Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pervasive transcriptome interactions of protein-targeted drugs

Abstract

The off-target toxicity of drugs targeted to proteins imparts substantial health and economic costs. Proteome interaction studies can reveal off-target effects with unintended proteins; however, little attention has been paid to intracellular RNAs as potential off-targets that may contribute to toxicity. To begin to assess this, we developed a reactivity-based RNA profiling methodology and applied it to uncover transcriptome interactions of a set of Food and Drug Administration-approved small-molecule drugs in vivo. We show that these protein-targeted drugs pervasively interact with the human transcriptome and can exert unintended biological effects on RNA functions. In addition, we show that many off-target interactions occur at RNA loci associated with protein binding and structural changes, allowing us to generate hypotheses to infer the biological consequences of RNA off-target binding. The results suggest that rigorous characterization of drugs’ transcriptome interactions may help assess target specificity and potentially avoid toxicity and clinical failures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: RBRP decodes transcriptome interaction of protein-targeted small-molecule drugs in vivo.
Fig. 2: RBRP reveals transcriptome interaction of Lev.
Fig. 3: Structural fingerprints of small-molecule drugs determine their transcriptome interactions in vivo.
Fig. 4: Altered RNA structure and RBP binding can associate with drug engagement.
Fig. 5: Lev targets a G4 structure in the YBX1 5′ UTR and inhibits translation.

Similar content being viewed by others

Data availability

All sequencing data are available through the Gene Expression Omnibus (GEO) under accession GSE229331. Data supporting the findings of this study are available in the Article, and its Supplementary Information and Supplementary Tables. Source data and bedgraphs of RBRP scores are also freely available at figshare at https://doi.org/10.6084/m9.figshare.20326824. Source data are provided with this paper.

Code availability

The RBRP scripts used for bioinformatics analysis are freely available at https://github.com/linglanfang/RBRP.

References

  1. Lin, A. et al. Off-target toxicity is a common mechanism of action of cancer drugs undergoing clinical trials. Sci. Transl. Med. 11, eaaw8412 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Onakpoya, I. J., Heneghan, C. J. & Aronson, J. K. Post-marketing withdrawal of 462 medicinal products because of adverse drug reactions: a systematic review of the world literature. BMC Med 14, 10 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Harrison, R. K. Phase II and phase III failures: 2013–2015. Nat Rev Drug Discov 15, 817–818 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Morgan, B. S. et al. R-BIND: an interactive database for exploring and developing RNA-targeted chemical probes. ACS Chem. Biol. 14, 2691–2700 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Donlic, A. et al. R-BIND 2.0: an updated database of bioactive RNA-targeting small molecules and associated RNA secondary structures. ACS Chem. Biol. 17, 1556–1566 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang, P. et al. Reprogramming of protein-targeted small-molecule medicines to RNA by ribonuclease recruitment. J. Am. Chem. Soc. 143, 13044–13055 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Velagapudi, S. P. et al. Approved anti-cancer drugs target oncogenic non-coding RNAs. Cell Chem. Biol. 25, 1086–1094 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Disney, M. D. Targeting RNA with small molecules to capture opportunities at the intersection of chemistry, biology, and medicine. J. Am. Chem. Soc. 141, 6776–6790 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kim, S. Exploring chemical information in PubChem. Curr Protoc 1, e217 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Suresh, B. M. et al. A general fragment-based approach to identify and optimize bioactive ligands targeting RNA. Proc. Natl Acad. Sci. USA 117, 33197–33203 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Balaratnam, S. et al. A chemical probe based on the PreQ1 metabolite enables transcriptome-wide mapping of binding sites. Nat. Commun. 12, 5856 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mukherjee, H. et al. PEARL-seq: a photoaffinity platform for the analysis of small molecule–RNA interactions. ACS Chem. Biol. 15, 2374–2381 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. Velagapudi, S. P., Li, Y. & Disney, M. D. A cross-linking approach to map small molecule-RNA binding sites in cells. Bioorg. Med. Chem. Lett. 29, 1532–1536 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rzuczek, S. G. et al. Precise small-molecule recognition of a toxic CUG RNA repeat expansion. Nat. Chem. Biol. 13, 188–193 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. Regulski, E. E. & Breaker, R. R. In-line probing analysis of riboswitches. Methods Mol. Biol. 419, 53–67 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Zeller, M. J. et al. SHAPE-enabled fragment-based ligand discovery for RNA. Proc. Natl Acad. Sci. USA 119, e2122660119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tong, Y. et al. Transcriptome-wide mapping of small-molecule RNA-binding sites in cells informs an isoform-specific degrader of QSOX1 mRNA. J. Am. Chem. Soc. 144, 11620–11625 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chang, M. T. et al. Identifying transcriptional programs underlying cancer drug response with TraCe-seq. Nat. Biotechnol. 40, 86–93 (2022).

    Article  CAS  PubMed  Google Scholar 

  19. Wurtmann, E. J. & Wolin, S. L. RNA under attack: cellular handling of RNA damage. Crit. Rev. Biochem. Mol. Biol. 44, 34–49 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Qiu, Z., Lu, L., Jian, X. & He, C. A diazirine-based nucleoside analogue for efficient DNA interstrand photocross-linking. J. Am. Chem. Soc. 130, 14398–14399 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nakamoto, K. & Ueno, Y. Diazirine-containing RNA photo-cross-linking probes for capturing microRNA targets. J. Org. Chem. 79, 2463–2472 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Di Antonio, M., McLuckie, K. I. & Balasubramanian, S. Reprogramming the mechanism of action of chlorambucil by coupling to a G-quadruplex ligand. J. Am. Chem. Soc. 136, 5860–5863 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Spitale, R. C. et al. Structural imprints in vivo decode RNA regulatory mechanisms. Nature 519, 486–490 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Marchant, J. When antibiotics turn toxic. Nature 555, 431–433 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. von Baum, H., Bottcher, S., Abel, R., Gerner, H. J. & Sonntag, H. G. Tissue and serum concentrations of levofloxacin in orthopaedic patients. Int. J. Antimicrob. Agents 18, 335–340 (2001).

    Article  Google Scholar 

  26. Flynn, R. A. et al. Transcriptome-wide interrogation of RNA secondary structure in living cells with icSHAPE. Nat. Protoc. 11, 273–290 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Herrmann, C. J. et al. PolyASite 2.0: a consolidated atlas of polyadenylation sites from 3′ end sequencing. Nucleic Acids Res. 48, D174–D179 (2020).

    CAS  PubMed  Google Scholar 

  28. Balaratnam, S. et al. A chemical probe based on the PreQ(1) metabolite enables transcriptome-wide mapping of binding sites. Nat. Commun. 12, 5856 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang, J., Schultz, P. G. & Johnson, K. A. Mechanistic studies of a small-molecule modulator of SMN2 splicing. Proc. Natl Acad. Sci. USA 115, E4604–E4612 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Shahsavarinia, K. et al. An umbrella review of clinical efficacy and adverse cardiac events associated with hydroxychloroquine or chloroquine with or without azithromycin in patients with COVID-19. Anesth Pain Med 11, e115827 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Begley, C. G. et al. Drug repurposing: misconceptions, challenges, and opportunities for academic researchers. Sci. Transl. Med. 13, eabd5524 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Kolli, A. R., Calvino-Martin, F. & Hoeng, J. Translational modeling of chloroquine and hydroxychloroquine dosimetry in human airways for treating viral respiratory infections. Pharm. Res. 39, 57–73 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Force, T. & Kolaja, K. L. Cardiotoxicity of kinase inhibitors: the prediction and translation of preclinical models to clinical outcomes. Nat. Rev. Drug Discov. 10, 111–126 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Padroni, G., Patwardhan, N. N., Schapira, M. & Hargrove, A. E. Systematic analysis of the interactions driving small molecule-RNA recognition. RSC Med. Chem. 11, 802–813 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Guo, P. et al. Compound shape effects in minor groove binding affinity and specificity for mixed sequence DNA. J. Am. Chem. Soc. 140, 14761–14769 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yazdani, K. et al. Machine learning informs RNA-binding chemical space. Angew. Chem. Int. Ed. 62, e202211358 (2023).

    Article  CAS  Google Scholar 

  37. Cai, Z., Zafferani, M., Akande, O. M. & Hargrove, A. E. Quantitative structure–activity relationship (QSAR) study predicts small-molecule binding to RNA structure. J. Med. Chem. 65, 7262–7277 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Van Nostrand, E. L. et al. A large-scale binding and functional map of human RNA-binding proteins. Nature 583, 711–719 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Yang, Y. C. et al. CLIPdb: a CLIP-seq database for protein–RNA interactions. BMC Genomics 16, 51 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Khoshnevis, S., Dreggors-Walker, R. E., Marchand, V., Motorin, Y. & Ghalei, H. Ribosomal RNA 2′-O-methylations regulate translation by impacting ribosome dynamics. Proc. Natl Acad. Sci. USA 119, e2117334119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jansson, M. D. et al. Regulation of translation by site-specific ribosomal RNA methylation. Nat. Struct. Mol. Biol. 28, 889–899 (2021).

    Article  CAS  PubMed  Google Scholar 

  42. Sun, L. et al. RNA structure maps across mammalian cellular compartments. Nat. Struct. Mol. Biol. 26, 322–330 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mustoe, A. M. et al. Pervasive regulatory functions of mRNA structure revealed by high-resolution SHAPE probing. Cell 173, 181–195 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mortimer, S. A., Kidwell, M. A. & Doudna, J. A. Insights into RNA structure and function from genome-wide studies. Nat. Rev. Genet. 15, 469–479 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Yeung, P. Y. et al. Systematic evaluation and optimization of the experimental steps in RNA G-quadruplex structure sequencing. Sci Rep. 9, 8091 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Yu, H., Qi, Y., Yang, B., Yang, X. & Ding, Y. G4Atlas: a comprehensive transcriptome-wide G-quadruplex database. Nucleic Acids Res. 51, D126–D134 (2023).

    Article  CAS  PubMed  Google Scholar 

  47. Xu, H. & Hurley, L. H. A first-in-class clinical G-quadruplex-targeting drug. The bench-to-bedside translation of the fluoroquinolone QQ58 to CX-5461 (Pidnarulex). Bioorg. Med. Chem. Lett. 77, 129016 (2022).

    Article  CAS  PubMed  Google Scholar 

  48. Tang, C. F. & Shafer, R. H. Engineering the quadruplex fold: nucleoside conformation determines both folding topology and molecularity in guanine quadruplexes. J. Am. Chem. Soc. 128, 5966–5973 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Balaratnam, S. et al. Investigating the NRAS 5' UTR as a target for small molecules. Cell Chem. Biol. 30, 643–657 (2023).

    Article  CAS  PubMed  Google Scholar 

  50. Fay, M. M., Lyons, S. M. & Ivanov, P. RNA G-quadruplexes in biology: principles and molecular mechanisms. J. Mol. Biol. 429, 2127–2147 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wacker, S. A., Houghtaling, B. R., Elemento, O. & Kapoor, T. M. Using transcriptome sequencing to identify mechanisms of drug action and resistance. Nat. Chem. Biol. 8, 235–237 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kumari, S., Bugaut, A., Huppert, J. L. & Balasubramanian, S. An RNA G-quadruplex in the 5′ UTR of the NRAS proto-oncogene modulates translation. Nat. Chem. Biol. 3, 218–221 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pottel, J. et al. The activities of drug inactive ingredients on biological targets. Science 369, 403–413 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mullard, A. Parsing clinical success rates. Nat. Rev. Drug Discov. 15, 447 (2016).

    PubMed  Google Scholar 

  55. Morgan, B. S., Forte, J. E., Culver, R. N., Zhang, Y. & Hargrove, A. E. Discovery of key physicochemical, structural, and spatial properties of RNA-targeted bioactive ligands. Angew. Chem. Int. Ed. 56, 13498–13502 (2017).

    Article  CAS  Google Scholar 

  56. Vicens, Q. & Westhof, E. RNA as a drug target: the case of aminoglycosides. ChemBioChem 4, 1018–1023 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Van Norman, G. A. Limitations of animal studies for predicting toxicity in clinical trials: is it time to rethink our current approach? JACC Basic Transl. Sci. 4, 845–854 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Corsello, S. M. et al. The drug repurposing hub: a next-generation drug library and information resource. Nat. Med. 23, 405–408 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Backman, T. W., Cao, Y. & Girke, T. ChemMine tools: an online service for analyzing and clustering small molecules. Nucleic Acids Res. 39, W486–W491 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Warren, L. et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7, 618–630 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Dong, Z. W. et al. RTL-P: a sensitive approach for detecting sites of 2′-O-methylation in RNA molecules. Nucleic Acids Res. 40, e157 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the US National Institutes of Health (GM130704 and GM145357 to E.T.K.) for this work. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. We thank A. E. Hargrove, A. Đonlić and E. G. Swanson at Duke University for sharing the list of FDA-approved drugs. We thank T. McLaughlin at Vincent Coates Foundation Mass Spectrometry Laboratory, Stanford University Mass Spectrometry (RRID:SCR_017801) for acquiring the HRMS data. We thank S. Lynch for his help with NMR studies. We thank staff at the Stanford PAN facility for support with oligo synthesis. This work was also supported in part by NIH P30 CA124435 utilizing the Stanford Cancer Institute Proteomics/Mass Spectrometry Shared Resource and NIH High End Instrumentation grant (1 S10 OD028697-01).

Author information

Authors and Affiliations

Authors

Contributions

E.T.K. conceived the project and supervised the work. E.T.K. and L.F. designed experiments. L.F. performed experiments and data analysis. L.F. developed codes and the bioinformatics pipeline. Y.L. synthesized the acylating probe of dasatinib. L.X. performed the in vitro translation and SHAPE experiments. W.A.V., M.G.M. and A.M.K. conducted the groundwork. L.F. and E.T.K. wrote the manuscript, with input from all authors.

Corresponding author

Correspondence to Eric T. Kool.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 RBRP workflow and experimental setup.

Library 1: Cells were treated with the drug-conjugated acylating probe. RBRP workflow identifies RBRP signals from drug-promoted acylation, random site acylation, and non-specific binding events during biotin-mediated pulldown. Library 2: Cells were treated with DMSO. RBRP workflow identifies RBRP signals from non-specific binding events. Library 3: Cells were treated with drug-conjugated acylating probe and the unmodified drug. RBRP workflow identifies RBRP signals from random site acylation, non-specific binding events during biotin-mediated pulldown, and changes in transcript abundance. Library 4: Cells were treated with excess unmodified drugs. RBRP workflow identifies RBRP signals from non-specific binding events during biotin-mediated pulldown and changes in transcript abundance. Library 5: Cells were treated with Linker-AI. RBRP workflow identifies RBRP signals from random site acylation and non-specific binding events during biotin-mediated pulldown.

Extended Data Fig. 2 RNA-seq determines how excess unmodified drug influences transcripts abundance in HEK293 cells.

a, Workflow of RNA-seq with HEK293 cells treated with unmodified drugs or DMSO. b-d, Volcano plot showing effects of unmodified Lev (b), HCQ (c), and Das (d) on transcript abundance. X-axis: log-transformed ratio of transcript abundance in the presence over the absence of unmodified drug. Y-axis: the negative value of log-transformed P-value calculated with DESeq2 using a two-tailed Wald test. Fold-change=transcript abudance (drug-treated)/transcript abudance (DMSO).

Source data

Extended Data Fig. 3 Transcript abundance and RT-stop frequencies are strongly concordant between RBRP sequencing libraries from two biological replicates.

a-c, Scatter plot showing very strong correlation of transcript expression value (RPKM) between two biological replicates (Pearson correlation r = 1.00) in HEK293 cells treated with Lev-AI only (a), Lev-AI and excess unmodified Lev (b), and DMSO (c). d-f, The concordance of RT-stop frequencies is high for most transcripts of read depth higher than the optimized cut-off value (200) in sequencing libraries of Lev-AI only (d), Lev-AI and excess unmodified Lev (e), and DMSO (f).

Source data

Extended Data Fig. 4 qPCR independently validates the transcriptome interactions of Levofloxacin (Lev) at 15 transcriptome binding sites in HEK293 cells.

Workflow showing the strategies of validating competable 2´-OH acylation sites with qPCR (Top panel). qPCR validated and quantified the relative level of 2´-OH acylation at the drug-binding loci. Data represent mean ± s.e.m., n = 3 biologically independent experiments. Statistical significance was calculated with two-tailed unpaired Student’s t-tests: *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. P values are 0.0227 (FAM71F2), 0.0007 (EEF2), <0.0001 (RPL5), 0.0346 (RNU1-88P), 0.0015 (H3F3B), 0.0023 (ARPC3), 0.0009 (YBX1), 0.0019 (SIAE), 0.0478 (RAN), 0.0006 (NME1), <0.0001 (ILF2), 0.0055 (XR_934306.3), 0.0051 (SIK3), 0.0140 (FTL), and 0.0103 (SNORD110).

Source data

Extended Data Fig. 5 RBRP complements the existing diazirine-based profiling method.

a, Chemical structure of diazirine-conjugated analogue of Levofloxacin (Lev-diazirine). The drug moiety is coloured blue, “click” handle” is coloured red, and diazirine moiety is coloured brown. b, Workflow for profiling RNA targets of Lev with Lev-diazirine probe. c, Volcano plot showing transcripts that are confidently enriched by Lev-diazirine in HEK293 cells. d, Volcano plot showing shared RNA targets that are identified by both Lev-AI and Lev-diazirine. X-axis: log-transformed ratio of transcript abundance in the presence over the absence of unmodified drug. Y-axis: the negative value of log-transformed P-value calculated with DESeq2. d, Venn diagram comparing RNA targets that were identified by Lev-AI and Lev-diazirine. e. Volcano plot showing shared transcripts (“hits”) identified by both RBRP and the existing diazirine-based profiling method. Transcripts that were enriched by Lev-diazirine are coloured grey. Shared transcripts that were identified by both Lev-AI and Lev-diazirine are coloured red. For c and e, X-axis: log-transformed ratio of transcript abundance in the presence over the absence of unmodified drug. Y-axis: the negative value of log-transformed P-value calculated with DESeq2 using a two-tailed Wald test. Fold-change=transcript abudance (Lev-diazirine-treated)/transcript abudance (Lev-diazirine + Competitor). f, Floating bar graphs comparing the distribution of RT stops of Lev-AI and Lev-diazirine towards four nucleotides. The floating bars represent the range of all data points (minimum to maximum). Lines represent the mean values. Data points are collected from two biologically independent sequencing experiments. All data points for nucleotide in each experiment are compiled for data analysis. Lev-diazirine: n = 22,958 (A), 19,154 (U), 19,375 (C), and 18,992 (G). Lev-diazirine + Competitor: n = 2,420 (A), 1,778 (U), 2,160 (C), and 1,895 (G). Lev-AI: n = 425,366 (A), 389,020 (U), 352,821 (C), and 380,397 (G). Lev-AI + Competitor: n = 423,930 (A), 389,653 (U), 354,014 (C), and 377,073 (G).

Source data

Extended Data Fig. 6 Plots comparing the structural fingerprints (Open Babel descriptors) of HCQ, Lev, and Das to an acquired list of FDA-approved small-molecule drugs (2076 drugs).

Open Babel descriptors are abonds (Number of aromatic bonds), atoms (Number of atoms), bonds (Number of bonds), dbonds (Number of double bonds), HBA1 (Number of Hydrogen Bond Acceptors 1), HBA2 (Number of Hydrogen Bond Acceptors 2), HBD (Number of Hydrogen Bond Donors), logP (Octanol/water partition coefficient), MR (Molar refractivity), MW (Molecular Weight), nF (Number of Fluorine Atoms), sbonds (Number of single bonds), tbonds (Number of triple bonds), and TPSA (Topological polar surface area).

Source data

Extended Data Fig. 7 qPCR independently validates the transcriptome interactions of Hydroxychloroquine (HCQ) and Dasatinib (Das) at several transcriptome binding sites in HEK293 cells.

a, Workflow showing the strategies of validating competable 2´-OH acylation sites with qPCR (Top panel). b-c, qPCR validated and quantified the relative level of 2´-OH acylation at the drug-binding loci of HCQ (b) and Das (c). Data represent mean ± s.e.m., n = 3 biologically independent experiments. Statistical significance was calculated with two-tailed Student’s t-tests: *P < 0.05, **P < 0.01, ****P < 0.0001. P values are <0.0001 (ANKRD28), 0.0198 (ATP4A), 0.0011 (ATP5PB), and 0.0254 (FAM168A), respectively.

Source data

Supplementary information

Supplementary Information

Supplementary Figs. 1–3, Tables 1–4, detailed experimental protocol, bioinformatics codes and compound characterization data.

Reporting Summary

Supplementary Tables

Tanimoto coefficient of small-molecule drugs with known RNA binders, a list of known FDA-approved RNA binders, lists of RBRP results and lists of primers used in this study.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 5

Unprocessed Western blots.

Source Data Extended Data Fig. 2

Statistical source data.

Source Data Extended Data Fig. 3

Statistical source data.

Source Data Extended Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 5

Statistical source data.

Source Data Extended Data Fig. 6

Statistical source data.

Source Data Extended Data Fig. 7

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, L., Velema, W.A., Lee, Y. et al. Pervasive transcriptome interactions of protein-targeted drugs. Nat. Chem. 15, 1374–1383 (2023). https://doi.org/10.1038/s41557-023-01309-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-023-01309-8

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research