Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Air- and photo-stable luminescent carbodicarbene-azaboraacenium ions

Abstract

Substitution of a C=C bond by an isoelectronic B–N bond is a well-established strategy to alter the electronic structure and stability of acenes. BN-substituted acenes that possess narrow energy gaps have attractive optoelectronic properties. However, they are susceptible to air and/or light. Here we present the design, synthesis and molecular structures of fully π-conjugated cationic BN-doped acenes stabilized by carbodicarbene ligands. They are luminescent in the solution and solid states and show high air and moisture stability. Compared with their neutral BN-substituted counterparts as well as the parent all-carbon acenes, these species display improved quantum yields and small optical gaps. The electronic structures of the azabora-anthracene and azabora-tetracene cations resemble higher-order acenes while possessing high photo-oxidative resistance. Investigations using density functional theory suggest that the stability and photo-physics of these conjugated systems may be ascribed to their cationic nature and the electronic properties of the carbodicarbene.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Carbonaceous acenes, cationic BN-doped PAHs and azaboraacenium ions.
Fig. 2: Synthesis and single-crystal structures of azaboraacenium ions.
Fig. 3: Electronic structures.
Fig. 4: Optoelectronic properties.
Fig. 5: Stability evaluation.

Similar content being viewed by others

Data availability

Crystallographic data for the structures reported in this article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 2225725 (1a), 2225726 (1b), 2225727 (2a), 2225728 (2b), 2225729 (3a), 2225730 (3b) and 2225731 (7). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/. All other relevant data generated and analysed during this study, which include experimental, spectroscopic, crystallographic and computational data, are included in this article and its Supplementary Information. Source data are provided with this paper.

References

  1. Anthony, J. E. Functionalized acenes and heteroacenes for organic electronics. Chem. Rev. 106, 5028–5048 (2006).

    CAS  PubMed  Google Scholar 

  2. Chen, W. C., Lee, C. S. & Tong, Q. X. Blue-emitting organic electrofluorescence materials: progress and prospective. J. Mater. Chem. C 3, 10957–10963 (2015).

    ADS  CAS  Google Scholar 

  3. Zhu, M. R. & Yang, C. L. Blue fluorescent emitters: design tactics and applications in organic light-emitting diodes. Chem. Soc. Rev. 42, 4963–4976 (2013).

    CAS  PubMed  Google Scholar 

  4. Ito, K. et al. Oligo(2,6-anthrylene)s: acene-oligomer approach for organic field-effect transistors. Angew. Chem. Int. Ed. 42, 1159–1162 (2003).

    CAS  Google Scholar 

  5. Tripathi, A. K., Heinrich, M., Siegrist, T. & Pflaum, J. Growth and electronic transport in 9,10-diphenylanthracene single crystals—an organic semiconductor of high electron and hole mobility. Adv. Mater. 19, 2097–2101 (2007).

    CAS  Google Scholar 

  6. Becker, H. D. Unimolecular photochemistry of anthracenes. Chem. Rev. 93, 145–172 (1993).

    CAS  Google Scholar 

  7. Anthony, J. E. The larger acenes: versatile organic semiconductors. Angew. Chem. Int. Ed. 47, 452–483 (2008).

    CAS  Google Scholar 

  8. Chien, C. T. et al. Tetracene-based field-effect transistors using solution processes. J. Mater. Chem. 22, 13070–13075 (2012).

    ADS  CAS  Google Scholar 

  9. Kitamura, M. & Arakawa, Y. Pentacene-based organic field-effect transistors. J. Phys. Condens. Matter 20, 184011 (2008).

    ADS  Google Scholar 

  10. Wang, Z. K., Naka, S. & Okada, H. Performance improvement of rubrene-based organic light emitting devices with a mixed single layer. Appl. Phys. A 100, 1103–1108 (2010).

    ADS  CAS  Google Scholar 

  11. Wu, T. C. et al. Singlet fission efficiency in tetracene-based organic solar cells. Appl. Phys. Lett. 104, 193901 (2014).

    ADS  Google Scholar 

  12. Wilson, M. W. B., Rao, A., Ehrler, B. & Friends, R. H. Singlet exciton fission in polycrystalline pentacene: from photophysics toward devices. Acc. Chem. Res. 46, 1330–1338 (2013).

    CAS  PubMed  Google Scholar 

  13. Dong, S. Q., Ong, A. & Chi, C. Y. Photochemistry of various acene based molecules. J. Photochem. Photobiol. C 38, 27–46 (2019).

    CAS  Google Scholar 

  14. Zade, S. S. & Bendikov, M. Reactivity of acenes: mechanisms and dependence on acene length. J. Phys. Org. Chem. 25, 452–461 (2012).

    CAS  Google Scholar 

  15. Kouno, H. et al. Nonpentacene polarizing agents with improved air stability for triplet dynamic nuclear polarization at room temperature. J. Phys. Chem. Lett. 10, 2208–2213 (2019).

    CAS  PubMed  Google Scholar 

  16. Kaur, I. et al. Substituent effects in pentacenes: gaining control over HOMO–LUMO gaps and photooxidative resistances. J. Am. Chem. Soc. 130, 16274–16286 (2008).

    CAS  PubMed  Google Scholar 

  17. Abengozar, A., Garcia-Garcia, P., Fernandez-Rodriguez, M. A., Sucunza, D., & Vaquero, J. J. Recent developments in the chemistry of BN-aromatic hydrocarbons. Adv. Heterocycl. Chem. 135, 197–259 (2021).

    Google Scholar 

  18. Bosdet, M. J. D. & Piers, W. E. B–N as a C–C substitute in aromatic systems. Can. J. Chem. 87, 8–29 (2009).

    Google Scholar 

  19. Ishibashi, J. S. A., Darrigan, C., Chrostowska, A., Li, B. & Liu, S. Y. A BN anthracene mimics the electronic structure of more highly conjugated systems. Dalton Trans. 48, 2807–2812 (2019).

    CAS  PubMed  Google Scholar 

  20. Ishibashi, J. S. A., Dargelos, A., Darrigan, C., Chrostowska, A. & Liu, S. Y. BN tetracene: extending the reach of BN/CC isosterism in acenes. Organometallics 36, 2494–2497 (2017).

    CAS  Google Scholar 

  21. Zhuang, F. D. et al. BN-embedded tetrabenzopentacene: a pentacene derivative with improved stability. Angew. Chem. Int. Ed. 58, 10708–10712 (2019).

    CAS  Google Scholar 

  22. Zhang, J. J. et al. Large acene derivatives with B–N Lewis pair doping: synthesis, characterization, and application. Org. Lett. 24, 1877–1882 (2022).

    CAS  PubMed  Google Scholar 

  23. Dewar, M. J. S. & Tones, R. New heteroaromatic compounds part XXXI: the 12,11-borazarophenalenium cation. Tetrahedron Lett. 9, 2707–2708 (1968).

    Google Scholar 

  24. Gotoh, H. et al. Syntheses and physical properties of cationic BN-embedded polycyclic aromatic hydrocarbons. Angew. Chem. Int. Ed. 60, 12835–12840 (2021).

    CAS  Google Scholar 

  25. Ishikawa, Y., Suzuki, K. & Yamashita, M. 9-Aza-10-boraanthracene stabilized by coordination of an N-heterocyclic carbene and its methylated cation: synthesis, structure, and electronic properties. Organometallics 38, 2597–2601 (2019).

    CAS  Google Scholar 

  26. De Vries, T. S., Prokofjevs, A. & Vedejs, E. Cationic tricoordinate boron intermediates: borenium chemistry from the organic perspective. Chem. Rev. 112, 4246–4282 (2012).

    PubMed  PubMed Central  Google Scholar 

  27. Farrell, J. M., Hatnean, J. A. & Stephan, D. W. Activation of hydrogen and hydrogenation catalysis by a borenium cation. J. Am. Chem. Soc. 134, 15728–15731 (2012).

    CAS  PubMed  Google Scholar 

  28. Farrell, J. M., Posaratnanathan, R. T. & Stephan, D. W. A family of N-heterocyclic carbene-stabilized borenium ions for metal-free imine hydrogenation catalysis. Chem. Sci. 6, 2010–2015 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Huang, Z. G. et al. Boron: its role in energy-related processes and applications. Angew. Chem. Int. Ed. 59, 8800–8816 (2020).

    CAS  Google Scholar 

  30. Nesterov, V. et al. NHCs in main group chemistry. Chem. Rev. 118, 9678–9842 (2018).

    CAS  PubMed  Google Scholar 

  31. Baranac-Stojanovic, M. Aromaticity and stability of azaborines. Chem. Eur. J. 20, 16558–16565 (2014).

    CAS  PubMed  Google Scholar 

  32. Klein, S., Tonner, R. & Frenking, G. Carbodicarbenes and related divalent carbon(0) compounds. Chem. Eur. J. 16, 10160–10170 (2010).

    CAS  PubMed  Google Scholar 

  33. Dyker, C. A., Lavallo, V., Donnadieu, B. & Bertrand, G. Synthesis of an extremely bent acyclic allene (a ‘carbodicarbene’): A strong donor ligand. Angew. Chem. Int. Ed. 47, 3206–3209 (2008).

    CAS  Google Scholar 

  34. Liu, S., Chen, W C. & Ong, T. G. in Modern Ylide Chemistry. Structure and Bonding, 177 (ed Gessner, V.) (Springer, 2018).

  35. Liu, S. K., Shih, W. C., Chen, W. C. & Ong, T. G. Carbodicarbenes and their captodative behavior in catalysis. ChemCatChem 10, 1483–1498 (2018).

    CAS  Google Scholar 

  36. Tonner, R. & Frenking, G. Divalent carbon(0) chemistry, part 2: protonation and complexes with main group and transition metal lewis acids. Chem. Eur. J. 14, 3273–3289 (2008).

    CAS  PubMed  Google Scholar 

  37. Zhao, L. L., Chai, C. Q., Petz, W. & Frenking, G. Carbones and carbon atom as ligands in transition metal complexes. Molecules 25, 4943 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Aweke, B. S. et al. A bis-(carbone) pincer ligand and its coordinative behavior toward multi-metallic configurations. Angew .Chem. Int. Ed. 61, e202201884 (2022).

    ADS  CAS  Google Scholar 

  39. Chan, Y. C. et al. Synergistic catalysis by Brønsted acid/carbodicarbene mimicking frustrated Lewis pair-like reactivity. Angew. Chem. Int. Ed. 60, 19949–19956 (2021).

    CAS  Google Scholar 

  40. Chen, W. C. et al. The elusive three-coordinate dicationic hydrido boron complex. J. Am. Chem. Soc. 136, 914–917 (2014).

    CAS  PubMed  Google Scholar 

  41. Chen, W. C. et al. Carbodicarbenes: unexpected π-accepting ability during reactivity with small molecules. J. Am. Chem. Soc. 139, 12830–12836 (2017).

    CAS  PubMed  Google Scholar 

  42. Walley, J. E. et al. s-Block carbodicarbene chemistry: C(sp3)–H activation and cyclization mediated by a beryllium center. Chem. Commun. 55, 1967–1970 (2019).

    Google Scholar 

  43. Walley, J. E. et al. Carbodicarbene bismaalkene cations: unravelling the complexities of carbene versus carbone in heavy pnictogen chemistry. Angew. Chem. Int. Ed. 60, 6682–6690 (2021).

    CAS  Google Scholar 

  44. Hollister, K. K. et al. Air-stable thermoluminescent carbodicarbene-borafluorenium ions. J. Am. Chem. Soc. 144, 590–598 (2022).

    CAS  PubMed  Google Scholar 

  45. Singh, S., Bhandari, M., Rawat, S. & Nembenna, S. in Polar Organometallic Reagents (eds Wheatley, A. E. H. & Uchiyama, M.) 201–269 (2022).

  46. Franz, D. & Inoue, S. Cationic complexes of boron and aluminum: en early 21st century viewpoint. Chem. Eur. J. 25, 2898–2926 (2019).

    CAS  PubMed  Google Scholar 

  47. Yang, Y. H., Gao, Q. & Xu, S. M. Ligand-free iridium-catalyzed dehydrogenative ortho C–H borylation of benzyl-2-pyridines at room temperature. Adv. Synth. Catal. 361, 858–862 (2019).

    CAS  Google Scholar 

  48. Chen, W. C., Hsu, Y. C., Lee, C. Y., Yap, G. P. A. & Ong, T. G. Synthetic modification of acyclic bent allenes (carbodicarbenes) and further studies on their structural implications and reactivities. Organometallics 32, 2435–2442 (2013).

    CAS  Google Scholar 

  49. Yang, W. L. et al. Stable borepinium and borafluorenium heterocycles: a reversible thermochromic ‘switch’ based on boron–oxygen interactions. Chem. Eur. J. 25, 12512–12516 (2019).

    CAS  PubMed  Google Scholar 

  50. Allen, F. H. et al. Tables of bond lengths determined by X-ray and neutron diffraction. Part 1. Bond lengths in organic compounds. J. Chem. Soc. Perkin Trans. 2, S1–S19 (1987).

    Google Scholar 

  51. Abbey, E. R., Zakharov, L. N. & Liu, S. Y. Crystal clear structural evidence for electron delocalization in 1,2-dihydro-1,2-azaborines. J. Am. Chem. Soc. 130, 7250–7252 (2008).

    CAS  PubMed  Google Scholar 

  52. Costa, J. C. S., Taveira, R. J. S., Lima, C. F. R. A. C., Mendes, A. & Santos, L. M. N. B. F. Optical band gaps of organic semiconductor materials. Opt. Mater. 58, 51–60 (2016).

    ADS  CAS  Google Scholar 

  53. Sakamoto, Y. et al. Perfluoropentacene: high-performance p–n junctions and complementary circuits with pentacene. J. Am. Chem. Soc. 126, 8138–8140 (2004).

    CAS  PubMed  Google Scholar 

  54. Northrop, B. H., Houk, K. N. & Maliakal, A. Photostability of pentacene and 6,13-disubstituted pentacene derivatives: a theoretical and experimental mechanistic study. Photochem. Photobiol. Sci, 7, 1463–1468 (2008).

    CAS  PubMed  Google Scholar 

  55. Nijegorodov, N. & Winkoun, D. P. Dependence of the fluorescence parameters and the intersystem crossing rate constant on the orbital nature of the s(1) state of catacondensed aromatics. Spectrochim. Acta A 53, 2013–2022 (1997).

    ADS  Google Scholar 

  56. Burgdorff, C., Ehrhardt, S. & Lohmannsroben, H. G. Photophysical properties of tetracene derivatives in solution. 2. Halogenated tetracene derivatives. J. Phys. Chem. 95, 4246–4249 (1991).

    CAS  Google Scholar 

  57. Hestand, N. J. & Spano, F. C. Expanded theory of H- and J-molecular aggregates: the effects of vibronic coupling and intermolecular charge transfer. Chem. Rev. 118, 7069–7163 (2018).

    CAS  PubMed  Google Scholar 

  58. Huang, Y. J. et al. Green grinding–coassembly engineering toward intrinsically luminescent tetracene in cocrystals. ACS Nano 14, 15962–15972 (2020).

    CAS  PubMed  Google Scholar 

  59. Korovina, N. V., Pompetti, N. F. & Johnson, J. C. Lessons from intramolecular singlet fission with covalently bound chromophores. J. Chem. Phys. 152, 040904 (2020).

    ADS  CAS  PubMed  Google Scholar 

  60. Paci, I. et al. Singlet fission for dye-sensitized solar cells: can a suitable sensitizer be found? J. Am. Chem. Soc. 128, 16546–16553 (2006).

    CAS  PubMed  Google Scholar 

  61. Turro, N. J., Ramamurthy, V. & Scaiano, J. C. Modern Molecular Photochemistry of Organic Molecules (University Science Books, 2010).

  62. Zhao, J. Z., Ji, S. M. & Guo, H. M. Triplet–triplet annihilation based upconversion: from triplet sensitizers and triplet acceptors to upconversion quantum yields. RSC Adv. 1, 937–950 (2011).

    ADS  CAS  Google Scholar 

  63. Ullrich, T., Munz, D. & Guldi, D. M. Unconventional singlet fission materials. Chem. Soc. Rev. 50, 3485–3518 (2021).

    CAS  PubMed  Google Scholar 

  64. Ishibashi, J. S. et al. Two BN isosteres of anthracene: synthesis and characterization. J. Am. Chem. Soc. 136, 15414–15421 (2014).

    CAS  PubMed  Google Scholar 

  65. Chan, S. C. et al. Observation of carbodicarbene ligand redox noninnocence in highly oxidized iron complexes. Angew. Chem. Int. Ed. 57, 15717–15722 (2018).

    CAS  Google Scholar 

  66. Liu, S.-k, Chen, W.-C., Yap, G. P. A. & Ong, T.-G. Synthesis of carbophosphinocarbene and their donating ability: expansion of the carbone class. Organometallics 39, 4395–4401 (2020).

    CAS  Google Scholar 

  67. Petz, W. & Frenking, G. in Transition Metal Complexes of Neutral η1-Carbon Ligands (eds Chauvin, R. & Canac, Y.) 49–92 (Springer, 2010).

  68. Kuhn, N. & Kratz, T. Synthesis of imidazol-2-ylidenes by reduction of imidazole-2(3H)-thiones. Synthesis 1993, 561–562 (1993).

    Google Scholar 

  69. SAINT, APEX4 (Bruker AXS, 2019).

  70. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. J. Appl. Crystallogr. 48, 3–10 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sheldrick, G. M. SHELXT—integrated space-group and crystal-structure determination. Acta Crystallogr. A 71, 3–8 (2015).

    ADS  Google Scholar 

  72. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 42, 339–341 (2009).

    ADS  CAS  Google Scholar 

  73. Neese, F. The ORCA program system. Wires Comput. Mol. Sci. 2, 73–78 (2012).

    CAS  Google Scholar 

  74. Neese, F. Software update: the ORCA program system—version 5.0. Wires Comput. Mol. Sci. 12, e1606 (2022).

    Google Scholar 

  75. Lee, C., Yang, W. & Parr, R. G. Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988).

    ADS  CAS  Google Scholar 

  76. Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    ADS  CAS  Google Scholar 

  77. Schц╓fer, A., Huber, C. & Ahlrichs, R. Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. J. Chem. Phys. 100, 5829–5835 (1994).

    ADS  Google Scholar 

  78. Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297–3305 (2005).

    CAS  PubMed  Google Scholar 

  79. Grimme, S. Semiempirical hybrid density functional with perturbative second-order correlation. J. Chem. Phys. 124, 034108 (2006).

    ADS  PubMed  Google Scholar 

  80. Johnson, E. R. & Becke, A. D. A post-Hartree–Fock model of intermolecular interactions: Inclusion of higher-order corrections. J. Chem. Phys. 124, 174104 (2006).

    ADS  PubMed  Google Scholar 

  81. Neese, F., Wennmohs, F., Hansen, A. & Becker, U. Efficient, approximate and parallel Hartree–Fock and hybrid DFT calculations. A ‘chain-of-spheres’ algorithm for the Hartree–Fock exchange. Chem. Phys. 356, 98–109 (2009).

    CAS  Google Scholar 

  82. Glendening, E. D., Landis, C. R. & Weinhold, F. NBO 6.0: natural bond orbital analysis program. J. Comput. Chem. 34, 1429–1437 (2013).

    CAS  PubMed  Google Scholar 

  83. Knizia, G. Intrinsic atomic orbitals: an unbiased bridge between quantum theory and chemical concepts. J. Chem. Theory Comput. 9, 4834–4843 (2013).

    CAS  PubMed  Google Scholar 

  84. Jensen, F. Segmented contracted basis sets optimized for nuclear magnetic shielding. J. Chem. Theory Comput. 11, 132–138 (2015).

    CAS  PubMed  Google Scholar 

  85. Herges, R. & Geuenich, D. Delocalization of electrons in molecules. J. Phys. Chem. A 105, 3214–3220 (2001).

    CAS  Google Scholar 

  86. Schmider, H. L. & Becke, A. D. Chemical content of the kinetic energy density. J. Mol. Struct. Theochem. 527, 51–61 (2000).

    CAS  Google Scholar 

  87. Frisch, M. J. et al. Gaussian 16, Revision C.01 (Gaussian, Inc., Wallingford CT, 2016).

  88. Lu, T. & Chen, F. W. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).

    PubMed  Google Scholar 

  89. Mitoraj, M. P., Michalak, A. & Ziegler, T. A combined charge and energy decomposition scheme for bond analysis. J. Chem. Theory Comput. 5, 962–975 (2009).

    CAS  PubMed  Google Scholar 

  90. Radon, M. On the properties of natural orbitals for chemical valence. Theor. Chem. Acc. 120, 337–339 (2008).

    CAS  Google Scholar 

  91. Papajak, E., Zheng, J. J., Xu, X. F., Leverentz, H. R. & Truhlar, D. G. Perspectives on basis sets beautiful: seasonal plantings of diffuse basis functions. J. Chem. Theory Comput. 7, 3027–3034 (2011).

    CAS  PubMed  Google Scholar 

  92. Zheng, J. J., Xu, X. F. & Truhlar, D. G. Minimally augmented Karlsruhe basis sets. Theor. Chem. Acc. 128, 295–305 (2011).

    CAS  Google Scholar 

  93. Barone, V. & Cossi, M. Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J. Phys. Chem. A 102, 1995–2001 (1998).

    CAS  Google Scholar 

  94. Caricato, M. et al. Formation and relaxation of excited states in solution: a new time dependent polarizable continuum model based on time dependent density functional theory. J. Chem. Phys. 124, 124520 (2006).

    ADS  PubMed  Google Scholar 

  95. Gao, X. et al. Evaluation of spin–orbit couplings with linear-response time-dependent density functional methods. J. Chem. Theory Comput. 13, 515–524 (2017).

    CAS  PubMed  Google Scholar 

  96. Lee, T. J. & Taylor, P. R. A diagnostic for determining the quality of single-reference electron correlation methods. Int. J. Quantum Chem. 36, 199–207 (1989).

    Google Scholar 

  97. Riplinger, C., Sandhoefer, B., Hansen, A. & Neese, F. Natural triple excitations in local coupled cluster calculations with pair natural orbitals. J. Chem. Phys. 139, 134101 (2013).

    ADS  PubMed  Google Scholar 

  98. Pople, J. A., HeadБ─Gordon, M. & Raghavachari, K. Quadratic configuration interaction. A general technique for determining electron correlation energies. J. Chem. Phys. 87, 5968–5975 (1987).

    ADS  CAS  Google Scholar 

  99. Kendall, R. A., Dunning, T. H. Jr. & Harrison, R. J. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 96, 6796–6806 (1992).

    ADS  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the Arnold and Mabel Beckman Foundation for support of this work through a Beckman Young Investigator award (R.J.G.). The National Science Foundation Major Research Instrumentation (CHE 2018870) programme is also acknowledged (Bruker D8 Venture single crystal X-ray diffractometer). The University of Virginia (Rivanna) and Massachusetts Institute of Technology (Engaging, SuperCloud) High Performance Computing clusters provided computational resources and technical support that have contributed to the results reported herein.

Author information

Authors and Affiliations

Authors

Contributions

C.-L.D. and R.J.G. conceived and designed the project. C.-L.D. performed the experimental work as well as the theoretical studies. C.-L.D. and R.J.G. analysed the data. A.D.O. assisted in the synthetic experiments. B.Y.E.T. conducted the elemental analysis. S.K.S. provided the NHC ligand used in the experiments. D.A.D. and A.D.O. carried out the crystallographic data collection and refinement. C.-L.D. wrote the original draft, and R.J.G. edited with input from all authors. R.J.G. directed and supervised the research.

Corresponding author

Correspondence to Robert J. Gilliard Jr..

Ethics declarations

Competing interests

C.-L.D., R.J.G., A.D.O. and S.K.S. are inventors on a provisional patent filed by the University of Virginia on the synthesis and properties of luminescent carbodicarbene-azaboraacenium ions.

Peer review

Peer review information

Nature Chemistry thanks Samuel Guieu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–116, Table 1–14, detailed synthetic procedures and NMR spectra for all compounds, crystallographic, photophysical, spectroscopic studies and computational details.

Supplementary Data 1

Crystallographic data for compound 1a, CCDC 2225725.

Supplementary Data 2

Crystallographic data for compound 1b, CCDC 2225726.

Supplementary Data 3

Crystallographic data for compound 2a, CCDC 2225727.

Supplementary Data 4

Crystallographic data for compound 2b, CCDC 2225728.

Supplementary Data 5

Crystallographic data for compound 3a, CCDC 2225729.

Supplementary Data 6

Crystallographic data for compound 3b, CCDC 2225730.

Supplementary Data 7

Crystallographic data for compound 7, CCDC 2225731.

Supplementary Data 8

Cartesian coordinates of optimized and calculated structures.

Supplementary Data 9

Source data for Supplementary Fig. 29, 30, 31, 32, 108b, 110b and 111b.

Source data

Source Data Fig. 5b

Numerical source data for Fig. 5b.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, CL., Obi, A.D., Tra, B.Y.E. et al. Air- and photo-stable luminescent carbodicarbene-azaboraacenium ions. Nat. Chem. 16, 437–445 (2024). https://doi.org/10.1038/s41557-023-01381-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-023-01381-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing