Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Carbonyl cross-metathesis via deoxygenative gem-di-metal catalysis

Abstract

Carbonyls and alkenes are versatile functional groups, whose reactivities are cornerstones of organic synthesis. The selective combination of two carbonyls to form an alkene—a carbonyl cross-metathesis—would be a valuable tool for their exchange. Yet, this important synthetic challenge remains unsolved. Although alkene/alkene and alkene/carbonyl cross-metathesis reactions are known, there is a lack of analogous methods for deoxygenative cross-coupling of two carbonyl compounds. Here we report a pair of strategies for the cross-metathesis of unbiased carbonyls, allowing an aldehyde to be chemo- and stereoselectively combined with another aldehyde or ketone. These mild, catalytic methods are promoted by earth-abundant metal salts and enable rapid access to an unprecedentedly broad range of either Z- or E-alkenes by two distinct mechanisms—entailing transiently generated (1) carbenes and ylides (via Fe catalysis) or (2) doubly nucleophilic gem-di-metallics (via Cr catalysis).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Carbonyl metathesis strategies are rare, and cross-selectivity mechanisms must be developed.
Fig. 2: The Cr-catalysed carbonyl metathesis has wide scope with robust E- and cross-selectivity.
Fig. 3: Cross-metathesis: selectivity probes and mechanism.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are included in Supplementary Information.

References

  1. Takeda, T. Modern carbonyl olefination—methods and applications. Synthesis 2004, 1532–1532 (2004).

    Google Scholar 

  2. Hoveyda, A. H. & Zhugralin, A. R. The remarkable metal-catalysed olefin metathesis reaction. Nature 450, 243–251 (2007).

    CAS  PubMed  Google Scholar 

  3. Albright, H. et al. Carbonyl-olefin metathesis. Chem. Rev. 121, 9359–9406 (2021).

    CAS  PubMed Central  Google Scholar 

  4. Griffith, A. K., Vanos, C. M. & Lambert, T. H. Organocatalytic carbonyl-olefin metathesis. J. Am. Chem. Soc. 134, 18581–18584 (2012).

    CAS  Google Scholar 

  5. Ludwig, J. R., Zimmerman, P. M., Gianino, J. B. & Schindler, C. S. Iron(III)-catalysed carbonyl-olefin metathesis. Nature 533, 374–379 (2016).

    CAS  PubMed  Google Scholar 

  6. Pitzer, L., Sandfort, F., Strieth‐Kalthoff, F. & Glorius, F. Carbonyl–olefin cross‐metathesis through a visible‐light‐induced 1,3‐diol formation and fragmentation sequence. Angew. Chem. Int. Ed. 57, 16219–16223 (2018).

    CAS  Google Scholar 

  7. McMurry, J. E. Carbonyl-coupling reactions using low-valent titanium. Chem. Rev. 89, 1513–1524 (1989).

    CAS  Google Scholar 

  8. McMurry, J. E. & Fleming, M. P. New method for the reductive coupling of carbonyls to olefins. Synthesis of β-carotene. J. Am. Chem. Soc. 96, 4708–4709 (1974).

    CAS  Google Scholar 

  9. Mukaiyama, T., Sato, T. & Hanna, J. Reductive coupling of carbonyl compounds to pinacols and olefins by using TiCl4 and Zn. Chem. Lett. 2, 1041–1044 (1973).

    Google Scholar 

  10. Asako, S. & Ilies, L. Olefin synthesis by deoxygenative coupling of carbonyl compounds: from stoichiometric to catalytic. Chem. Lett. 49, 1386–1393 (2020).

    CAS  Google Scholar 

  11. Bongso, A., Roswanda, R. & Syah, Y. M. Recent advances of carbonyl olefination via McMurry coupling reaction. RSC Adv. 12, 15885–15909 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. McMurry, J. E., Fleming, M. P., Kees, K. L. & Krepski, L. R. Titanium-induced reductive coupling of carbonyls to olefins. J. Org. Chem. 43, 3255–3266 (1978).

    CAS  Google Scholar 

  13. Mukaiyama, T., Sugimura, H., Ohno, T. & Kobayashi, S. Reductive cross coupling reaction of a glyoxylate with carbonyl compounds. A facile synthesis of α,β-dihydroxycarboxylate based on a low valent titanium compound. Chem. Lett. 18, 1401–1404 (1989).

    Google Scholar 

  14. Wang, H., Dai, X. J. & Li, C. J. Aldehydes as alkyl carbanion equivalents for additions to carbonyl compounds. Nat. Chem. 9, 374–378 (2017).

    CAS  PubMed  Google Scholar 

  15. Wei, W. et al. Ruthenium(II)-catalyzed olefination: via carbonyl reductive cross-coupling. Chem. Sci. 8, 8193–8197 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Esfandiarfard, K., Mai, J. & Ott, S. Unsymmetrical E-alkenes from the stereoselective reductive coupling of two aldehydes. J. Am. Chem. Soc. 139, 2940–2943 (2017).

    CAS  PubMed  Google Scholar 

  17. Wang, S., Lokesh, N., Hioe, J., Gschwind, R. M. & König, B. Photoinitiated carbonyl-metathesis: deoxygenative reductive olefination of aromatic aldehydes via photoredox catalysis. Chem. Sci. 10, 4580–4587 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang, L., Lear, J. M., Rafferty, S. M., Fosu, S. C. & Nagib, D. A. Ketyl radical reactivity via atom transfer catalysis. Science 362, 225–229 (2018).

    CAS  PubMed Central  Google Scholar 

  19. Yang, Z. P. & Fu, G. C. Convergent catalytic asymmetric synthesis of esters of chiral dialkyl carbinols. J. Am. Chem. Soc. 142, 5870–5875 (2020).

    CAS  PubMed Central  Google Scholar 

  20. Rafferty, S. M., Rutherford, J. E., Zhang, L., Wang, L. & Nagib, D. A. Cross-selective aza-pinacol coupling via atom transfer catalysis. J. Am. Chem. Soc. 143, 5622–5628 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Huang, H.-M., Bellotti, P., Kim, S., Zhang, X. & Glorius, F. Catalytic multicomponent reaction involving a ketyl-type radical. Nat. Synth. 1, 464–474 (2022).

    Google Scholar 

  22. Huang, H. M., Bellotti, P., Erchinger, J. E., Paulisch, T. O. & Glorius, F. Radical carbonyl umpolung arylation via dual nickel catalysis. J. Am. Chem. Soc. 144, 1899–1909 (2022).

    CAS  PubMed  Google Scholar 

  23. Zhu, C., Lee, S. C., Chen, H., Yue, H. & Rueping, M. Reductive cross-coupling of α-oxy halides enabled by thermal catalysis, photocatalysis, electrocatalysis, or mechanochemistry. Angew. Chem. Int. Ed. 61, e202204212 (2022).

    CAS  Google Scholar 

  24. Kennedy, S. H., Dherange, B. D., Berger, K. J. & Levin, M. D. Skeletal editing through direct nitrogen deletion of secondary amines. Nature 593, 223–227 (2021).

    CAS  PubMed  Google Scholar 

  25. Dong, Z. & MacMillan, D. W. C. Metallaphotoredox-enabled deoxygenative arylation of alcohols. Nature 598, 451–456 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang, L., DeMuynck, B. M., Paneque, A. N., Rutherford, J. E. & Nagib, D. A. Carbene reactivity from alkyl and aryl aldehydes. Science 377, 649–654 (2022).

    CAS  PubMed Central  Google Scholar 

  27. Aggarwal, V. K. & Winn, C. L. Catalytic, asymmetric sulfur ylide-mediated epoxidation of carbonyl compounds: scope, selectivity, and applications in synthesis. Acc. Chem. Res. 37, 611–620 (2004).

    CAS  PubMed  Google Scholar 

  28. Ledford, B. E. & Carreira, E. M. Synthesis of unsaturated esters from aldehydes: an inexpensive, practical alternative to the Horner–Emmons reaction under neutral conditions. Tetrahedron Lett. 38, 8125–8128 (1997).

    CAS  Google Scholar 

  29. Lebel, H., Paquet, V. & Proulx, C. Methylenation of aldehydes: transition metal catalyzed formation of salt-free phosphorus ylides. Angew. Chem. Int. Ed. 40, 2887–2890 (2001).

    CAS  Google Scholar 

  30. Aggarwal, V. K., Fulton, J. R., Sheldon, C. G. & De Vicente, J. Generation of phosphoranes derived from phosphites. A new class of phosphorus ylides leading to high E selectivity with semi-stabilizing groups in Wittig olefinations. J. Am. Chem. Soc. 125, 6034–6035 (2003).

    CAS  PubMed  Google Scholar 

  31. Filippini, D. & Silvi, M. Visible light-driven conjunctive olefination. Nat. Chem. 14, 66–70 (2022).

    CAS  PubMed  Google Scholar 

  32. Takai, K., Hotta, Y., Oshima, K. & Nozaki, H. Effective methods of carbonyl methylenation using CH2I2–Zn–Me3Al and CH2Br2–Zn–TiCl4 system. Tetrahedron Lett. 19, 2417–2420 (1978).

    Google Scholar 

  33. Okazoe, T., Takai, K. & Utimoto, K. E-selective olefination of aldehydes by means of gem-dichromium reagents derived by reduction of gem-diiodoalkanes with chromium(II) chloride.J. Am. Chem. Soc. 109, 951–953 (1987).

    CAS  Google Scholar 

  34. Kochi, J. K. & Mocadlo, P. E. Facile reduction of alkyl halides with chromium(II) complexes. Alkylchromium species as intermediates. J. Am. Chem. Soc. 88, 4094–4096 (1966).

    CAS  Google Scholar 

  35. Marek, I. & Normant, J. F. Synthesis and reactivity of sp3-geminated organodimetallics. Chem. Rev. 96, 3241–3267 (1996).

    CAS  PubMed  Google Scholar 

  36. Nallagonda, R., Padala, K. & Masarwa, A. gem-Diborylalkanes: recent advances in their preparation, transformation and application. Org. Biomol. Chem. 16, 1050–1064 (2018).

    CAS  PubMed  Google Scholar 

  37. Banerjee, A. K., Sulbaran De Carrasco, M. C., Frydrych-Houge, C. S. V. & Motherwell, W. B. Observations on the reductive deoxygenation of aryl and α,β-unsaturated carbonyl compounds with chlorotrimethylsilane and zinc. J. Chem. Soc. Chem.Commun. 1986, 1803–1805 (1986).

    Google Scholar 

  38. Knecht, M. & Boland, W. E-selective alkylidenation of aldehydes with reagents derived from α-acetoxy bromides, zinc and CrCl3. Synlett 1993, 837–838 (1993).

    Google Scholar 

  39. Fürstner, A. & Shi, N. Nozaki–Hiyama–Kishi reactions catalytic in chromium. J. Am. Chem. Soc. 118, 12349–12357 (1996).

    Google Scholar 

  40. Zhao, K. & Knowles, R. R. Contra-thermodynamic positional isomerization of olefins. J. Am. Chem. Soc. 144, 137–144 (2022).

    CAS  PubMed  Google Scholar 

  41. Zhang, C., Lin, Z., Zhu, Y. & Wang, C. Chromium-catalyzed allylic defluorinative ketyl olefin coupling. J. Am. Chem. Soc. 143, 11602–11610 (2021).

    CAS  PubMed  Google Scholar 

  42. Schwarz, J. L., Schäfers, F., Tlahuext-Aca, A., Lückemeier, L. & Glorius, F. Diastereoselective allylation of aldehydes by dual photoredox and chromium catalysis. J. Am. Chem. Soc. 140, 12705–12709 (2018).

    CAS  PubMed  Google Scholar 

  43. Ruffoni, A., Hampton, C., Simonetti, M. & Leonori, D. Photoexcited nitroarenes for the oxidative cleavage of alkenes. Nature 610, 81–86 (2022).

    CAS  PubMed  Google Scholar 

  44. Wise, D. E. et al. Photoinduced oxygen transfer using nitroarenes for the anaerobic cleavage of alkenes. J. Am. Chem. Soc. 144, 15437–15442 (2022).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the National Institutes of Health (R35 GM119812), National Science Foundation (CAREER 1654656) and Brown Science Foundation (BIA) for funding (to D.A.N.), and we are grateful to T. Bednar for independent verification of the robustness of this method.

Author information

Authors and Affiliations

Authors

Contributions

L.Z. and D.A.N. designed these strategies and wrote the manuscript. L.Z. performed all experiments and analysis.

Corresponding authors

Correspondence to Lumin Zhang or David A. Nagib.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary procedures and characterization data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Nagib, D.A. Carbonyl cross-metathesis via deoxygenative gem-di-metal catalysis. Nat. Chem. 16, 107–113 (2024). https://doi.org/10.1038/s41557-023-01333-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-023-01333-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing