Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Prospects for precision cosmology with the 21 cm signal from the dark ages

Abstract

The 21 cm signal from the dark ages provides a potential new probe of fundamental cosmology. While exotic physics could be discovered, here we quantify the expected benefits within the standard cosmology. A measurement of the global (sky-averaged) 21 cm signal to the precision of thermal noise from a 1,000 h integration would yield a measurement within 10% of a combination of cosmological parameters. A 10,000 h integration would improve this measurement to 3.2% and constrain the cosmic helium fraction to 9.9%. Precision cosmology with 21 cm fluctuations requires a collecting area of 10 km2 (corresponding to 400,000 stations), which, with a 1,000 h integration, would exceed the same global case by a factor of ~2. Enhancing the collecting area or integration time by an order of magnitude would yield a 0.5% parameter combination, a helium measurement five times better than Planck and a constraint on the neutrino mass as good as Planck. Our analysis sets a baseline for upcoming lunar and space-based dark-ages experiments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The 21 cm global signal from the dark ages.
Fig. 2: The spherically averaged (total) power spectrum of 21 cm brightness fluctuations.
Fig. 3: The relative errors and limits on the total mass of neutrinos.

Similar content being viewed by others

Data availability

The data are available upon request from the corresponding author. Source data are provided with this paper.

Code availability

CAMB is available at http://camb.info, emcee is available at https://github.com/dfm/emcee and corner is available at https://github.com/dfm/corner.py. The analyses were performed in Python using publicly available routines in NumPy (https://numpy.org) and Matplotlib (https://matplotlib.org). All other codes used are available upon request from the corresponding author.

References

  1. Sunyaev, R. A. & Zeldovich, Y. B. Formation of clusters of galaxies; protocluster fragmentation and intergalactic gas heating. Astron. Astrophys. 20, 189 (1972).

    ADS  Google Scholar 

  2. Hogan, C. J. & Rees, M. J. Spectral appearance of non-uniform gas at high z. Mon. Not. R. Astron. Soc. 188, 791–798 (1979).

    Article  ADS  Google Scholar 

  3. Scott, D. & Rees, M. J. The 21-cm line at high redshift: a diagnostic for the origin of large scale structure. Mon. Not. R. Astron. Soc. 247, 510 (1990).

    ADS  Google Scholar 

  4. Madau, P., Meiksin, A. & Rees, M. J. 21 centimeter tomography of the intergalactic medium at high redshift. Astrophys. J. 475, 429 (1997).

    Article  ADS  Google Scholar 

  5. Loeb, A. & Zaldarriaga, M. Measuring the small-scale power spectrum of cosmic density fluctuations through 21cm tomography prior to the epoch of structure formation. Phys. Rev. Lett. 92, 211301 (2004).

    Article  ADS  Google Scholar 

  6. Barkana, R. & Loeb, A. Probing the epoch of early baryonic infall through 21-cm fluctuations. Mon. Not. R. Astron. Soc. 363, L36–L40 (2005).

    Article  ADS  Google Scholar 

  7. Bharadwaj, S. & Ali, S. S. The cosmic microwave background radiation fluctuations from HI perturbations prior to reionization. Mon. Not. R. Astron. Soc. 352, 142–146 (2004).

    Article  ADS  Google Scholar 

  8. Barkana, R. & Loeb, A. A method for separating the physics from the astrophysics of high-redshift 21 centimeter fluctuations. Astrophys. J. 624, L65–L68 (2005).

    Article  ADS  Google Scholar 

  9. Naoz, S. & Barkana, R. Growth of linear perturbations before the era of the first galaxies. Mon. Not. R. Astron. Soc. 362, 1047–1053 (2005).

    Article  ADS  Google Scholar 

  10. Lewis, A. & Challinor, A. 21cm angular-power spectrum from the dark ages. Phys. Rev. D 76, 083005 (2007).

    Article  ADS  Google Scholar 

  11. Ali-Haïmoud, Y., Meerburg, P. D. & Yuan, S. New light on 21 cm intensity fluctuations from the dark ages. Phys. Rev. D 89, 083506 (2014).

    Article  ADS  Google Scholar 

  12. Tashiro, H., Kadota, K. & Silk, J. Effects of dark matter-baryon scattering on redshifted 21 cm signals. Phys. Rev. D 90, 083522 (2014).

    Article  ADS  Google Scholar 

  13. Muñoz, J. B., Kovetz, E. D. & Ali-Haïmoud, Y. Heating of baryons due to scattering with dark matter during the dark ages. Phys. Rev. D 92, 083528 (2015).

    Article  ADS  Google Scholar 

  14. Barkana, R. Possible interaction between baryons and dark-matter particles revealed by the first stars. Nature 555, 71–74 (2018).

    Article  ADS  Google Scholar 

  15. Chen, X., Meerburg, P. D. & Münchmeyer, M. The future of primordial features with 21 cm tomography. J. Cosmol. Astropart. Phys. 2016, 023 (2016).

    Article  Google Scholar 

  16. Pillepich, A., Porciani, C. & Matarrese, S. The bispectrum of redshifted 21 centimeter fluctuations from the dark ages. Astrophys. J. 662, 1–14 (2007).

    Article  ADS  Google Scholar 

  17. Joudaki, S., Doré, O., Ferramacho, L., Kaplinghat, M. & Santos, M. G. Primordial non-Gaussianity from the 21 cm power spectrum during the Epoch of Reionization. Phys. Rev. Lett. 107, 131304 (2011).

    Article  ADS  Google Scholar 

  18. Flöss, T., de Wild, T., Meerburg, P. D. & Koopmans, L. V. E. The dark ages’ 21-cm trispectrum. J. Cosmol. Astropart. Phys. 2022, 020 (2022).

    Article  MATH  Google Scholar 

  19. Balaji, S., Ragavendra, H. V., Sethi, S. K., Silk, J. & Sriramkumar, L. Observing nulling of primordial correlations via the 21-cm signal. Phys. Rev. Lett. 129, 261301 (2022).

    Article  ADS  Google Scholar 

  20. Bowman, J. D., Rogers, A. E. E., Monsalve, R. A., Mozdzen, T. J. & Mahesh, N. An absorption profile centred at 78 megahertz in the sky-averaged spectrum. Nature 555, 67–70 (2018).

    Article  ADS  Google Scholar 

  21. Singh, S. et al. On the detection of a cosmic dawn signal in the radio background. Nat. Astron. 6, 607–617 (2022).

    Article  ADS  Google Scholar 

  22. Mertens, F. G. et al. Improved upper limits on the 21 cm signal power spectrum of neutral hydrogen at z ≈ 9.1 from LOFAR. Mon. Not. R. Astron. Soc. 493, 1662–1685 (2020).

    Article  ADS  Google Scholar 

  23. Trott, C. M. et al. Deep multiredshift limits on Epoch of Reionisation 21 cm power spectra from four seasons of Murchison Widefield Array observations. Mon. Not. R. Astron. Soc. 493, 4711–4727 (2020).

    Article  ADS  Google Scholar 

  24. The HERA Collaboration. Improved constraints on the 21 cm EoR power spectrum and the X-Ray heating of the IGM with HERA phase I observations. Astrophys J. 945, 124 (2023).

  25. Lewis, A. & Bridle, S. Cosmological parameters from CMB and other data: a Monte Carlo approach. Phys. Rev. D 66, 103511 (2002).

    Article  ADS  Google Scholar 

  26. Alcock, C. & Paczynski, B. An evolution free test for non-zero cosmological constant. Nature 281, 358–359 (1979).

    Article  ADS  Google Scholar 

  27. Ali, S. S., Bharadwaj, S. & Pandey, B. What will anisotropies in the clustering pattern in redshifted 21-cm maps tell us? Mon. Not. R. Astron. Soc. 363, 251–258 (2005).

    Article  ADS  Google Scholar 

  28. Nusser, A. The Alcock-Paczyński test in redshifted 21-cm maps. Mon. Not. R. Astron. Soc. 364, 743–750 (2005).

    Article  ADS  Google Scholar 

  29. Barkana, R. Separating out the Alcock-Paczyński effect on 21-cm fluctuations. Mon. Not. R. Astron. Soc. 372, 259–264 (2006).

    Article  ADS  Google Scholar 

  30. Barkana, R. & Loeb, A. Light-cone anisotropy in 21-cm fluctuations during the epoch of reionization. Mon. Not. R. Astron. Soc. 372, L43–L47 (2006).

    Article  ADS  Google Scholar 

  31. Mondal, R., Bharadwaj, S. & Datta, K. K. Towards simulating and quantifying the light-cone EoR 21-cm signal. Mon. Not. R. Astron. Soc. 474, 1390–1397 (2018).

    Article  ADS  Google Scholar 

  32. Planck Collaborationet al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 641, A6 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

We thank A. Lewis and L. V. E. Koopmans for their useful discussions. R.M. is supported by the Israel Academy of Sciences and Humanities & Council for Higher Education Excellence Fellowship Program for International Postdoctoral Researchers. We acknowledge the support of the Israel Science Foundation (grant no. 2359/20).

Author information

Authors and Affiliations

Authors

Contributions

R.B. initiated the project. R.M. performed the calculations, made the figures and wrote the paper in consultation with R.B.

Corresponding author

Correspondence to Rajesh Mondal.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Joseph Silk for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Note

Source data

Source Data Fig. 1

Source data for Fig. 1.

Source Data Fig. 2

Source data for Fig. 2.

Source Data Fig. 3

Source data for Fig. 3.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, R., Barkana, R. Prospects for precision cosmology with the 21 cm signal from the dark ages. Nat Astron 7, 1025–1030 (2023). https://doi.org/10.1038/s41550-023-02057-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-023-02057-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing