Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A bridged backbone strategy enables collective synthesis of strychnan alkaloids

Abstract

Bridged frameworks are of high chemical and biological significance, being ubiquitous in pharmaceutical molecules and natural products. Specific structures are usually preformed to build these rigid segments at the middle or late stage in the synthesis of polycyclic molecules, resulting in decreased synthetic efficiency and target-specific syntheses. As a logically distinct synthetic strategy, we constructed an allene/ketone-equipped morphan core at the outset through an enantioselective α-allenylation of ketones. Experimental and theoretical results revealed that the high reactivity and enantioselectivity of this reaction are attributed to the cooperative effects of the organocatalyst and metal catalyst. The bridged backbone generated was employed as a structural platform to guide and facilitate the assembly of up to five fusing rings, and the allene and ketone groups thereon were used to precisely install various functionalities at C16 and C20 at the late stage, leading to a concise, collective total synthesis of nine strychnan alkaloids.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Representative clinical drugs and natural products bearing a bridged backbone and an outline of the synthetic design.
Fig. 2: DFT calculations.
Fig. 3: Synthesis of the shared intermediate 9.
Fig. 4: The collective access to strychnan alkaloids.

Similar content being viewed by others

Data availability

All relevant data supporting the findings of this study, including experimental procedures, compound characterizations and theoretical calculations are available within the Article and its Supplementary Information. Crystallographic data for the structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 2195671 (9b), 2195676 (10h), 2195681 (15) and 2195680 (24). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/.

References

  1. Atanasov, A. G., Zotchev, S. B., Dirsch, V. M., the International Natural Product Sciences Taskforce, & Supuran, C. T. Natural products in drug discovery: advances and opportunities. Nat. Rev. Drug Discovery 20, 200–216 2021).

    CAS  PubMed  Google Scholar 

  2. Rodrigues, T., Reker, D., Schneider, P. & Schneider, G. Counting on natural products for drug design. Nat. Chem. 8, 531–541 (2016).

    CAS  PubMed  Google Scholar 

  3. Newman, D. J. & Cragg, G. M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 83, 770–803 (2020).

    CAS  PubMed  Google Scholar 

  4. Ricarte, A., Dalton, J. A. R. & Giraldo, J. Structural assessment of agonist efficacy in the μ‑opioid receptor: morphine and fentanyl elicit different activation patterns. J. Chem. Inf. Model. 61, 1251–1274 (2021).

    CAS  PubMed  Google Scholar 

  5. Zhao, S., Sirasani, G. & Andrade, R. B. in The Alkaloids: Chemistry and Biology Vol. 86 (ed. Knölker, H. J.) 1−143 (Academic Press, 2021).

  6. Sirasani, G. & Andrade, R. B. in Strategies and Tactics in Organic Synthesis Vol. 9 (ed. Harmata, M.) Ch. 1 (Academic Press, 2013).

  7. He, W., Wang, P., Chen, J. & Xie, W. Recent progress in the total synthesis of Strychnos alkaloids. Org. Biomol. Chem. 18, 1046–1056 (2020).

    CAS  PubMed  Google Scholar 

  8. Cannon, J. S. & Overman, L. E. Is there no end to the total syntheses of strychnine? Lessons learned in strategy and tactics in total synthesis. Angew. Chem. Int. Ed. 51, 4288–4311 (2012).

    CAS  Google Scholar 

  9. Krause, N., Stephen, A. & Hashmi, K. Modern Allene Chemistry (Wiley, 2004).

  10. Yu, S. & Ma, S. Allenes in catalytic asymmetric synthesis and natural product syntheses. Angew. Chem. Int. Ed. 51, 3074–3112 (2012).

    CAS  Google Scholar 

  11. Watson, A. & MacMillan, D. in Science of Synthesis: Stereoselective Synthesis 3; Stereoselective Pericyclic Reactions Cross-coupling, and C−H and C−X Activation (ed. Evans, P. A.) 675–745 (Stuttgart, 2011).

  12. Liu, Y. et al. Nickel(II)-catalyzed asymmetric propargyl and allyl claisen rearrangements to allenyl- and allyl-substituted β-ketoesters. Angew. Chem. Int. Ed. 53, 11579–11582 (2014).

    CAS  Google Scholar 

  13. Cao, T., Deitch, J., Linton, E. C. & Kozlowski, M. C. Asymmetric synthesis of allenyl oxindoles and spirooxindoles by a catalytic enantioselective Saucy–Marbet Claisen rearrangement. Angew. Chem. Int. Ed. 51, 2448–2451 (2012).

    CAS  Google Scholar 

  14. Qian, D., Wu, L., Lin, Z. & Sun, J. Organocatalytic synthesis of chiral tetrasubstituted allenes from racemic propargylic alcohols. Nat. Commun. 8, 567 (2017).

    PubMed  PubMed Central  Google Scholar 

  15. Loui, H. J. & Schneider, C. Cooperative palladium/Brønsted acid catalysis toward the highly enantioselective allenylation of β-keto esters. Org. Lett. 24, 1496–1501 (2022).

    CAS  PubMed  Google Scholar 

  16. J. Zhou, Ed. Multicatalyst System in Asymmetric Catalysis (Wiley, 2014).

  17. Allen, A. E. & Macmillan, D. W. C. Synergistic catalysis: a powerful synthetic strategy for new reaction development. Chem. Sci. 3, 633–658 (2012).

    CAS  Google Scholar 

  18. Bonjoch, J., Diaba, F. & Bradshaw, B. Synthesis of 2-azabicyclo[3.3.1]nonanes. Synthesis 7, 993–1018 (2011).

    Google Scholar 

  19. Xu, Y. et al. Organocatalytic enantioselective Conia-ene-type carbocyclization of ynamide cyclohexanones: regiodivergent synthesis of morphans and normorphans. Angew. Chem. Int. Ed. 58, 16252–16259 (2019).

    CAS  Google Scholar 

  20. Manzano, R., Datta, S., Paton, R. S. & Dixon, D. J. Enantioselective silver and amine co-catalyzed desymmetrizing cycloisomerization of alkyne-linked cyclohexanones. Angew. Chem. Int. Ed. 56, 5834–5838 (2017).

    CAS  Google Scholar 

  21. Liu, R. et al. Palladium/L‑proline-catalyzed enantioselective α‑arylative desymmetrization of cyclohexanones. J. Am. Chem. Soc. 138, 5198–5201 (2016).

    CAS  PubMed  Google Scholar 

  22. Gammack Yamagata, A. D. et al. Enantioselective desymmetrization of prochiral cyclohexanones by organocatalytic intramolecular michael additions to α,β-unsaturated esters. Angew. Chem. Int. Ed. 54, 4899–4903 (2015).

    CAS  Google Scholar 

  23. Frisch, M. J. et al. Gaussian 09, Revision D.01 (Gaussian, Inc., 2013).

  24. Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    CAS  Google Scholar 

  25. Lee, C., Yang, W. & Parr, R. G. Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 37, 785–789 (1988).

    CAS  Google Scholar 

  26. Zhao, Y. & Truhlar, D. G. The Mo6 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four Mo6-class functionals and 12 other functionals. Theor. Chem. Acc. 120, 215–241 (2008).

    CAS  Google Scholar 

  27. Hutchings-Goetz, L. S., Yang, C., Fyfe, J. W. B. & Snaddon, T. N. Enantioselective syntheses of Strychnos and Chelidonium alkaloids through regio- and stereocontrolled cooperative catalysis. Angew. Chem. Int. Ed. 59, 17556–17564 (2020).

    CAS  Google Scholar 

  28. He, L. et al. Asymmetric total synthesis of (+)-strychnine. Org. Lett. 21, 252–255 (2019).

    CAS  PubMed  Google Scholar 

  29. Lee, G. S., Namkoong, G., Park, J. & Chen, D. Y. Total synthesis of strychnine. Chem. Eur. J. 23, 16189–16193 (2017).

    CAS  PubMed  Google Scholar 

  30. Jones, S. B., Simmons, B., Mastracchio, A. & MacMillan, D. W. C. Collective synthesis of natural products by means of organocascade catalysis. Nature 475, 183–188 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Feng, L. et al. Reaction of donor-acceptor cyclobutanes with indoles: a general protocol for the formal total synthesis of (±)-strychnine and the total synthesis of (±)-akuammicine. Angew. Chem. Int. Ed. 56, 3055–3058 (2017).

    CAS  Google Scholar 

  32. Sirasani, G., Paul, T., Dougherty, W., Kassel, S. & Andrade, R. B. Concise total syntheses of (±)-strychnine and (±)-akuammicine. J. Org. Chem. 75, 3529–3532 (2010).

    CAS  PubMed  Google Scholar 

  33. Mori, M., Nakanishi, M., Kajishima, D. & Sato, Y. A novel and general synthetic pathway to Strychnos indole alkaloids: total syntheses of (–)-tubifoline, (–)-dehydrotubifoline, and (–)-strychnine using palladium-catalyzed asymmetric allylic substitution. J. Am. Chem. Soc. 125, 9801–9807 (2003).

    CAS  PubMed  Google Scholar 

  34. Ito, M., Clark, C. W., Mortimore, M. J., Goh, B. & Martin, S. F. Biogenetically inspired approach to the Strychnos alkaloids. Concise syntheses of (±)-akuammicine and (±)-strychnine. J. Am. Chem. Soc. 123, 8003–8010 (2001).

    CAS  PubMed  Google Scholar 

  35. Knight, S. D., Overman, L. E. & Pairaudeau, G. Asymmetric total syntheses of (–)- and (+)-strychnine and the Wieland–Gumlich aldehyde. J. Am. Chem. Soc. 117, 5776–5788 (1995).

    CAS  Google Scholar 

  36. Rawal, V. H. & Iwasa, S. Short, stereocontrolled synthesis of strychnine. J. Org. Chem. 59, 2685–2686 (1994).

    CAS  Google Scholar 

  37. Woodward, R. B. et al. The total synthesis of strychnine. J. Am. Chem. Soc. 76, 4749–4751 (1954).

    CAS  Google Scholar 

  38. Mbeunkui, F. et al. In vitro antiplasmodial activity of indole alkaloids from the stem bark of Geissospermum vellosii. J. Ethnopharmacol. 139, 471–477 (2012).

    CAS  PubMed  Google Scholar 

  39. Maertens, G., Deruer, E., Denis, M. & Canesi, S. Common strategy for the synthesis of some Strychnos indole alkaloids. J. Org. Chem. 85, 6098–6108 (2020).

    CAS  PubMed  Google Scholar 

  40. Maertens, G. & Canesi, S. Synthesis of the Strychnos alkaloid (−)-strychnopivotine and confirmation of its absolute configuration. Chem. Eur. J. 22, 7090–7093 (2016).

    CAS  PubMed  Google Scholar 

  41. Boonsombat, J., Zhang, H., Chughtai, M. J., Hartung, J. & Padwa, A. A general synthetic entry to the pentacyclic Strychnos alkaloid family, using a [4+2]-cycloaddition/rearrangement cascade sequence. J. Org. Chem. 73, 3539–3550 (2008).

    CAS  PubMed  Google Scholar 

  42. He, W. et al. Highly enantioselective tandem Michael addition of tryptamine-derived oxindoles to alkynones: concise synthesis of Strychnos alkaloids. Angew. Chem. Int. Ed. 57, 3806–3809 (2018).

    CAS  Google Scholar 

  43. Hong, A. Y. & Vanderwal, C. D. A synthesis of alsmaphorazine B demonstrates the chemical feasibility of a new biogenetic hypothesis. J. Am. Chem. Soc. 137, 7306–7309 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Bonjoch, J., Sole, D. & Bosch, J. Studies on the synthesis of Strychnos indole alkaloids. Synthesis of (±)-dehydrotubifoline. J. Am. Chem. Soc. 117, 11017–11018 (1995).

    CAS  Google Scholar 

  45. Rawal, V. H., Michoud, C. & Monestel, R. General strategy for the stereocontrolled synthesis of Strychnos alkaloids: a concise synthesis of (±)-dehydrotubifoline. J. Am. Chem. Soc. 115, 3030–3031 (1993).

    CAS  Google Scholar 

  46. Fevig, J. M., Marquis, R. W. & Overman, L. E. New approach to Strychnos alkaloids. Stereocontrolled total synthesis of (±)-dehydrotubifoline. J. Am. Chem. Soc. 113, 5085–5086 (1991).

    CAS  Google Scholar 

  47. Teijaro, C. N. et al. Synthesis and biological evaluation of pentacyclic Strychnos alkaloids as selective modulators of the ABCC10 (MRP7) efflux pump. J. Med. Chem. 57, 10383–10390 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Yuan, W. & Ma, S. Ligand controlled highly selective copper-catalyzed borylcuprations of allenes with bis(pinacolato)diboron. Adv. Synth. Catal. 354, 1867–1872 (2012).

    CAS  Google Scholar 

  49. Anet, F. A. L. & Robinson, R. Conversion of the Wieland–Gumlich aldehyde into strychnine. Chem. Ind. 245–245 (1953).

  50. Bestmann, H. J. & Sandmeier, D. Simple synthesis of ketenylidenetriphenylphosphorane and its thioanalogs. Angew. Chem. Int. Ed. 14, 634–634 (1975).

    Google Scholar 

  51. Kokkonda, P. et al. Biomimetic total syntheses of (–)-leucoridines A and C through the dimerization of (–)-dihydrovalparicine. Angew. Chem. Int. Ed. 54, 12632–12635 (2015).

    CAS  Google Scholar 

  52. Yang, Z. et al. Asymmetric total synthesis of sarpagine and koumine alkaloids. Angew. Chem. Int. Ed. 60, 13105–13111 (2021).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21922102, 21871033, 22271033), the Fundamental Research Funds for the Central Universities (2022CDJQY-001, 2020CDJQY-Z002) and Chongqing Science and Technology Commission (CSTB2022NSCQLZX0036) to M.Z. The numerical computations were performed at Hefei advanced computing centre. We are grateful to X. Gong from Analytical and Testing Center of Chongqing University for X-ray crystallographic analysis.

Author information

Authors and Affiliations

Authors

Contributions

M.Z. and Y.L. conceived and directed the project. W.Z. and S.X. performed the experiments and analysed the experimental data with the help of D.J., J.Y. and S.L. Y.L. and H.C. conducted the theoretical studies. M.Z. and Y.L. wrote the manuscript with W.Z., S.X., H.C., H.Q. and L.H. W.Z., S.X. and H.C. prepared the Supplementary Information. All authors discussed the results and gave their approval of the final version.

Corresponding authors

Correspondence to Yu Lan or Min Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Christoph Schneider, Sylvain Canesi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–23, Figs. 1 and 2, experimental data, synthesis and characterization data, NMR spectra, X-ray crystallographic data and density functional theory calculation data.

Supplementary Data 1

Crystallographic data for compound 10h; CCDC reference 2195676.

Supplementary Data 2

Crystallographic data for compound 9b; CCDC reference 2195671.

Supplementary Data 3

Crystallographic data for compound 15; CCDC reference 2195681.

Supplementary Data 4

Crystallographic data for compound 24; CCDC reference 2195680.

Supplementary Data 5

Structure factors for compound 10h; CCDC reference 2195676.

Supplementary Data 6

Structure factors for compound 9b; CCDC reference 2195671.

Supplementary Data 7

Structure factors for compound 15; CCDC reference 2195681.

Supplementary Data 8

Structure factors for compound 24; CCDC reference 2195680.

Supplementary Data 9

Cartesian coordinates for all optimized structures.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, W., Xi, S., Chen, H. et al. A bridged backbone strategy enables collective synthesis of strychnan alkaloids. Nat. Chem. 15, 1074–1082 (2023). https://doi.org/10.1038/s41557-023-01264-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-023-01264-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing