Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The strigolactone pathway plays a crucial role in integrating metabolic and nutritional signals in plants

Abstract

Strigolactones are rhizosphere signals and phytohormones that play crucial roles in plant development. They are also well known for their role in integrating nitrate and phosphate signals to regulate shoot and root development. More recently, sugars and citrate (an intermediate of the tricarboxylic acid cycle) were reported to inhibit the strigolactone response, with dramatic effects on shoot architecture. This Review summarizes the discoveries recently made concerning the mechanisms through which the strigolactone pathway integrates sugar, metabolite and nutrient signals. We highlight here that strigolactones and MAX2-dependent signalling play crucial roles in mediating the impacts of nutritional and metabolic cues on plant development and metabolism. We also discuss and speculate concerning the role of these interactions in plant evolution and adaptation to their environment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Interactions between nutrients and the strigolactone pathway.
Fig. 2: Interactions between primary metabolism and MAX2.
Fig. 3: Role of strigolactones in the integration of abiotic stresses.
Fig. 4: Suspected role of the interactions between nutrients and strigolactone in plant evolution.

References

  1. Bräsen, C. et al. Carbohydrate metabolism in Archaea: current insights into unusual enzymes and pathways and their regulation. Microbiol. Mol. Biol. Rev. 78, 89–175 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Chantranupong, L. et al. Nutrient-sensing mechanisms across evolution. Cell 161, 67–83 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fichtner, F. et al. Sugar and nitrate sensing: a multi-billion-year story. Trends Plant Sci. 26, 352–374 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Li, L. et al. Dynamic nutrient signaling networks in plants. Annu. Rev. Cell Dev. Biol. 37, 341–367 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Moore, B. et al. Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science 300, 332–336 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Yang, L. et al. Sugar promotes vegetative phase change in Arabidopsis thaliana by repressing the expression of MIR156A and MIR156C. eLife 2, e00260 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Barbier, F. F. et al. HEXOKINASE1 signalling promotes shoot branching and interacts with cytokinin and strigolactone pathways. N. Phytol. 231, 1088–1104 (2021).

    Article  CAS  Google Scholar 

  8. Liu, K.-H. et al. NIN-like protein 7 transcription factor is a plant nitrate sensor. Science 377, 1419–1425 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ljung, K. et al. New mechanistic links between sugar and hormone signalling networks. Curr. Opin. Plant Biol. 25, 130–137 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Ruffel, S. Nutrient-related long-distance signals: common players and possible cross-talk. Plant Cell Physiol. 59, 1723–1732 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. LeClere, S. et al. Sugar levels regulate tryptophan-dependent auxin biosynthesis in developing maize kernels. Plant Physiol. 153, 306–318 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lilley, J. L. S. et al. An endogenous carbon-sensing pathway triggers increased auxin flux and hypocotyl elongation. Plant Physiol. 160, 2261–2270 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Barbier, F. et al. Sucrose is an early modulator of the key hormonal mechanisms controlling bud outgrowth in Rosa hybrida. J. Exp. Bot. 66, 2569–2582 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Salam, B. B. et al. Sucrose promotes stem branching through cytokinin. Plant Physiol. 185, 1708–1721 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Landrein, B. et al. Nitrate modulates stem cell dynamics in Arabidopsis shoot meristems through cytokinins. Proc. Natl Acad. Sci. 115, 1382–1387 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Poitout, A. et al. Responses to systemic nitrogen signaling in Arabidopsis roots involve trans-zeatin in shoots. Plant Cell 30, 1243–1257 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cao, D. et al. Auxin-independent effects of apical dominance induce changes in phytohormones correlated with bud outgrowth. Plant Physiol. 192, 1420–1434 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Waters, M. T. et al. Strigolactone signaling and evolution. Annu. Rev. Plant Biol. 68, 291–322 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. Mostofa, M. G. et al. Strigolactones in plant adaptation to abiotic stresses: an emerging avenue of plant research. Plant Cell Environ. 41, 2227–2243 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. López-Ráez, J. A. et al. Strigolactones in plant interactions with beneficial and detrimental organisms: the yin and yang. Trends Plant Sci. 22, 527–537 (2017).

    Article  PubMed  Google Scholar 

  21. Trasoletti, M. et al. Strigolactones as a hormonal hub for the acclimation and priming to environmental stress in plants. Plant Cell Environ. 45, 3611–3630 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yoneyama, K. et al. Phosphorus deficiency in red clover promotes exudation of orobanchol, the signal for mycorrhizal symbionts and germination stimulant for root parasites. Planta 225, 1031–1038 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Yoneyama, K. et al. Nitrogen deficiency as well as phosphorus deficiency in sorghum promotes the production and exudation of 5-deoxystrigol, the host recognition signal for arbuscular mycorrhizal fungi and root parasites. Planta 227, 125–132 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Bertheloot, J. et al. Sugar availability suppresses the auxin-induced strigolactone pathway to promote bud outgrowth. N. Phytol. 225, 866–879 (2020).

    Article  CAS  Google Scholar 

  25. Patil, S. B. et al. Sucrose promotes D53 accumulation and tillering in rice. N. Phytol. 234, 122–136 (2022).

    Article  CAS  Google Scholar 

  26. Tal, L. et al. A conformational switch in the SCF-D3/MAX2 ubiquitin ligase facilitates strigolactone signalling. Nat. Plants 8, 561–573 (2022).

    Article  CAS  PubMed  Google Scholar 

  27. Chesterfield, R. J. et al. Translation of strigolactones from plant hormone to agriculture: achievements, future perspectives, and challenges. Trends Plant Sci. 25, 1087–1106 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Kelly, J. H. et al. The strigolactone pathway is a target for modifying crop shoot architecture and yield. Biology 12, 95 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yoneyama, K. & Brewer, P. B. Strigolactones, how are they synthesized to regulate plant growth and development? Curr. Opin. Plant Biol. 63, 102072 (2021).

    Article  CAS  PubMed  Google Scholar 

  30. Guercio, A. M. et al. Strigolactones: diversity, perception, and hydrolysis. Phytochem. Rev. 22, 339–359 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang, Y. & Bouwmeester, H. J. Structural diversity in the strigolactones. J. Exp. Bot. 69, 2219–2230 (2018).

    Article  CAS  PubMed  Google Scholar 

  32. Jiang, L. et al. DWARF 53 acts as a repressor of strigolactone signalling in rice. Nature 504, 401–405 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhou, F. et al. D14-SCFD3-dependent degradation of D53 regulates strigolactone signalling. Nature 504, 406–410 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Soundappan, I. et al. SMAX1-LIKE/D53 family members enable distinct MAX2-dependent responses to strigolactones and karrikins in Arabidopsis. Plant Cell 27, 3143–3159 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang, L. et al. Strigolactone signaling in Arabidopsis regulates shoot development by targeting D53-like SMXL repressor proteins for ubiquitination and degradation. Plant Cell 27, 3128–3142 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li, Q. et al. The strigolactone receptor D14 targets SMAX1 for degradation in response to GR24 treatment and osmotic stress. Plant Commun. 3, 100303 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang, L. et al. Strigolactone and karrikin signaling pathways elicit ubiquitination and proteolysis of SMXL2 to regulate hypocotyl elongation in Arabidopsis. Plant Cell 32, 2251–2270 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang, L. et al. Transcriptional regulation of strigolactone signalling in Arabidopsis. Nature 583, 277–281 (2020).

    Article  CAS  PubMed  Google Scholar 

  39. Liu, J. et al. miR156-regulated TaSPLs interact with TaD53 to regulate TaTB1 and TaBA1 expression in bread wheat. Plant Physiol. 174, 1931–1948 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Song, X. et al. IPA1 functions as a downstream transcription factor repressed by D53 in strigolactone signaling in rice. Cell Res. 27, 1128–1141 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shabek, N. et al. Structural plasticity of D3–D14 ubiquitin ligase in strigolactone signalling. Nature 563, 652–656 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lanfranco, L. et al. Strigolactones cross the kingdoms: plants, fungi, and bacteria in the arbuscular mycorrhizal symbiosis. J. Exp. Bot. 69, 2175–2188 (2018).

    Article  CAS  PubMed  Google Scholar 

  43. Sun, H. et al. Strigolactones are involved in phosphate- and nitrate-deficiency-induced root development and auxin transport in rice. J. Exp. Bot. 65, 6735–6746 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yoneyama, K. et al. How do nitrogen and phosphorus deficiencies affect strigolactone production and exudation? Planta 235, 1197–1207 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Umehara, M. et al. Inhibition of shoot branching by new terpenoid plant hormones. Nature 455, 195–200 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. López-Ráez, J. A. et al. Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation. N. Phytol. 178, 863–874 (2008).

    Article  Google Scholar 

  47. Kohlen, W. et al. Strigolactones are transported through the xylem and play a key role in shoot architectural response to phosphate deficiency in nonarbuscular mycorrhizal host Arabidopsis. Plant Physiol. 155, 974–987 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Foo, E. et al. Strigolactones and the regulation of pea symbioses in response to nitrate and phosphate deficiency. Mol. Plant 6, 76–87 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. de Jong, M. et al. Auxin and strigolactone signaling are required for modulation of Arabidopsis shoot branching by nitrogen supply. Plant Physiol. 166, 384–395 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Sun, H. et al. SPL14/17 act downstream of strigolactone signalling to modulate rice root elongation in response to nitrate supply. Plant J. 106, 649–660 (2021).

    Article  CAS  PubMed  Google Scholar 

  51. Kumar, M. et al. Arabidopsis response to low-phosphate conditions includes active changes in actin filaments and PIN2 polarization and is dependent on strigolactone signalling. J. Exp. Bot. 66, 1499–1510 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sun, H. et al. Strigolactones are required for nitric oxide to induce root elongation in response to nitrogen and phosphate deficiencies in rice. Plant Cell Environ. 39, 1473–1484 (2016).

    Article  CAS  PubMed  Google Scholar 

  53. Arite, T. et al. Strigolactone positively controls crown root elongation in rice. J. Plant Growth Regul. 31, 165–172 (2012).

    Article  CAS  Google Scholar 

  54. Jiang, L. et al. MAX4 gene is involved in the regulation of low inorganic phosphate stress responses in Arabidopsis thaliana. Acta Physiol. Plant. 33, 867–875 (2011).

    Article  CAS  Google Scholar 

  55. Oldroyd, G. E. D. & Leyser, O. A plant’s diet, surviving in a variable nutrient environment. Science 368, eaba0196 (2020).

    Article  CAS  PubMed  Google Scholar 

  56. Yoneyama, K. et al. Do phosphate and cytokinin interact to regulate strigolactone biosynthesis or act independently? Front. Plant Sci. 11, 438 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Das, D. et al. PHOSPHATE STARVATION RESPONSE transcription factors enable arbuscular mycorrhiza symbiosis. Nat. Commun. 13, 477 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Liu, W. et al. Strigolactone biosynthesis in Medicago truncatula and rice requires the symbiotic GRAS-type transcription factors NSP1 and NSP2. Plant Cell 23, 3853–3865 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sigalas, P. P. et al. Nutritional and tissue-specific regulation of cytochrome P450 CYP711A MAX1 homologues and strigolactone biosynthesis in wheat. J. Exp. Bot. 74, 1890–1910 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Shindo, M. et al. Upregulation of DWARF27 is associated with increased strigolactone levels under sulfur deficiency in rice. Plant Direct 2, e00050 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Shi, J. et al. A phosphate starvation response-regulated receptor-like kinase, OsADK1, is required for mycorrhizal symbiosis and phosphate starvation responses. N. Phytol. 236, 2282–2293 (2022).

    Article  Google Scholar 

  62. Jia, X. et al. Cracking the code of plant central phosphate signaling. Trends Plant Sci. 28, 267–270 (2023).

    Article  CAS  PubMed  Google Scholar 

  63. Wang, Z. et al. Rice SPX1 and SPX2 inhibit phosphate starvation responses through interacting with PHR2 in a phosphate-dependent manner. Proc. Natl Acad. Sci. USA 111, 14953–14958 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhong, Y. et al. Rice SPX6 negatively regulates the phosphate starvation response through suppression of the transcription factor PHR2. N. Phytol. 219, 135–148 (2018).

    Article  CAS  Google Scholar 

  65. Smit, P. et al. NSP1 of the GRAS protein family is essential for rhizobial nod factor-induced transcription. Science 308, 1789–1791 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Kaló, P. et al. Nodulation signaling in legumes requires NSP2, a member of the GRAS family of transcriptional regulators. Science 308, 1786–1789 (2005).

    Article  PubMed  Google Scholar 

  67. Maillet, F. et al. Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature 469, 58–63 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Gomez-Roldan, V. et al. Strigolactone inhibition of shoot branching. Nature 455, 189–194 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Barbier, F. F. et al. An update on the signals controlling shoot branching. Trends Plant Sci. 24, 220–236 (2019).

    Article  CAS  PubMed  Google Scholar 

  70. Barbier, F. F. et al. Ready, steady, go! A sugar hit starts the race to shoot branching. Curr. Opin. Plant Biol. 25, 39–45 (2015).

    Article  CAS  PubMed  Google Scholar 

  71. Schneider, A. et al. Light regulation of axillary bud outgrowth along plant axes: an overview of the roles of sugars and hormones. Front. Plant Sci. 10, 1296 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Mason, M. G. et al. Sugar demand, not auxin, is the initial regulator of apical dominance. Proc. Natl Acad. Sci. USA 111, 6092–6097 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Barbier, F. F. et al. Apical dominance. Curr. Biol. 27, R864–R865 (2017).

    Article  CAS  PubMed  Google Scholar 

  74. Dierck, R. et al. Response to strigolactone treatment in chrysanthemum axillary buds is influenced by auxin transport inhibition and sucrose availability. Acta Physiol. Plant. 38, 271 (2016).

    Article  Google Scholar 

  75. Tian, M. et al. Strigolactone-induced senescence of a bamboo leaf in the dark is alleviated by exogenous sugar. J. Pestic. Sci. 43, 173–179 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Takahashi, I. et al. Counteractive effects of sugar and strigolactone on leaf senescence of rice in darkness. Agronomy 11, 1044 (2021).

    Article  CAS  Google Scholar 

  77. Waters, M. T. & Nelson, D. C. Karrikin perception and signalling. N. Phytol. 237, 1525–1541 (2023).

    Article  CAS  Google Scholar 

  78. Nelson, D. C. et al. F-box protein MAX2 has dual roles in karrikin and strigolactone signaling in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 108, 8897–8902 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bennett, T. et al. Strigolactone regulates shoot development through a core signalling pathway. Biol. Open 5, 1806–1820 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hayward, A. et al. Interactions between auxin and strigolactone in shoot branching control. Plant Physiol. 151, 400–412 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kalliola, M. et al. Differential role of MAX2 and strigolactones in pathogen, ozone, and stomatal responses. Plant Direct 4, e00206 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Struk, S. et al. Unraveling the MAX2 protein network in Arabidopsis thaliana: identification of the protein phosphatase PAPP5 as a novel MAX2 interactor. Mol. Cell. Proteom. 20, 100040 (2021).

    Article  CAS  Google Scholar 

  83. Van Leene, J. et al. Mapping of the plant SnRK1 kinase signalling network reveals a key regulatory role for the class II T6P synthase-like proteins. Nat. Plants 8, 1245–1261 (2022).

    Article  PubMed  Google Scholar 

  84. Schluepmann, H. et al. Trehalose 6-phosphate is indispensable for carbohydrate utilization and growth in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 100, 6849–6854 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Fichtner, F. & Lunn, J. E. The role of trehalose 6-phosphate (Tre6P) in plant metabolism and development. Annu. Rev. Plant Biol. 72, 737–760 (2021).

    Article  CAS  PubMed  Google Scholar 

  86. Figueroa, C. M. et al. Trehalose 6-phosphate coordinates organic and amino acid metabolism with carbon availability. Plant J. 85, 410–423 (2016).

    Article  CAS  PubMed  Google Scholar 

  87. Fichtner, F. et al. Trehalose 6-phosphate is involved in triggering axillary bud outgrowth in garden pea (Pisum sativum L.). Plant J. 92, 611–623 (2017).

    Article  CAS  PubMed  Google Scholar 

  88. Fichtner, F. et al. Regulation of shoot branching in Arabidopsis by trehalose 6-phosphate. N. Phytol. 229, 2135–2151 (2021).

    Article  CAS  Google Scholar 

  89. Zhang, Y. et al. Inhibition of SNF1-Related Protein Kinase1 activity and regulation of metabolic pathways by trehalose-6-phosphate. Plant Physiol. 149, 1860–1871 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zhai, Z. et al. Trehalose 6-phosphate positively regulates fatty acid synthesis by stabilizing WRINKLED1. Plant Cell 30, 2616–2627 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zacharaki, V. et al. Impaired KIN10 function restores developmental defects in the Arabidopsis trehalose 6-phosphate synthase1 (tps1) mutant. N. Phytol. 235, 220–233 (2022).

    Article  CAS  Google Scholar 

  92. Buckley, C. R. et al. A bittersweet symphony: metabolic signals in the circadian system. Curr. Opin. Plant Biol. 73, 102333 (2023).

    Article  CAS  PubMed  Google Scholar 

  93. Wang, F. et al. Rice circadian clock regulates tiller growth and panicle development through strigolactone signaling and sugar sensing. Plant Cell 32, 3124–3138 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wang, Z. Y. & Tobin, E. M. Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression. Cell 93, 1207–1217 (1998).

    Article  CAS  PubMed  Google Scholar 

  95. Aguilar-Martínez, J. A. et al. Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds. Plant Cell 19, 458–472 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Wang, M. et al. BRANCHED1: a key hub of shoot branching. Front. Plant Sci. 10, 76 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Wang, M. et al. Axillary bud outgrowth in rose is controlled by sugar metabolic and signalling pathways. J. Exp. Bot. 72, 3044–3060 (2021).

    Article  CAS  PubMed  Google Scholar 

  98. Wang, M. et al. Posttranscriptional regulation of RhBRC1 (Rosa hybrida BRANCHED1) in response to sugars is mediated via its own 3′ untranslated region, with a potential role of RhPUF4 (Pumilio RNA-Binding Protein Family). Int. J. Mol. Sci. 20, 3808 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Au, I. Citrate valve integrates mitochondria into photosynthetic metabolism. Mitochondrion 52, 218–230 (2020).

    Article  Google Scholar 

  100. Popova, T. N. & Pinheiro de Carvalho, M. Â. A. Citrate and isocitrate in plant metabolism. Biochim. Biophys. Acta Bioenerg. 1364, 307–325 (1998).

    Article  CAS  Google Scholar 

  101. Igamberdiev, A. U. & Eprintsev, A. T. Organic acids: the pools of fixed carbon involved in redox regulation and energy balance in higher plants. Front. Plant Sci. 7, 1042 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Lee, C. P. et al. The versatility of plant organic acid metabolism in leaves is underpinned by mitochondrial malate–citrate exchange. Plant Cell 33, 3700–3720 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Ha, C. V. et al. Positive regulatory role of strigolactone in plant responses to drought and salt stress. Proc. Natl Acad. Sci. USA 111, 851–856 (2014).

    Article  PubMed  Google Scholar 

  104. Li, W. et al. Comparative functional analyses of DWARF14 and KARRIKIN INSENSITIVE 2 in drought adaptation of Arabidopsis thaliana. Plant J. 103, 111–127 (2020).

    Article  CAS  PubMed  Google Scholar 

  105. Ling, F. et al. Effects of strigolactone on photosynthetic and physiological characteristics in salt-stressed rice seedlings. Sci. Rep. 10, 6183 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Sun, H. et al. Strigolactone and gibberellin signalling coordinately regulates metabolic adaptations to changes in nitrogen availability in rice. Mol. Plant 16, 588–598 (2023).

    Article  CAS  PubMed  Google Scholar 

  107. Marro, N. et al. Strigolactones: new players in the nitrogen–phosphorus signalling interplay. Plant Cell Environ. 45, 512–527 (2022).

    Article  PubMed  Google Scholar 

  108. Bonhomme, S. & Guillory, A. Synthesis and signalling of strigolactone and KAI2-ligand signals in bryophytes. J. Exp. Bot. 73, 4487–4495 (2022).

    Article  CAS  PubMed  Google Scholar 

  109. Wang, Q. et al. Origins of strigolactone and karrikin signaling in plants. Trends Plant Sci. 27, 450–459 (2022).

    Article  PubMed  Google Scholar 

  110. Bythell-Douglas, R. et al. Evolution of strigolactone receptors by gradual neo-functionalization of KAI2 paralogues. BMC Biol. 15, 52 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Kodama, K. et al. An ancestral function of strigolactones as symbiotic rhizosphere signals. Nat. Commun. 13, 3974 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Decker, E. L. et al. Strigolactone biosynthesis is evolutionarily conserved, regulated by phosphate starvation and contributes to resistance against phytopathogenic fungi in a moss, Physcomitrella patens. N. Phytol. 216, 455–468 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank N. Shabek for fruitful discussions on this topic, K. Yoneyama for providing the molecular structures in Fig. 1 and D. Josey for helping with the manuscript editing. This work was supported by the Australian Research Council (grant no. CE200100015 to F.F., F.B. and C.B. and the Georgina Sweet Laureate Fellowship no. FL180100139 to C.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francois Barbier.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Plants thanks Francesca Cardinale, Juan Antonio López-Ráez and Kaori Yoneyama for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barbier, F., Fichtner, F. & Beveridge, C. The strigolactone pathway plays a crucial role in integrating metabolic and nutritional signals in plants. Nat. Plants 9, 1191–1200 (2023). https://doi.org/10.1038/s41477-023-01453-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-023-01453-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing