Karger, D. R. in Proc. Twentieth International Conference on International Conference on Machine Learning 616–623 (AAAI Press, 2003).

  113. van de Schoot, R. et al. Bayesian statistics and modelling. Nat. Rev. Methods Primers 1, 1–26 (2021).

    Google Scholar 

  114. Oliveira, G. M. et al. Precise measurements of chromatin diffusion dynamics by modeling using Gaussian processes. Nat. Commun. 12, 6184 (2021).

    PubMed  PubMed Central  Google Scholar 

  115. de Arquer, F. P. G. et al. CO2 electrolysis to multicarbon products at activities greater than 1 A cm−2. Science 367, 661–666 (2020).

    Google Scholar 

  116. Michioka, T. & Komori, S. Large-Eddy simulation of a turbulent reacting liquid flow. AIChE J. 50, 2705–2720 (2004).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Madden (University British Columbia), Y. Bengio (University of Montreal), E. Ilic (University British Columbia), V. Schmidt, A. Hernandez Garcia, O. Boussif and D. Yasafovad for useful discussions and suggestions. The authors are grateful to the Max Planck-UBC-UTokyo Center for Quantum Materials; the Canada First Research Excellence Fund, Quantum Materials and Future Technologies Program; the Canadian Natural Sciences and Engineering Research Council (RGPIN-2018-06748, C.P.B.), Canadian Foundation for Innovation (229288, C.P.B.), Canadian Institute for Advanced Research (BSE-BERL-162173, C.P.B.); and the Canada Research Chairs for financial support. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. SEM imaging was performed in the Centre for High-Throughput Phenogenomics at the University of British Columbia, a facility supported by the Canada Foundation for Innovation, British Columbia Knowledge Development Foundation, and the UBC Faculty of Dentistry.

Author information

Authors and Affiliations

Authors

Contributions

C.P.B. supervised the project. F.K. is the direct supervisor of C.Z. X.L., C.Z., D.J.D., A.S. and A.B. performed experiments and data processing. X.L, R.S.D., C.Z., A.S., E.W.L., S.R., T.J. and C.P.B. wrote the manuscript. All authors discussed the results and assisted with manuscript preparation.

Corresponding author

Correspondence to Curtis P. Berlinguette.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Captions for Supplementary Movies 1–8, Figs. 1–26 and Table 1, and references.

Supplementary Video 1

Time-resolved visualization of the eOCT intensity in the XZ plane of the CO2 electrolyser during 12 h of electrolysis at 100 mA cm−2.

Supplementary Video 2

3D rotational view of the cathode captured by eOCT during electrolysis at a current density of 100 mA cm−2.

Supplementary Video 3

Time-resolved visualization of the eOCT intensity in the XZ plane of the CO2 electrolyser when the current density is switched from 0 to 100 mA cm−2. Bubbles are formed at the membrane and cathode which causes separation of the two layers during electrolysis.

Supplementary Video 4

Time-resolved visualization of eOCT of a control experiment used to quantify CO2 bubbles.

Supplementary Video 5

Time-resolved visualization of the eOCT intensity in the XZ plane of the CO2 electrolyser of single CO2 bubble dynamics at the membrane surface at a current density of 100 mA cm−2. This movie tracks the classical bubble evolution microprocesses including nucleation, necking and collapse.

Supplementary Video 6

Time-resolved visualization of the eOCT polarization in the XZ plane of the CO2 electrolyser of single CO2 bubble dynamics at the membrane surface at a current density of 100 mA cm−2. This movie tracks the classical bubble evolution microprocesses including nucleation, necking and collapse.

Supplementary Video 7

The phase-distribution movie showing the presence of CO2(g) pathway at the cathode, continuously supplying CO2(g) to form CO(g).

Supplementary Video 8

The signal similarities between reactants and products for CO2RR and HER with time shifts applied.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, X., Zhou, C., Delima, R.S. et al. Visualization of CO2 electrolysis using optical coherence tomography. Nat. Chem. (2024). https://doi.org/10.1038/s41557-024-01465-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41557-024-01465-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing