Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Heritable microbiome variation is correlated with source environment in locally adapted maize varieties

Abstract

Beneficial interactions with microorganisms are pivotal for crop performance and resilience. However, it remains unclear how heritable the microbiome is with respect to the host plant genotype and to what extent host genetic mechanisms can modulate plant–microbiota interactions in the face of environmental stresses. Here we surveyed 3,168 root and rhizosphere microbiome samples from 129 accessions of locally adapted Zea, sourced from diverse habitats and grown under control and different stress conditions. We quantified stress treatment and host genotype effects on the microbiome. Plant genotype and source environment were predictive of microbiome abundance. Genome-wide association analysis identified host genetic variants linked to both rhizosphere microbiome abundance and source environment. We identified transposon insertions in a candidate gene linked to both the abundance of a keystone bacterium Massilia in our controlled experiments and total soil nitrogen in the source environment. Isolation and controlled inoculation of Massilia alone can contribute to root development, whole-plant biomass production and adaptation to low nitrogen availability. We conclude that locally adapted maize varieties exert patterns of genetic control on their root and rhizosphere microbiomes that follow variation in their home environments, consistent with a role in tolerance to prevailing stress.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overall diversity and heritability of microbiome among abiotic stresses.
Fig. 2: Genomic, environmental and microbial prediction of host–microbe interactions and plant traits.
Fig. 3: Dominant and heritable bacterial families of maize root and rhizosphere microbiome under abiotic stresses.
Fig. 4: Source habitats facilitate microbiome-driven root phenotypic association with nitrogen availability.
Fig. 5: Massilia alone can modulate lateral root development and growth performance under nitrogen-poor soil.
Fig. 6: Schematic illustration of the role of host plant genetic variation and gene regulation in bacterial microbiota-mediated lateral root development in maize.

Similar content being viewed by others

Data availability

All raw maize genotyping data, bacterial 16S and fungal ITS data in this paper were deposited in the Sequence Read Archive (http://www.ncbi.nlm.nih.gov/sra) under the BioProject ID PRJNA889703 and PRJNA1015142. The SSUrRNA database from SILVA database (release 138, 2020, https://www.arb-silva.de/) and UNITE database (v8.3, 2021, https://unite.ut.ee/) were used for analysing the bacterial 16S and fungal ITS sequences, respectively. Geographical coordinates and elevation information of the collection sites for maize landraces were retrieved from the public database of the US National Plant Germplasm System (https://www.grin-global.org/). Climatic and soil descriptor data were collected from WorldClim (https://www.worldclim.org), the NCEP/NCAR reanalysis project (https://psl.noaa.gov/data/reanalysis/reanalysis.shtml), NASA SRB (https://asdc.larc.nasa.gov/project/SRB), Climate Research Unit (https://www.uea.ac.uk), SoilGrids (https://www.isric.org/explore/soilgrids) and the Global Soil Dataset (http://globalchange.bnu.edu.cn). Root tissue gene expression data were extracted from qTeller (https://qteller.maizegdb.org/) and annotated from UniProt database (https://www.uniprot.org/). Maize mutants were retrieved from BonnMu resources (https://www.inres.uni-bonn.de/cfg/en/c-f-g/research/bonnmu). All statistical data are provided with this paper. Source data are provided with this paper.

Code availability

We deposited customized scripts in the following GitHub repository: https://github.com/Danning16/MaizeMicrobiome2022.

References

  1. Cheng, Y. T., Zhang, L. & He, S. Y. Plant–microbe interactions facing environmental challenge. Cell Host Microbe 26, 183–192 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Oldroyd, G. E. D. & Leyser, O. A plant’s diet, surviving in a variable nutrient environment. Science 368, eaba0196 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. Finkel, O. M. et al. A single bacterial genus maintains root growth in a complex microbiome. Nature 587, 103–108 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Salas-Gonzalez, I. et al. Coordination between microbiota and root endodermis supports plant mineral nutrient homeostasis. Science 371, eabd0695 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Banerjee, S., Schlaeppi, K. & van der Heijden, M. G. A. Keystone taxa as drivers of microbiome structure and functioning. Nat. Rev. Microbiol. 16, 567–576 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Bulgarelli, D., Schlaeppi, K., Spaepen, S., Van Themaat, E. V. L. & Schulze-Lefert, P. Structure and functions of the bacterial microbiota of plants. Ann. Rev. Plant Biol. 64, 807–838 (2013).

    Article  CAS  Google Scholar 

  7. Bulgarelli, D. et al. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488, 91–95 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Lundberg, D. S. et al. Defining the core Arabidopsis thaliana root microbiome. Nature 488, 86–90 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Haney, C. H., Samuel, B. S., Bush, J. & Ausubel, F. M. Associations with rhizosphere bacteria can confer an adaptive advantage to plants. Nat. Plants 1, 15051 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. de Vries, F. T., Griffiths, R. I., Knight, C. G., Nicolitch, O. & Williams, A. Harnessing rhizosphere microbiomes for drought-resilient crop production. Science 368, 270–274 (2020).

    Article  PubMed  Google Scholar 

  11. Singh, B. K., Trivedi, P., Egidi, E., Macdonald, C. A. & Delgado-Baquerizo, M. Crop microbiome and sustainable agriculture. Nat. Rev. Microbiol. 18, 601–602 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. Meyer, R. S. & Purugganan, M. D. Evolution of crop species: genetics of domestication and diversification. Nat. Rev. Genet. 14, 840–852 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Cordovez, V., Dini-Andreote, F., Carrión, V. J. & Raaijmakers, J. M. Ecology and evolution of plant microbiomes. Annu. Rev. Microbiol. 73, 69–88 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Raaijmakers, J. M. & Kiers, E. T. Rewilding plant microbiomes. Science 378, 599–600 (2022).

    Article  CAS  PubMed  Google Scholar 

  15. Navarro, J. A. R. et al. A study of allelic diversity underlying flowering-time adaptation in maize landraces. Nat. Genet. 49, 476–480 (2017).

    Article  Google Scholar 

  16. Hake, S. & Ross-Ibarra, J. Genetic, evolutionary and plant breeding insights from the domestication of maize. eLife 4, e05861 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Yu, P., Gutjahr, C., Li, C. & Hochholdinger, F. Genetic control of lateral root formation in cereals. Trends Plant Sci. 21, 951–961 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Hochholdinger, F., Yu, P. & Marcon, C. Genetic control of root system development in maize. Trends Plant Sci. 23, 79–88 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. Szoboszlay, M. et al. Comparison of root system architecture and rhizosphere microbial communities of Balsas teosinte and domesticated corn cultivars. Soil Biol. Biochem. 80, 34–44 (2015).

    Article  CAS  Google Scholar 

  20. Brisson, V. L., Schmidt, J. E., Northen, T. R., Vogel, J. P. & Gaudin, A. C. M. Impacts of maize domestication and breeding on rhizosphere microbial community recruitment from a nutrient-depleted agricultural soil. Sci. Rep. 9, 15611 (2019).

  21. Wagner, M. R., Roberts, J. H., Balint-Kurti, P. & Holland, J. B. Heterosis of leaf and rhizosphere microbiomes in field-grown maize. New Phytol. 228, 1055–1069 (2020).

    Article  CAS  PubMed  Google Scholar 

  22. Favela, A., Bohn, M. O. & Kent, A. D. Maize germplasm chronosequence shows crop breeding history impacts recruitment of the rhizosphere microbiome. ISME J. 15, 2454–2464 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bulgarelli, D. et al. Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe 17, 392–403 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yue, H. et al. Plant domestication shapes rhizosphere microbiome assembly and metabolic functions. Microbiome 11, 70 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Durán, P. et al. Microbial interkingdom interactions in roots promote Arabidopsis survival. Cell 175, 973–983 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 9, 559 (2008).

  27. Caslin, B. et al. Alcohol shifts gut microbial networks and ameliorates a murine model of neuroinflammation in a sexspecific pattern. Proc. Natl Acad. Sci. USA 116, 25808–25815 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang, Y. et al. GWAS, MWAS and mGWAS provide insights into precision agriculture based on genotype-dependent microbial effects in foxtail millet. Nat. Commun. 13, 5913 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yu, P. et al. Plant flavones enrich rhizosphere Oxalobacteraceae to improve maize performance under nitrogen deprivation. Nat. Plants 7, 481–499 (2021).

    Article  CAS  PubMed  Google Scholar 

  30. Yuen, C. et al. WVD2 and WDL1 modulate helical organ growth and anisotropic cell expansion in Arabidopsis. Plant Physiol. 131, 493–506 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Qian, Y., Wang, X., Liu, Y., Wang, X. & Mao, T. HY5 inhibits lateral root initiation in Arabidopsis through negative regulation of the microtubule-stabilizing protein TPXL5. Plant Cell 35, 1092–1109 (2023).

  32. Deng, S. et al. Genome wide association study reveals plant loci controlling heritability of the rhizosphere microbiome. ISME J. 15, 3181–3194 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Escudero-Martinez, C. et al. Identifying plant genes shaping microbiota composition in the barley rhizosphere. Nat. Commun. 13, 3443 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Meier, M. A. et al. Association analyses of host genetics, root-colonizing microbes, and plant phenotypes under different nitrogen conditions in maize. eLife 11, e75790 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Oyserman, B. O. et al. Disentangling the genetic basis of rhizosphere microbiome assembly in tomato. Nat. Commun. 13, 3228 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ramirez, K. S. et al. Detecting macroecological patterns in bacterial communities across independent studies of global soils. Nat. Microbiol. 3, 189–196 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Ling, N., Wang, T. & Kuzyakov, Y. Rhizosphere bacteriome structure and functions. Nat. Commun. 13, 836 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Walters, W. A. et al. Large-scale replicated field study of maize rhizosphere identifies heritable microbes. Proc. Natl Acad. Sci. USA 115, 7368–7373 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Edwards, J. A. et al. Genetic determinants of switchgrass-root-associated microbiota in field sites spanning its natural range. Curr. Biol. 33, 1926–1938.e6 (2023).

    Article  CAS  PubMed  Google Scholar 

  40. Peiffer, J. A. et al. Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc. Natl Acad. Sci. USA 110, 6548–6553 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Thiergart, T. et al. Root microbiota assembly and adaptive differentiation among European Arabidopsis populations. Nat. Ecol. Evol. 4, 122–131 (2020).

    Article  PubMed  Google Scholar 

  42. Gonin, M. et al. Plant microbiota controls an alternative root branching regulatory mechanism in plants. Proc. Natl Acad. Sci. USA 120, e2301054120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang, J. et al. NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nat. Biotechnol. 37, 676–684 (2019).

    Article  CAS  PubMed  Google Scholar 

  44. Baldauf, J. A. et al. Single-parent expression is a general mechanism driving extensive complementation of non-syntenic genes in maize hybrids. Curr. Biol. 28, 431–437.e4 (2018).

    Article  CAS  PubMed  Google Scholar 

  45. Rueda-Ayala, V. et al. Impact of nutrient supply on the expression of genetic improvements of cereals and row crops—a case study using data from a long-term fertilization experiment in Germany. Eur. J. Agron. 96, 34–46 (2018).

    Article  Google Scholar 

  46. Lasky, J. R. et al. Genome-environment associations in sorghum landraces predict adaptive traits. Sci. Adv. 1, e1400218 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Zomer, R. J., Trabucco, A., Bossio, D. A. & Verchot, L. V. Climate change mitigation: a spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agric. Ecosyst. Environ. 126, 67–80 (2008).

    Article  Google Scholar 

  48. Kalnay, E. et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 77, 437–472 (1996).

    Article  Google Scholar 

  49. New, M., Lister, D., Hulme, M. & Makin, I. A high-resolution data set of surface climate over global land areas. Clim. Res. 21, 1–25 (2002).

    Article  Google Scholar 

  50. Hengl, T. et al. SoilGrids250m: global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Shangguan, W., Dai, Y., Duan, Q., Liu, B. & Yuan, H. A global soil data set for earth system modeling. J. Adv. Model. Earth Syst. 6, 249–263 (2014).

    Article  Google Scholar 

  52. Magoč, T. & Salzberg, S. L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bokulich, N. A. et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6, 90 (2018).

  56. Yilmaz, P. et al. The SILVA and ‘All-species Living Tree Project (LTP)’ taxonomic frameworks. Nucleic Acids Res. 42, D643–D648 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2-approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Abarenkov, K. et al. UNITE QIIME release for fungi. Version 10.05.2021 (UNITE Community, 2021).

  60. R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021). https://www.R-project.org/

  61. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Oksanen, J. et al. Vegan: Community Ecology Package. R package version 2.5-7 https://CRAN.R-project.org/package=vegan (2020).

  63. Kurtz, Z. D. et al. Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput. Biol. 11, e1004226 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Meinshausen, N. & Buehlmann, P. High-dimensional graphs and variable selection with the Lasso. Ann. Stat. 34, 1436–1462 (2006).

    Article  Google Scholar 

  65. Louca, S., Parfrey, L. W. & Doebeli, M. Decoupling function and taxonomy in the global ocean microbiome. Science 353, 1272–1277 (2016).

    Article  CAS  PubMed  Google Scholar 

  66. Nguyen, N. H. et al. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 20, 241–248 (2016).

    Article  Google Scholar 

  67. Guo, Z. et al. Development of multiple SNP marker panels affordable to breeders through genotyping by target sequencing (GBTS) in maize. Mol. Breed. 39, 37 (2019).

    Article  Google Scholar 

  68. Rogers, J. S. (ed.) Measures of genetic similarity and genetic distance. in Studies in Genetics VII 145–153 (Univ. Texas, 1972).

  69. Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bernal-Vasquez, A., Utz, H. F. & Piepho, H. Outlier detection methods for generalized lattices: a case study on the transition from ANOVA to REML. Theor. Appl. Genet. 129, 787–804 (2016).

    Article  PubMed  Google Scholar 

  71. Butler, D. G., Cullis, B. R., Gilmour A. R., Gogel, B. G. & Thompson, R. ASReml-R Reference Manual Version 4 (VSN International, 2017).

  72. Browning, B. L., Zhou, Y. & Browning, S. R. A one-penny imputed genome from next-generation reference panels. Am. J. Hum. Genet. 103, 338–348 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yu, J. M. et al. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat. Genet. 38, 203–208 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. VanRaden, P. M. Efficient methods to compute genomic predictions. J. Dairy Sci. 91, 4414–4423 (2008).

    Article  CAS  PubMed  Google Scholar 

  75. Zhang, Z. et al. Mixed linear model approach adapted for genome-wide association studies. Nat. Genet. 42, 355–360 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Pérez, P. & de Los Campos, G. Genome-wide regression and prediction with the BGLR statistical package. Genetics 198, 483–495 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Holm, S. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6, 65–70 (1979).

    Google Scholar 

  78. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).

    Article  Google Scholar 

  79. Chen, H. et al. Control for population structure and relatedness for binary traits in genetic association studies via logistic mixed models. Am. J. Hum. Genet. 98, 653–666 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Efron, B. Bootstrap methods: another look at the jackknife. Ann. Stat. 7, 1–26 (1979).

    Article  Google Scholar 

  81. Breslow, N. E. & Clayton, D. G. Approximate inference in generalized linear mixed models. J. Am. Stat. Assoc. 88, 9–25 (1993).

    Article  Google Scholar 

  82. Carley, C. A. S. et al. Automated tetraploid genotype calling by hierarchical clustering. Theor. Appl. Genet. 130, 717–726 (2017).

    Article  Google Scholar 

  83. Kursa, M. B. & Rudnicki, W. R. Feature selection with the Boruta package. J. Stat. Softw. 36, 1–13 (2010).

    Article  Google Scholar 

  84. Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 18–22 (2002).

    Google Scholar 

  85. Gates, D. J. Single-gene resolution of locally adaptive genetic variation in Mexican maize. Preprint at bioRxiv https://doi.org/10.1101/706739 (2019).

  86. François, O., Martins, H., Caye, K. & Schoville, S. D. Controlling false discoveries in genome scans for selection. Mol. Ecol. 25, 454–469 (2016).

    Article  PubMed  Google Scholar 

  87. Marcon, C. et al. BonnMu: a sequence-indexed resource of transposon-induced maize mutations for functional genomics studies. Plant Physiol. 184, 620–631 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Yim, B. et al. Soil texture is a stronger driver of the maize rhizosphere microbiome and extracellular enzyme activities than soil depth or the presence of root hairs. Plant Soil 478, 229–251 (2022).

    Article  CAS  Google Scholar 

  89. Luca, F., Kupfer, S. S., Knights, D., Khoruts, A. & Blekhman, R. Functional genomics of host-microbiome interactions in humans. Trends Genet. 34, 30–40 (2018).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C. Gardner (United States Department of Agriculture, Ames, USA) and the International Maize and Wheat Improvement Center (CIMMYT) for germplasm contribution. We thank A. Glogau for soil and plant nutrient determination and S. Siemens and A. Brox for soil and root DNA extractions (University of Bonn, Bonn, Germany). We thank Y. Wang and H. Liu (State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China) for providing us the SNP matrix data in foxtail millet. We thank D. Ning and J. Zhou (University of Oklahoma, Norman, USA) for their suggestions on microbiome data analysis. This work is supported by Deutsche Forschungsgemeinschaft (DFG) grants HO2249/9-3, HO2249/12-1 to F.H. and YU272/4-1 and Emmy Noether Programme 444755415 to P.Y., the German Excellence Strategy – EXC 2070 – grant 390732324 to P.Y. and G.S., and DFG Priority Program (SPP2089) ‘Rhizosphere Spatiotemporal Organisation - A Key to Rhizosphere Functions’ grant 403671039 to F.H. and P.Y. Germplasm propagation is funded by the TRA Sustainable Futures (University of Bonn) as part of the Excellence Strategy of the federal and state governments. X.C.’s research is supported by The Changjiang Scholarship, Ministry of Education, China, State Cultivation Base of Eco-agriculture for Southwest Mountainous Land (Southwest University, Chongqing, China), and the National Maize Production System in China (grant no. CARS-02-15). R.J.H.S. is funded by USDA Hatch Appropriations under project number PEN04734 and accession number 1021929.

Author information

Authors and Affiliations

Authors

Contributions

P.Y., X.C. and F.H. designed the study. P.Y. coordinated and managed the whole project. X.H. performed the culture and harvest of the phytochamber experiments. D.W. analysed the microbiome data and performed all statistical analyses. Y.J. and J.C.R. performed genetic analyses. C. McLaughlin and R.J.H.S. performed machine learning and environmental genome-wide association analyses. M.D.-B. performed ecological analyses. B.Y. and K.S. contributed bacterial strains from maize. X.H., Marcel Baer and Mareike Baer performed bacterial inoculation experiments. X.H. and L.G. extracted all DNA samples. M.L., Z.Y. and J.Y. performed genomic prediction analyses. P.Y. and H.-P.P. discussed and designed the large pot experiment. C. Marcon and F.H. contributed the Mu-transposon induced lines. M.D., G.S., Y.A.T.M. and N.v.W. conducted soil and plant nutrient analyses. H.H. performed the preparation of soil from Dikopshof long-term experimental station. X.H., D.W., Y.J., M.L., M.D.-B., R.J.H.S., J.C.R., X.C., F.H. and P.Y. wrote the paper. All authors read and approved the final version of the paper.

Corresponding authors

Correspondence to Ruairidh J. H. Sawers, Jochen C. Reif, Frank Hochholdinger, Xinping Chen or Peng Yu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Plants thanks Davide Bulgarelli, Devin Coleman-Derr and Ertao Wang for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–35 and Table 1.

Reporting Summary

Supplementary Data

Supplementary Datasets 1–26 (description is shown individually in actual excel sheet itself).

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, X., Wang, D., Jiang, Y. et al. Heritable microbiome variation is correlated with source environment in locally adapted maize varieties. Nat. Plants 10, 598–617 (2024). https://doi.org/10.1038/s41477-024-01654-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-024-01654-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing