Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The importance of species addition ‘versus’ replacement varies over succession in plant communities after glacier retreat

Abstract

The mechanisms underlying plant succession remain highly debated. Due to the local scope of most studies, we lack a global quantification of the relative importance of species addition ‘versus’ replacement. We assessed the role of these processes in the variation (β-diversity) of plant communities colonizing the forelands of 46 retreating glaciers worldwide, using both environmental DNA and traditional surveys. Our findings indicate that addition and replacement concur in determining community changes in deglaciated sites, but their relative importance varied over time. Taxa addition dominated immediately after glacier retreat, as expected in harsh environments, while replacement became more important for late-successional communities. These changes were aligned with total β-diversity changes, which were more pronounced between early-successional communities than between late-successional communities (>50 yr since glacier retreat). Despite the complexity of community assembly during plant succession, the observed global pattern suggests a generalized shift from the dominance of facilitation and/or stochastic processes in early-successional communities to a predominance of competition later on.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sampling design.
Fig. 2: β-diversity components obtained with eDNA and traditional methods.
Fig. 3: Patterns of β-diversity components over plant succession following glacier retreat.
Fig. 4: Proportion of early colonizers, persisters and late colonizers in glacier forelands.

Similar content being viewed by others

Data availability

Raw sequence data (Sper01 marker) generated using the protocols described in the ‘Methods’ section are deposited in the ‘Sper01_raw_sequences.zip’ folder available in Zenodo (https://zenodo.org/record/6620359#.Y8E1OP6ZO5d)95. The data that support the findings of this study are provided as Supplementary Tables 13.

Code availability

Scripts for reproducing the results in this study are available as Supplementary codes.

Supplementary Code 1. Code reproducing bioinformatics steps.

Supplementary Code 2. Code reproducing taxonomic assignation.

Supplementary Code 3. R code for the MOTU filtering after bioinformatic analyses to remove sequences with best identity <90% and detected at a low frequency that can be artefacts produced by PCR, contaminants and sequencing errors.

Supplementary Code 4. R code to calculate beta-diversity and its components, run the main models and illustrate results.

Supplementary Code 5. R code to test the ability of our sampling design to detect breakpoints in segmented regressions.

References

  1. Connell, J. H. & Slatyer, R. O. Mechanisms of succession in natural communities and their role in community stability and organization. Am. Nat. 111, 1119–1144 (1977).

    Article  Google Scholar 

  2. Prach, K. & Walker, L. R. Comparative Plant Succession among Terrestrial Biomes of the World (Cambridge Univ. Press, 2020).

  3. Walker, L. R. & del Moral, R. Primary Succession and Ecosystem Rehabilitation (Cambridge Univ. Press, 2003).

  4. Clements, F. E. Plant Succession: An Analysis of the Development of Vegetation (Carnegie Institution of Washington, 1916).

  5. Pulsford, S. A., Lindenmayer, D. B. & Driscoll, D. A. A succession of theories: purging redundancy from disturbance theory. Biol. Rev. 91, 148–167 (2016).

    Article  PubMed  Google Scholar 

  6. Gleason, H. A. The individualistic concept of the plant association. Bull. Torrey Bot. Soc. 53, 7–26 (1926).

    Article  Google Scholar 

  7. Zimmer, A. et al. Time lag between glacial retreat and upward migration alters tropical alpine communities. Perspect. Plant Ecol. Evol. Syst. 30, 89–102 (2018).

    Article  Google Scholar 

  8. Bayle, A. et al. Local environmental context drives heterogeneity of early succession dynamics in alpine glacier forefields. Biogeosciences 20, 1649–1669 (2023).

    Article  ADS  Google Scholar 

  9. Li, S. et al. Convergence and divergence in a long-term old-field succession: the importance of spatial scale and species abundance. Ecol. Lett. 19, 1101–1109 (2016).

    Article  PubMed  Google Scholar 

  10. Fukami, T., Martijn Bezemer, T., Mortimer, S. R. & Putten, W. H. Species divergence and trait convergence in experimental plant community assembly. Ecol. Lett. 8, 1283–1290 (2005).

    Article  Google Scholar 

  11. Marteinsdóttir, B., Thórhallsdóttir, T. E. & Svavarsdóttir, K. An experimental test of the relationship between small-scale topography and seedling establishment in primary succession. Plant Ecol. 214, 1007–1015 (2013).

    Article  Google Scholar 

  12. Matthews, J. A., Hill, J. L., Winkler, S., Owen, G. & Vater, A. E. Autosuccession in alpine vegetation: testing the concept on an altitudinal bioclimatic gradient, Jotunheimen, southern Norway. CATENA 170, 169–182 (2018).

    Article  Google Scholar 

  13. Ficetola, G. F. et al. Dynamics of ecological communities following current retreat of glaciers. Annu. Rev. Ecol. Evol. Syst. 52, 405–426 (2021).

    Article  Google Scholar 

  14. Svoboda, J. & Henry, G. H. R. Succession in marginal Arctic environments. Arct. Alp. Res. 19, 373–384 (1987).

    Article  Google Scholar 

  15. Zemp, M. et al. Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016. Nature 568, 382–386 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Bosson, J. B. et al. Future emergence of new ecosystems caused by glacial retreat. Nature 620, 562–569 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Wojcik, R., Eichel, J., Bradley, J. A. & Benning, L. G. How allogenic factors affect succession in glacier forefields. Earth Sci. Rev. 218, 103642 (2021).

    Article  Google Scholar 

  18. Fischer, A., Fickert, T., Schwaizer, G., Patzelt, G. & Groß, G. Vegetation dynamics in Alpine glacier forelands tackled from space. Sci. Rep. 9, 13918 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  19. Körner, C. Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems (Springer, 2021).

  20. Rosero, P. et al. Multi‐taxa colonisation along the foreland of a vanishing equatorial glacier. Ecography 44, 1010–1021 (2021).

    Article  ADS  Google Scholar 

  21. Llambí, L. D. et al. Vegetation assembly, adaptive strategies and positive interactions during primary succession in the forefield of the last Venezuelan glacier. Front. Ecol. Evol. 9, 657755 (2021).

    Article  Google Scholar 

  22. Hanusch, M., He, X., Ruiz-Hernández, V. & Junker, R. R. Succession comprises a sequence of threshold-induced community assembly processes towards multidiversity. Commun. Biol. 5, 424 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Erschbamer, B., Niederfriniger Schlag, R. & Winkler, E. Colonization processes on a central Alpine glacier foreland. J. Veg. Sci. 19, 855–862 (2008).

    Article  Google Scholar 

  24. Losapio, G. et al. The consequences of glacier retreat are uneven between plant species. Front. Ecol. Evol. 8, 616562 (2021).

    Article  Google Scholar 

  25. Koffel, T., Boudsocq, S., Loeuille, N. & Daufresne, T. Facilitation- vs. competition-driven succession: the key role of resource-ratio. Ecol. Lett. 21, 1010–1021 (2018).

    Article  PubMed  Google Scholar 

  26. Callaway, R. M. et al. Positive interactions among alpine plants increase with stress. Nature 417, 844–848 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Bertness, M. D. & Callaway, R. Positive interactions in communities. Trends Ecol. Evol. 9, 191–193 (1994).

    Article  CAS  PubMed  Google Scholar 

  28. Walker, L. R., Clarkson, B. D., Silvester, W. B. & Clarkson, B. R. Colonization dynamics and facilitative impacts of a nitrogen-fixing shrub in primary succession. J. Veg. Sci. 14, 277–290 (2003).

    Article  Google Scholar 

  29. Chapin, F. S., Walker, L. R., Fastie, C. L. & Sharman, L. C. Mechanisms of primary succession following deglaciation at Glacier Bay, Alaska. Ecol. Monogr. 64, 149–175 (1994).

    Article  Google Scholar 

  30. Gerla, D. J., Mooij, W. M. & Huisman, J. Photoinhibition and the assembly of light-limited phytoplankton communities. Oikos 120, 359–368 (2011).

    Article  ADS  Google Scholar 

  31. Losapio, G. et al. Network motifs involving both competition and facilitation predict biodiversity in alpine plant communities. Proc. Natl Acad. Sci. USA 118, e2005759118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Erschbamer, B. & Caccianiga, M. S. In Progress in Botany Vol. 78 (eds Cánovas, F. M. et al.) 259–284 (Springer, 2016).

  33. Grime, J. P. Plant Strategies, Vegetation Processes, and Ecosystem Properties (Wiley, 2001).

  34. Pérez, C. A. et al. Ecosystem development in short-term postglacial chronosequences: N and P limitation in glacier forelands from Santa Inés Island, Magellan Strait. Austral Ecol. 39, 288–303 (2014).

    Article  Google Scholar 

  35. Pothula, S. K. & Adams, B. J. Community assembly in the wake of glacial retreat: a meta-analysis. Glob. Change Biol. 28, 6973–6991 (2022).

    Article  CAS  Google Scholar 

  36. Anthelme, F., Carrasquer, I., Ceballos, J. L. & Peyre, G. Novel plant communities after glacial retreat in Colombia: (many) losses and (few) gains. Alp. Bot. 132, 211–222 (2022).

    Article  Google Scholar 

  37. Whittaker, R. H. Vegetation of the Siskiyou Mountains, Oregon and California. Ecol. Monogr. 30, 279–338 (1960).

    Article  Google Scholar 

  38. Johnson, E. A. & Miyanishi, K. Testing the assumptions of chronosequences in succession. Ecol. Lett. 11, 419–431 (2008).

    Article  PubMed  Google Scholar 

  39. Ariza, M. et al. Plant biodiversity assessment through soil eDNA reflects temporal and local diversity. Methods Ecol. Evol. 14, 415–430 (2023).

  40. Yoccoz, N. G. et al. DNA from soil mirrors plant taxonomic and growth form diversity. Mol. Ecol. 21, 3647–3655 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Foucher, A. et al. Persistence of environmental DNA in cultivated soils: implication of this memory effect for reconstructing the dynamics of land use and cover changes. Sci. Rep. 10, 10502 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Taberlet, P., Coissac, E., Hajibabaei, M. & Rieseberg, L. H. Environmental DNA. Mol. Ecol. 21, 1789–1793 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Zinger, L. et al. DNA metabarcoding—need for robust experimental designs to draw sound ecological conclusions. Mol. Ecol. 28, 1857–1862 (2019).

    Article  PubMed  Google Scholar 

  44. Johnson, M. D. et al. Environmental DNA as an emerging tool in botanical research. Am. J. Bot. 110, e16120 (2023).

    Article  PubMed  Google Scholar 

  45. Banerjee, P. et al. Environmental DNA analysis as an emerging non-destructive method for plant biodiversity monitoring: a review. AoB Plants 14, plac031 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Carvalho, J. C., Cardoso, P. & Gomes, P. Determining the relative roles of species replacement and species richness differences in generating beta-diversity patterns: partitioning beta diversity. Glob. Ecol. Biogeogr. 21, 760–771 (2012).

    Article  Google Scholar 

  47. Raffl, C., Mallaun, M., Mayer, R. & Erschbamer, B. Vegetation succession pattern and diversity changes in a glacier valley, Central Alps, Austria. Arct. Antarct. Alp. Res. 38, 421–428 (2006).

    Article  ADS  Google Scholar 

  48. Tscherko, D., Hammesfahr, U., Zeltner, G., Kandeler, E. & Böcker, R. Plant succession and rhizosphere microbial communities in a recently deglaciated alpine terrain. Basic Appl. Ecol. 6, 367–383 (2005).

    Article  CAS  Google Scholar 

  49. Kaufmann, R. Invertebrate succession on an alpine glacier foreland. Ecology 82, 2261–2278 (2001).

    Article  Google Scholar 

  50. Cauvy-Fraunié, S. & Dangles, O. A global synthesis of biodiversity responses to glacier retreat. Nat. Ecol. Evol. 3, 1675–1685 (2019).

    Article  PubMed  Google Scholar 

  51. Zanzottera, M., Dalle Fratte, M., Caccianiga, M., Pierce, S. & Cerabolini, B. E. L. Community-level variation in plant functional traits and ecological strategies shapes habitat structure along succession gradients in alpine environment. Community Ecol. 21, 55–65 (2020).

    Article  Google Scholar 

  52. Anthelme, F., Cauvy-Fraunié, S., Francou, B., Cáceres, B. & Dangles, O. Living at the edge: increasing stress for plants 2–13 years after the retreat of a tropical glacier. Front. Ecol. Evol. 9, 584872 (2021).

    Article  Google Scholar 

  53. Erschbamer, B. & Mayer, R. Can successional species groups be discriminated based on their life history traits? A study from a glacier foreland in the Central Alps. Plant Ecol. Divers. 4, 341–351 (2011).

    Article  Google Scholar 

  54. Gobbi, M. et al. Plant adaptive responses during primary succession are associated with functional adaptations in ground beetles on deglaciated terrain. Community Ecol. 11, 223–231 (2010).

    Article  Google Scholar 

  55. Chase, J. M. & Myers, J. A. Disentangling the importance of ecological niches from stochastic processes across scales. Phil. Trans. R. Soc. B 366, 2351–2363 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  56. del Moral, R. Increasing deterministic control of primary succession on Mount St. Helens, Washington. J. Veg. Sci. 20, 1145–1154 (2009).

    Article  Google Scholar 

  57. Matthews, J. A. The Ecology of Recently Deglaciated Terrain. A Geoecological Approach to Glacier Forelands and Primary Succession (Cambridge Univ. Press, 1992).

  58. Paterno, G. B., Siqueira Filho, J. A. & Ganade, G. Species-specific facilitation, ontogenetic shifts and consequences for plant community succession. J. Veg. Sci. 27, 606–615 (2016).

    Article  Google Scholar 

  59. Brambilla, M. & Gobbi, M. A century of chasing the ice: delayed colonisation of ice-free sites by ground beetles along glacier forelands in the Alps. Ecography 37, 33–42 (2014).

    Article  ADS  Google Scholar 

  60. Gobbi, M., Fontaneto, D. & De Bernardi, F. Influence of climate changes on animal communities in space and time: the case of spider assemblages along an alpine glacier foreland. Glob. Change Biol. 12, 1985–1992 (2006).

    Article  ADS  Google Scholar 

  61. Delgado-Baquerizo, M. et al. Changes in belowground biodiversity during ecosystem development. Proc. Natl Acad. Sci. USA 116, 6891–6896 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  62. Carrasco-Puga, G. et al. Revealing hidden plant diversity in arid environments. Ecography 44, 98–111 (2021).

    Article  ADS  Google Scholar 

  63. Hartvig, I., Kosawang, C., Kjær, E. D. & Nielsen, L. R. Detecting rare terrestrial orchids and associated plant communities from soil samples with eDNA methods. Biodivers. Conserv. 30, 3879–3901 (2021).

    Article  Google Scholar 

  64. Edwards, M. E. et al. Metabarcoding of modern soil DNA gives a highly local vegetation signal in Svalbard tundra. Holocene 28, 2006–2016 (2018).

    Article  ADS  Google Scholar 

  65. Wang, H., Qi, J., Xiao, D., Wang, Z. & Tian, K. A re-evaluation of dilution for eliminating PCR inhibition in soil DNA samples. Soil Biol. Biochem. 106, 109–118 (2017).

    Article  CAS  Google Scholar 

  66. Calderón-Sanou, I., Münkemüller, T., Boyer, F., Zinger, L. & Thuiller, W. From environmental DNA sequences to ecological conclusions: how strong is the influence of methodological choices? J. Biogeogr. 47, 193–206 (2019).

    Article  Google Scholar 

  67. Walker, L. R., Wardle, D. A., Bardgett, R. D. & Clarkson, B. D. The use of chronosequences in studies of ecological succession and soil development: chronosequences, succession and soil development. J. Ecol. 98, 725–736 (2010).

    Article  Google Scholar 

  68. Albrecht, M., Riesen, M. & Schmid, B. Plant-pollinator network assembly along the chronosequence of a glacier foreland. Oikos 119, 1610–1624 (2010).

    Article  ADS  Google Scholar 

  69. Urban, M. C. et al. Improving the forecast for biodiversity under climate change. Science 353, aad8466 (2016).

    Article  PubMed  Google Scholar 

  70. Guerrieri, A. et al. Local climate modulates the development of soil nematode communities after glacier retreat. Glob. Chang. Biol. 30, e17057 (2024)

  71. Marta, S. et al. The retreat of mountain glaciers since the little ice age: a spatially explicit database. Data 6, 107 (2021).

    Article  Google Scholar 

  72. Guerrieri, A. et al. Effects of soil preservation for biodiversity monitoring using environmental DNA. Mol. Ecol. 30, 3313–3325 (2021).

    Article  CAS  PubMed  Google Scholar 

  73. Taberlet, P. et al. Soil sampling and isolation of extracellular DNA from large amount of starting material suitable for metabarcoding studies. Mol. Ecol. 21, 1816–1820 (2012).

    Article  CAS  PubMed  Google Scholar 

  74. Taberlet, P. et al. Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding. Nucleic Acids Res. 35, e14 (2007).

    Article  PubMed  Google Scholar 

  75. Taberlet, P., Bonin, A., Zinger, L. & Coissac, E. Environmental DNA for Biodiversity Research and Monitoring (Oxford Univ. Press, 2018).

  76. Ficetola, G. F. et al. Replication levels, false presences and the estimation of the presence/absence from eDNA metabarcoding data. Mol. Ecol. Resour. 15, 543–556 (2015).

    Article  CAS  PubMed  Google Scholar 

  77. Boyer, F. et al. OBITools: a unix-inspired software package for DNA metabarcoding. Mol. Ecol. Resour. 16, 176–182 (2016).

    Article  CAS  PubMed  Google Scholar 

  78. Bonin, A., Guerrieri, A. & Ficetola, G. F. Optimal sequence similarity thresholds for clustering of molecular operational taxonomic units in DNA metabarcoding studies. Mol. Ecol. Resour. 23, 368–381 (2023).

    Article  CAS  PubMed  Google Scholar 

  79. Ficetola, G. F. et al. An in silico approach for the evaluation of DNA barcodes. BMC Genomics 11, 434 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Bálint, M. et al. Millions of reads, thousands of taxa: microbial community structure and associations analyzed via marker genes. FEMS Microbiol. Rev. 40, 686–700 (2016).

    Article  PubMed  Google Scholar 

  81. Caccianiga, M., Luzzaro, A., Pierce, S., Ceriani, R. M. & Cerabolini, B. The functional basis of a primary succession resolved by CSR classification. Oikos 112, 10–20 (2006).

    Article  ADS  Google Scholar 

  82. Dickie, I. A. et al. Towards robust and repeatable sampling methods in eDNA based studies. Mol. Ecol. Resour. 18, 940–952 (2018).

  83. Baselga, A. & Leprieur, F. Comparing methods to separate components of beta diversity. Methods Ecol. Evol. 6, 1069–1079 (2015).

    Article  Google Scholar 

  84. Baselga, A. Partitioning the turnover and nestedness components of beta diversity: partitioning beta diversity. Glob. Ecol. Biogeogr. 19, 134–143 (2010).

    Article  Google Scholar 

  85. Legendre, P. & De Cáceres, M. Beta diversity as the variance of community data: dissimilarity coefficients and partitioning. Ecol. Lett. 16, 951–963 (2013).

    Article  PubMed  Google Scholar 

  86. Cardoso, P., Rigal, F. & Carvalho, J. C. BAT – Biodiversity Assessment Tools, an R package for the measurement and estimation of alpha and beta taxon, phylogenetic and functional diversity. Methods Ecol. Evol. 6, 232–236 (2015).

    Article  Google Scholar 

  87. Baselga, A. & Orme, C. D. L. betapart : an R package for the study of beta diversity: Betapart package. Methods Ecol. Evol. 3, 808–812 (2012).

  88. Manly, B. F. J. Randomization, Bootstrap and Monte Carlo Methods in Biology (Chapman and Hall/CRC, 2017).

  89. Smithson, M. & Verkuilen, J. A better lemon squeezer? Maximum-likelihood regression with beta-distributed dependent variables. Psychol. Methods 11, 54–71 (2006).

    Article  PubMed  Google Scholar 

  90. Bürkner, P.-C. brms: an R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).

    Article  Google Scholar 

  91. Muggeo, V. M. R. segmented: an R package to fit regression models with broken-line relationships. R News 8, 20–25 (2008).

  92. Ficetola, G. F. & Denoël, M. Ecological thresholds: an assessment of methods to identify abrupt changes in species–habitat relationships. Ecography 32, 1075–1084 (2009).

    Article  ADS  Google Scholar 

  93. Poorter, L. et al. Multidimensional tropical forest recovery. Science 374, 1370–1376 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  94. Fickert, T. & Grüninger, F. High-speed colonization of bare ground – permanent plot studies on primary succession of plants in recently deglaciated glacier forelands. Land Degrad. Dev. 29, 2668–2680 (2018).

    Article  Google Scholar 

  95. Guerrieri, A., Bonin, A., Gielly, L. & Ficetola, F. Raw sequencing data for studying the colonization of soil communities after glacier retreat (2022). https://doi.org/10.5281/zenodo.7628236

Download references

Acknowledgements

This study was funded by the European Research Council under the European Community’s Horizon 2020 Programme, Grant Agreement no. 772284 (IceCommunities) to I.C., A.C., A.G., S.M., A.B., R.A., R.S.A., F.G., L.G., N.K., G.A.D., J.P., W.T., M.C. and G.F.F. This research was also funded by Biodiversa+, the European Biodiversity Partnership under the 2021–2022 BiodivProtect joint call for research proposals, co-funded by the European Commission (grant agreement no. 101052342 ‘PrioritIce-Vanishing habitats: conservation priorities for glacier-related biodiversity threatened by climate change’) to I.C., R.A., W.T., M.C., M.G. and G.F.F. and with the funding organizations MUR and ANR. We thank R. Kaufmann, A. Guisan, K. Sieron and M. A. Morales-Martínez for help and discussions at various phases of this project.

Author information

Authors and Affiliations

Authors

Contributions

I.C., M.C. and G.F.F. conceived, developed and wrote the paper, with input from A.C., R. A., F.A., S.C.-F., M.G., A.R., A. Zerboni, P.T., J.P. and W.T.; I.C. performed the statistical analyses; A.G., S.M., A.B., F.G. and G.F.F. contributed to data preparation and curation; A.G., A.B. and L.G. performed laboratory analyses; A.G., S.M., A.B., R.A., F.A., R.S.A., P.A., P.A.G., S.C.-F., J.L.C.L, P.C., M.C.S., J.C., J.A.C.R., C.C., R.C.E., O.D., A.E., S.E., A.F., L.G., F.G., M.G, S.H., N.K., R.I.M., G.P., F.P., A.R., N.U., Y.Y., V.Z., A. Zerboni, A. Zimmer, G.A.D., J.P. M.C. and G.F.F. participated in sampling and the initial development of the study. All authors reviewed and/or provided input on the manuscript.

Corresponding author

Correspondence to Isabel Cantera.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Plants thanks Ingolf Kühn, Robert Junker and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Patterns of β-diversity and its components over time measured with temporal data to support the conclusions based on the chronosequence approach.

Data was obtained from Fickert & Grüninger94, which sampled vascular plants with traditional methods in permanent plots during the first decade after the deglaciation of two glaciers in the Alps (N = 30 comparisons). a. β-diversity components. Boxplots indicate median (middle line), 25th, 75th percentiles (box), as well as 1.5 * interquartile range (whiskers) and outliers (dots). Diamonds indicate the mean values. b. Results of the Bayesian generalized mixed models assessing the effects of mean age and age differences between compared sites on the different β-diversity measures. Glacier identity and identity of sites involved in the comparisons were included as random factors. Parameters with 95% CI non-overlapping zero are highlighted in bold.

Supplementary information

Supplementary Information

Supplementary Tables 1–8 and Figs. 1–11.

Reporting Summary

Supplementary Table 1

Supplementary Tables 1–3, with legends indicated in the Supplementary information file ‘Cantera_SI.pdf’.

Supplementary Code 1

Supplementary code.

Supplementary Code 2

Supplementary code.

Supplementary Code 3

Supplementary code.

Supplementary Code 4

Supplementary code.

Supplementary Code 5

Supplementary code.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cantera, I., Carteron, A., Guerrieri, A. et al. The importance of species addition ‘versus’ replacement varies over succession in plant communities after glacier retreat. Nat. Plants 10, 256–267 (2024). https://doi.org/10.1038/s41477-023-01609-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-023-01609-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing