Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Neurocognitive barriers to the embodiment of technology

The increasing integration of wearable technologies with the human body raises neural and cognitive challenges and opportunities.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Artificial arms for restoring hand function.
Figure 2: Human augmentation in perception and action.

References

  1. de Vignemont, F. Conscious Cogn. 20, 82–93 (2011).

    Article  Google Scholar 

  2. Xiloyannis, M., Gavriel, C., Thomik, A. A. C. & Faisal, A. A. Gaussian process autoregression for simultaneous proportional multi-modal prosthetic control with natural hand kinematics. IEEE Trans. Neural Sys. Rehabilitation Eng. (in the press).

  3. Jang, C. H. et al. Ann. Rehabil. Med. 35, 907–921 (2011).

    Article  Google Scholar 

  4. Tyler, D. J. Curr. Opin. Neurol. 28, 574–581 (2015).

    Article  Google Scholar 

  5. Wu, F. & Asada, H. Proc. ASME Dynamic Sys. Control Conf.http://dx.doi.org/10.1115/DSCC2014-6017 (2014).

  6. Llorens-Bonilla, B. & Asada, H. Proc. ASME Dynamic Sys. Control Conf.http://dx.doi.org/10.1115/DSCC2013-4083 (2013).

  7. Kikkert, S. et al. eLife 5, e15292 (2016).

  8. Holmes, N. P. Exp. Brain Res. 218, 273–282 (2012).

    Article  Google Scholar 

  9. Wolfe, J. M. & Horowitz, T. S. Nat. Rev. Neurosci. 5, 495–501 (2004).

    Article  CAS  Google Scholar 

  10. Faisal, A. A., Selen, L. P. J. & Wolpert, D. M. Nat. Rev. Neurosci. 9, 292–303 (2008).

    Article  CAS  Google Scholar 

  11. Abbott, W. W. & Faisal, A. A. J. Neural Eng. 9, 046016 (2012).

  12. Bensmaia, S. J. & Miller, L. E. Nat. Rev. Neurosci. 15, 313–325 (2014).

    Article  CAS  Google Scholar 

  13. Nava, E. & Röder, B. Prog. Brain Res. 191, 177–194 (2011).

    Article  Google Scholar 

  14. Münte, T. F., Altenmüller, E. & Jäncke, L. Nat. Rev. Neurosci. 3, 473–478 (2002).

    Article  Google Scholar 

  15. Neely, R., Koralek, A. C., Costa, R. M. & Carmena, J. M. Operant control of primary visual cortex activity using a neuroprosthetic task in rodents. Neuroscience 2015, Society for Neuroscience meeting abstract 111.12 (2015).

Download references

Acknowledgements

This work was supported by a Sir Henry Dale Fellowship to T.R.M. (jointly funded by the Wellcome Trust and the Royal Society; 104128/Z/14/Z), and by the HFSP RPG00022/2013 and H2020 eNHANCE program grants to A.A.F.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamar R. Makin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makin, T., de Vignemont, F. & Faisal, A. Neurocognitive barriers to the embodiment of technology. Nat Biomed Eng 1, 0014 (2017). https://doi.org/10.1038/s41551-016-0014

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/s41551-016-0014

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing