Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Exciton annihilation in molecular aggregates suppressed through quantum interference

Abstract

Exciton–exciton annihilation (EEA), an important loss channel in optoelectronic devices and photosynthetic complexes, has conventionally been assumed to be an incoherent, diffusion-limited process. Here we challenge this assumption by experimentally demonstrating the ability to control EEA in molecular aggregates using the quantum phase relationships of excitons. We employed time-resolved photoluminescence microscopy to independently determine exciton diffusion constants and annihilation rates in two substituted perylene diimide aggregates featuring contrasting excitonic phase envelopes. Low-temperature EEA rates were found to differ by more than two orders of magnitude for the two compounds, despite comparable diffusion constants. Simulated rates based on a microscopic theory, in excellent agreement with experiments, rationalize this EEA behaviour based on quantum interference arising from the presence or absence of spatial phase oscillations of delocalized excitons. These results offer an approach for designing molecular materials using quantum interference where low annihilation can coexist with high exciton concentrations and mobilities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Coherent and incoherent EEA processes.
Fig. 2: Two PDI aggregates with contrasting exciton-phase properties.
Fig. 3: Temperature dependence of EEA.
Fig. 4: Direct measurements of the exciton diffusion constant D.
Fig. 5: Comparing coherent theory with experimental EEA rates.

Similar content being viewed by others

Data availability

All of the data supporting this study can be found within the paper and its Supplementary Information. Source data are provided with this paper.

Code availability

Code that supports the findings of this study is available at https://github.com/Sarat1995/eea_pdi. This code includes scripts for data processing and theoretical modelling.

References

  1. Jelly, E. E. Spectral absorption and fluorescence of dyes in the molecular state. Nature 138, 1009–1010 (1936).

    Google Scholar 

  2. Hestand, N. J., Tempelaar, R., Knoester, J., Jansen, T. L. C. & Spano, F. C. Exciton mobility control through sub-Å packing modifications in molecular crystals. Phys. Rev. B 91, 195315 (2015).

    Google Scholar 

  3. Tempelaar, R., Koster, L. J. A., Havenith, R. W. A., Knoester, J. & Jansen, T. L. C. Charge recombination suppressed by destructive quantum interference in heterojunction materials. J. Phys. Chem. Lett. 7, 198–203 (2016).

    CAS  PubMed  Google Scholar 

  4. Castellanos, M. A. & Huo, P. Enhancing singlet fission dynamics by suppressing destructive interference between charge-transfer pathways. J. Phys. Chem. Lett. 8, 2480–2488 (2017).

    CAS  PubMed  Google Scholar 

  5. Scholes, G. et al. Using coherence to enhance function in chemical and biophysical systems. Nature 543, 647–656 (2017).

    CAS  PubMed  Google Scholar 

  6. Cao, J. et al. Quantum biology revisited. Sci. Adv. 6, eaaz4888 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Khairutdinov, R. F. & Serpone, N. Photophysics of cyanine dyes: subnanosecond relaxation dynamics in monomers, dimers, and H- and J-aggregates in solution. J. Phys. Chem. B 101, 2602–2610 (1997).

    CAS  Google Scholar 

  8. Scheblykin, I. G., Sliusarenko, O. Y., Lepnev, L. S., Vitukhnovsky, A. G. & Van der Auweraer, M. Strong nonmonotonous temperature dependence of exciton migration rate in J aggregates at temperatures from 5 to 300 K. J. Phys. Chem. B 104, 10950–10951 (2000).

    Google Scholar 

  9. King, S. M., Dai, D., Rothe, C. & Monkman, A. P. Exciton annihilation in a polyfluorene: low threshold for singlet–singlet annihilation and the absence of singlet–triplet annihilation. Phys. Rev. B Condens. Matter Mater. Phys. 76, 085204 (2007).

    Google Scholar 

  10. Ito, F., Inoue, T., Tomita, D. & Nagamura, T. Excited-state relaxation process of free-base and oxovanadium naphthalocyanine in near-infrared region. J. Phys. Chem. B 113, 5458–5463 (2009).

    CAS  PubMed  Google Scholar 

  11. Völker, S. F. et al. Singlet–singlet exciton annihilation in an exciton-coupled squaraine–squaraine copolymer: a model toward hetero-J-aggregates. J. Phys. Chem. C 118, 17467–17482 (2014).

    Google Scholar 

  12. Dostál, J. et al. Direct observation of exciton–exciton interactions. Nat. Commun. 9, 2466 (2018).

    PubMed  PubMed Central  Google Scholar 

  13. Süß, J., Wehner, J., Dostál, J., Brixner, T. & Engel, V. Mapping of exciton–exciton annihilation in a molecular dimer via fifth-order femtosecond two-dimensional spectroscopy. J. Chem. Phys. 150, 104304 (2019).

    PubMed  Google Scholar 

  14. Kriete, B. et al. Interplay between structural hierarchy and exciton diffusion in artificial light harvesting. Nat. Commun. 10, 4615 (2019).

    PubMed  PubMed Central  Google Scholar 

  15. Malý, P., Mueller, S., Lüttig, J., Lambert, C. & Brixner, T. Signatures of exciton dynamics and interaction in coherently and fluorescence-detected four- and six-wave-mixing two-dimensional electronic spectroscopy. J. Chem. Phys. 153, 144204 (2020).

    PubMed  Google Scholar 

  16. Shaw, P. E., Ruseckas, A. & Samuel, I. D. W. Exciton diffusion measurements in poly(3-hexylthiophene). Adv. Mater. 20, 3516–3520 (2008).

    CAS  Google Scholar 

  17. Hedley, G. J. et al. Picosecond time-resolved photon antibunching measures nanoscale exciton motion and the true number of chromophores. Nat. Commun. 12, 1327 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Nguyen, D. T. et al. Elastic exciton–exciton scattering in photoexcited carbon nanotubes. Phys. Rev. Lett. 107, 127401 (2011).

    CAS  PubMed  Google Scholar 

  19. Chmeliov, J., Narkeliunas, J., Graham, M. W., Fleming, G. R. & Valkunas, L. Exciton–exciton annihilation and relaxation pathways in semiconducting carbon nanotubes. Nanoscale 8, 1618–1626 (2016).

    CAS  PubMed  Google Scholar 

  20. Yuan, L., Wang, T., Zhu, T., Zhou, M. & Huang, L. Exciton dynamics, transport, and annihilation in atomically thin two-dimensional semiconductors. J. Phys. Chem. Lett. 8, 3371–3379 (2017).

    CAS  PubMed  Google Scholar 

  21. Deng, S. et al. Long-range exciton transport and slow annihilation in two-dimensional hybrid perovskites. Nat. Commun. 11, 664 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Tzabari, L., Zayats, V. & Tessler, N. Exciton annihilation as bimolecular loss in organic solar cells. J. Appl. Phys. 114, 154514 (2013).

    Google Scholar 

  23. Denton, G. J., Tessler, N., Harrison, N. T. & Friend, R. H. Factors influencing stimulated emission from poly(p-phenylenevinylene). Phys. Rev. Lett. 78, 733 (1997).

    CAS  Google Scholar 

  24. Baldo, M. A., Holmes, R. J. & Forrest, S. R. Prospects for electrically pumped organic lasers. Phys. Rev. B 66, 035321 (2002).

    Google Scholar 

  25. Akselrod, G. M., Tischler, Y. R., Young, E. R., Nocera, D. G. & Bulovic, V. Exciton–exciton annihilation in organic polariton microcavities. Phys. Rev. B 82, 113106 (2002).

    Google Scholar 

  26. Cunningham, P. D. et al. Delocalized two-exciton states in DNA scaffolded cyanine dimers. J. Phys. Chem. B 124, 8042–8049 (2020).

    CAS  PubMed  Google Scholar 

  27. Giebink, N. C. et al. Intrinsic luminance loss in phosphorescent small-molecule organic light emitting devices due to bimolecular annihilation reactions. J. Appl. Phys. 103, 044509 (2008).

    Google Scholar 

  28. Nakanotani, H., Sasabe, H. & Adachi, C. Singlet–singlet and singlet–heat annihilations in fluorescence-based organic light-emitting diodes under steady-state high current density. Appl. Phys. Lett. 86, 213506 (2005).

    Google Scholar 

  29. Gélinas, S. et al. Recombination dynamics of charge pairs in a push–pull polyfluorene- derivative. J. Phys. Chem. B 117, 4649–4653 (2013).

    PubMed  Google Scholar 

  30. Stevens, M. A., Silva, C., Russell, D. M. & Friend, R. H. Exciton dissociation mechanisms in the polymeric semiconductors poly(9,9-dioctylfluorene) and poly(9,9-dioctylfluorene-co-benzothiadiazole). Phys. Rev. B 63, 165213 (2001).

    Google Scholar 

  31. Tamai, Y., Matsuura, Y., Ohkita, H., Benten, H. & Ito, S. One-dimensional singlet exciton diffusion in poly(3-hexylthiophene) crystalline domains. J. Phys. Chem. Lett. 5, 399–403 (2014).

    CAS  PubMed  Google Scholar 

  32. Chowdhury, M. et al. Tuning crystalline ordering by annealing and additives to study its effect on exciton diffusion in a polyalkylthiophene copolymer. Phys. Chem. Chem. Phys. 19, 12441–12451 (2017).

    CAS  PubMed  Google Scholar 

  33. Engel, E., Leo, K. & Hoffmann, M. Ultrafast relaxation and exciton–exciton annihilation in PTCDA thin films at high excitation densities. Chem. Phys. 325, 170–177 (2006).

    CAS  Google Scholar 

  34. Smoluchowski, M. V. Versuch einer mathematischen theorie der koagulationskinetik kolloider lösnngen. Z. Phys. Chem. 92, 129–168 (1918).

    Google Scholar 

  35. Chandrasekhar, S. Stochastic problems in physics and astronomy. Rev. Mod. Phys. 15, 1–89 (1943).

    Google Scholar 

  36. Powell, R. C. & Soos, Z. G. Singlet exciton energy transfer in organic solids. J. Lumin. 11, 1–45 (1975).

    CAS  Google Scholar 

  37. Tempelaar, R., Jansen, T. L. C. & Knoester, J. Exciton–exciton annihilation is coherently suppressed in H-aggregates, but not in J-aggregates. J. Phys. Chem. Lett. 8, 6113–6117 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Süß, J. & Engel, V. A wave packet picture of exciton–exciton annihilation: molecular dimer dynamics. J. Chem. Phys. 152, 174305 (2020).

    PubMed  Google Scholar 

  39. Oleson, A. et al. Perylene diimide-based Hj- and hJ-aggregates: the prospect of exciton band shape engineering in organic materials. J. Phys. Chem. C 123, 20567–20578 (2019).

    CAS  Google Scholar 

  40. Spano, F. C. & Mukamel, S.Superradiance in molecular aggregates. J. Chem. Phys. 91, 683–700 (1998).

    Google Scholar 

  41. Eaton, S. W. et al. Singlet exciton fission in polycrystalline thin films of a slip-stacked perylenediimide. J. Am. Chem. Soc. 135, 14701–14712 (2013).

    CAS  PubMed  Google Scholar 

  42. Brown, K. E., Salamant, W. A., Shoer, L. E., Young, R. M. & Wasielewski, M. R. Direct observation of ultrafast excimer formation in covalent perylenediimide dimers using near-infrared transient absorption spectroscopy. J. Phys. Chem. Lett. 5, 2588–2593 (2014).

    CAS  PubMed  Google Scholar 

  43. Pandya, R. et al. Exciton diffusion in highly-ordered one dimensional conjugated polymers: effects of back-bone torsion, electronic symmetry, phonons and annihilation. J. Phys. Chem. Lett. 12, 3669–3678 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Sneyd, A. J. et al. Efficient energy transport in an organic semiconductor mediated by transient exciton delocalization. Sci. Adv. 7, eabh4232 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Akselrod, G. M. et al. Visualization of exciton transport in ordered and disordered molecular solids. Nat. Commun. 5, 3646 (2014).

    CAS  PubMed  Google Scholar 

  46. Akselrod, G. M. et al. Subdiffusive exciton transport in quantum dot solids. Nano Lett. 14, 3556–3562 (2014).

    CAS  PubMed  Google Scholar 

  47. Seitz, M. et al. Exciton diffusion in two-dimensional metal-halide perovskites. Nat. Commun. 11, 2035 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Hybertsen, M. S. & Louie, S. G. Electron correlation in semiconductors and insulators: band gaps and quasiparticle energies. Phys. Rev. B 34, 5390 (1986).

    CAS  Google Scholar 

  49. Rehhagen, C. et al. Exciton migration in multistranded perylene bisimide J-aggregates. J. Phys. Chem. Lett. 11, 6612–6617 (2020).

    CAS  PubMed  Google Scholar 

  50. Scheblykin, I. G., Sliusarenko, O. Y., Lepnev, L. S., Vitukhnovsky, A. G. & van der Auweraer, M. Excitons in molecular aggregates of 3,3′bis-[3-sulforpropyl]-5,5′-dichloro-9-ethylthiacarbocyanine (THIATS): temperature dependent properties. J. Phys. Chem. B 105, 4636–4646 (2001).

    CAS  Google Scholar 

  51. Mikhnenko, O. V., Blom, P. W. M. & Nguyen, T.-Q. Exciton diffusion in organic semiconductors. Energy Environ. Sci. 8, 1867–1888 (2015).

    Google Scholar 

  52. Caram, J. R. et al. Room-temperature micron-scale exciton migration in a stabilized emissive molecular aggregate. Nano Lett. 16, 6808–6815 (2016).

    CAS  PubMed  Google Scholar 

  53. Marciniak, H., Li, X.-Q., Würthner, F. & Lochbrunner, S. One-dimensional exciton diffusion in perylene bisimide aggregates. J. Phys. Chem. A 115, 648–654 (2011).

    CAS  PubMed  Google Scholar 

  54. Kreger, K. et al. Low temperature exciton dynamics and structural changes in perylene bisimide aggregates. J. Phys. B At. Mol. Opt. Phys. 50, 184005 (2017).

    Google Scholar 

  55. Jang, S., Cheng, Y.-C. & Reichman, D. R. Theory of coherent resonance energy transfer. J. Chem. Phys. 129, 101104 (2008).

    PubMed  Google Scholar 

  56. Bakulin, A. A. et al. The role of driving energy and delocalized states for charge separation in organic semiconductors. Science 335, 1340–1344 (2012).

    CAS  PubMed  Google Scholar 

  57. Malý, P. et al. Separating single- from multi-particle dynamics in nonlinear spectroscopy. Nature 616, 280–287 (2023).

    PubMed  Google Scholar 

  58. Nakazono, S., Easwaramoorthi, S., Kim, D., Shinokubo, H. & Osuka, A. Synthesis of arylated perylene bisimides through C−H bond cleavage under ruthenium catalysis. Org. Lett. 11, 5426–5429 (2009).

    CAS  PubMed  Google Scholar 

  59. Wan, Y. et al. Cooperative singlet and triplet exciton transport in tetracene crystals visualized by ultrafast microscopy. Nat. Chem. 7, 785–792 (2015).

    CAS  PubMed  Google Scholar 

  60. Ryzhov, I. V., Kozlov, G. G., Malyshev, V. A. & Knoester, J. Low-temperature kinetics of exciton–exciton annihilation of weakly localized one-dimensional Frenkel excitons. J. Chem. Phys. 114, 5322–5329 (2001).

    CAS  Google Scholar 

  61. Hodge, P. G. On isotropic Cartesian tensors. Am. Math. Mon. 68, 793–795 (1961).

    Google Scholar 

  62. Schmidt, M. W. et al. General atomic and molecular electronic structure system. J. Comput. Chem. 14, 1347–1363 (1993).

    CAS  Google Scholar 

  63. Gordon, M. S. & Schmidt, M. W. Advances in electronic structure theory: GAMESS a decade later. Theory Appl. Comput. Chem. 2005, 1167–1189 (2005).

    Google Scholar 

  64. Yanai, T., Tew, D. P. & Handy, N. C. A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 393, 51–57 (2004).

    CAS  Google Scholar 

  65. Dunning, T. H. & Hay, P. J. in Methods of Electronic Structure Theory. Modern Theoretical Chemistry Vol. 3 (ed. Schaefer, H. F.) 1–28 (Springer, 1977).

  66. Spano, F. C. Absorption and emission in oligo-phenylene vinylene nanoaggregates: the role of disorder and structural defects. J. Chem. Phys. 116, 5877–5891 (2002).

    CAS  Google Scholar 

  67. Philpott, M. R. Theory of the coupling of electronic and vibrational excitations in molecular crystals and helical polymers. J. Chem. Phys. 55, 2039–2054 (2003).

    Google Scholar 

Download references

Acknowledgements

The optical spectroscopy and microscopy work at Purdue University was supported by the US Department of Energy’s Office of Science’s Basic Energy Sciences programme through award DE-SC0019215 (to L.H). I.S.D. acknowledges support from the US Department of Energy through the Computational Science Graduate Fellowship under grant number DE-FG02-97ER25308. R.T. was supported by the Center for Molecular Quantum Transduction, an Energy Frontier Research Center funded by the US Department of Energy’s Office of Science’s Basic Energy Sciences programme under award DE-SC0021314. We thank M. Dai for the synthesis of 4Ph PDI.

Author information

Authors and Affiliations

Authors

Contributions

L.H. and R.T. conceived of the experiments. S.K., S.D., T.Z, Q.Z. and O.F.W. carried out the optical measurements. I.S.D. and R.T. carried out and analysed the theoretical calculations. S.K., I.S.D., R.T. and L.H. analysed the experimental data. S.K., I.S.D., R.T. and L.H. wrote the manuscript with input from all authors.

Corresponding authors

Correspondence to Roel Tempelaar or Libai Huang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Atomic force microscopy images of PDI crystals.

Representative atomic force microscopy (AFM) images of (a) N-Ph PDI and (b) 4Ph PDI self-assembled microcrystals.

Source data

Extended Data Fig. 2 Photophysics of PDI monomer and single crystals.

(a) Normalized absorption and (b) Normalized emission spectra of N-Ph PDI and 4Ph PDI monomers dissolved in chloroform with concentrations of 10−5 M. (c) Absorption spectra of a single N-Ph PDI and 4Ph PDI crystals measured by micro-transmittance.

Source data

Extended Data Fig. 3 Temperature dependent EEA data of N-Ph PDI (1) and 4-Ph PDI (1).

Time resolved photoluminescence decay at different exciton densities for N-Ph PDI (1) (a-d) and 4Ph PDI (1) (e-h) crystals shown in main text at 30, 80, 120, and 240 K, respectively.

Source data

Extended Data Fig. 4 Temperature dependent EEA rate at 1015 cm−3.

(a) Temperature-dependent annihilation rate for N-Ph PDI-(1) crystal (green) and 4Ph PDI-(1) crystal (blue) for an initial exciton density of 1015 cm−3. EEA rate is suppressed by more than two orders of magnitude in N-Ph PDI at low temperature in contrast to a weak temperature dependence observed for 4Ph PDI. Data are presented as \(\gamma\) +/− SE, where the shaded areas indicate the standard error (SE) from the numerical fitting as described in the main text. (b) Comparing the experimentally determined ratio of EEA rates \(\frac{\gamma \left(N-{Ph\; PDI}\right)}{\gamma \left(4{Ph\; PDI}\right)}\) against the ratios predicted by the coherent microscopic theory and the incoherent diffusion-limited theory. Data are presented as the ratio of \(\gamma\) +/− SE, where shaded areas indicate the standard error (SE) of the ratio of EEA rates, propagating from those of γ.

Source data

Extended Data Fig. 5 Temperature dependent EEA data of N-Ph PDI (2) crystal.

Exciton density dependent time resolved photoluminescence decay for the N-Ph PDI (2) crystal at (a-h) 6 K, 12 K, 20 K, 30 K, 120 K, 180 K, 240 K, and 280 K, respectively.

Source data

Extended Data Fig. 6 Temperature dependent EEA data of N-Ph PDI (3) crystal.

Exciton density dependent time resolved photoluminescence decay for the N-Ph PDI (3) crystal at (a-e) 10 K, 30 K, 77 K, 130 K, and 280 K, respectively.

Source data

Extended Data Fig. 7 Temperature dependent EEA data of N-Ph PDI (3) crystal.

Exciton density dependent time resolved photoluminescence decay for the 4Ph PDI (2) crystal at (a-f) 10 K, 30 K, 80 K, 120 K, 240, and 280 K, respectively.

Source data

Extended Data Fig. 8 Summary of temperature dependent EEA rate of different N-Ph and 4-Ph PDI crystals.

Temperature-dependent EEA rate for three different N-Ph PDI crystals (blue) and two different 4Ph PDI (green) crystals, extracted based on the lowest and highest exciton intensities. Data are presented as \(\gamma\) +/− SE, where the shaded areas indicate the standard error (SE) from the numerical fitting as described in the main text. For all three N-Ph PDI crystals, the rate is suppressed by more than two orders of magnitude at low temperatures, contrasting the weak temperature dependence observed for the two 4Ph PDI crystals.

Source data

Extended Data Fig. 9 Transient Photoluminescence Microscopy.

(a) Schematic illustration of Transient Photoluminescence Microscopy setup. The initial excitation spot is magnified 150x by using a combination of a 50X objective and a 600 mm focal length imaging lens. A time-correlated single photon detector was scanned horizontally to obtain a spatially and temporally resolved emission profile. Abbreviations TCSPC, time-correlated single photon counter. (b) Spatial profile of the excitation laser shows a diffraction limited Gaussian.

Source data

Extended Data Fig. 10 Temperature dependence of exciton diffusion data.

Time evolution of spatial profile \({\sigma }^{2}\left(t\right)-{\sigma }_{0}^{2}\) for N-Ph PDI (a-d) and 4Ph PDI (e-h) at 30, 80, 120, 240 K, respectively. Data are presented as \({\sigma }_{t}^{2}\,\)+/− SE, which is the variance with the standard error (SE) estimated from a fitting of 41 spatial data points at time \(t\) to a Gaussian function. Solid black line is linear fit used to extract the diffusion constant D.

Source data

Supplementary information

Supplementary Information

Supplementary Note, Tables 1 and 2 and Figs. 1–5.

Source data

Source Data Fig. 2

Temperature-dependent photoluminescence spectra of N-Ph PDI and 4Ph PDI.

Source Data Fig. 3

TRPL decay at different exciton densities plus fitted data (for Fig. 3a–d) and numerically extracted EEA rates (for Fig. 3e).

Source Data Fig. 4

TRPL microscopy data as a function of time and space (for Fig. 4a), spatial slices from two-dimensional images at 0, 2 and 4 ns, along with Gaussian fits (for Fig. 4b), time evolution of spatial profile \({\sigma }^{2}\left(t\right)\) for 4Ph PDI and N-Ph PDI at 10 and 280 K (for Fig. 4c,d) and estimated diffusion constants as a function of temperature for both PDIs (for Fig. 4e).

Source Data Fig. 5

Experimentally determined ratios of the annihilation rates of N-Ph PDI and 4Ph PDI versus theoretically predicted ratios based on a microscopic, coherent model, as well as a model based on incoherent, diffusion-limited EEA using diffusion constants measured by photoluminescence microscopy (for Fig. 5a). The single exciton wavefunction coefficients for N-Ph PDI and 4Ph PDI (for Fig. 5b)

Source Data Extended Data Fig. 1

Atomic force microscopy data for both PDI crystals.

Source Data Extended Data Fig. 2

Normalized absorption and emission spectra (for Extended Data Figs. 2a,b, respectively) of the N-Ph PDI and 4Ph PDI monomers, as well as absorption spectra of single N-Ph PDI and 4Ph PDI crystals measured by micro-transmittance (for Extended Data Fig. 2c).

Source Data Extended Data Fig. 3

Temperature-dependent EEA data and fitted data of N-Ph PDI (1) and 4Ph PDI (1).

Source Data Extended Data Fig. 4

Temperature-dependent EEA data for both PDIs at 1015 cm−3.

Source Data Extended Data Fig. 5

Temperature-dependent EEA data and fitted data of N-Ph PDI (2).

Source Data Extended Data Fig. 6

Temperature-dependent EEA data and fitted data of N-Ph PDI (3).

Source Data Extended Data Fig. 7

Temperature-dependent EEA data and fitted data of 4Ph PDI (2).

Source Data Extended Data Fig. 8

Numerically estimated values of EEA rate for all N-Ph PDI and 4Ph PDI crystals.

Source Data Extended Data Fig. 9

Source data for the spatial profile of the excitation laser.

Source Data Extended Data Fig. 10

Temperature dependence of the exciton diffusion data for both PDIs.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Dunn, I.S., Deng, S. et al. Exciton annihilation in molecular aggregates suppressed through quantum interference. Nat. Chem. 15, 1118–1126 (2023). https://doi.org/10.1038/s41557-023-01233-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-023-01233-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing