Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Armadillo repeat-containing kinesin represents the versatile plus-end-directed transporter in Physcomitrella

Abstract

Kinesin-1, also known as conventional kinesin, is widely used for microtubule plus-end-directed (anterograde) transport of various cargos in animal cells. However, a motor functionally equivalent to the conventional kinesin has not been identified in plants, which lack the kinesin-1 genes. Here we show that plant-specific armadillo repeat-containing kinesin (ARK) is the long sought-after versatile anterograde transporter in plants. In ARK mutants of the moss Physcomitrium patens, the anterograde motility of nuclei, chloroplasts, mitochondria and secretory vesicles was suppressed. Ectopic expression of non-motile or tail-deleted ARK did not restore organelle distribution. Another prominent macroscopic phenotype of ARK mutants was the suppression of cell tip growth. We showed that this defect was attributed to the mislocalization of actin regulators, including RopGEFs; expression and forced apical localization of RopGEF3 partially rescued the growth phenotype of the ARK mutant. The mutant phenotypes were partially rescued by ARK homologues in Arabidopsis thaliana, suggesting the conservation of ARK functions in plants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ARK disruption causes severe growth defects.
Fig. 2: ARK transports multiple organelles in protonemal cells.
Fig. 3: ARK promotes the movement of RabA2b-marked secretory vesicles.
Fig. 4: ARKb shows processive motility and is enriched around the nucleus in a tail-dependent manner.
Fig. 5: Cell tip growth was severely suppressed in the absence of ARK.
Fig. 6: ARK is necessary for the tip localization of RopGEFs.
Fig. 7: AtARK2 and AtARK3 expression partially rescues moss ARKabc-1.

Similar content being viewed by others

Data availability

All materials and data are available from the corresponding author upon request. Source data are provided with this paper.

References

  1. Hirokawa, N. & Noda, Y. Intracellular transport and kinesin superfamily proteins, KIFs: structure, function, and dynamics. Physiol. Rev. 88, 1089–1118 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Reck-Peterson, S. L., Redwine, W. B., Vale, R. D. & Carter, A. P. The cytoplasmic dynein transport machinery and its many cargoes. Nat. Rev. Mol. Cell Biol. 19, 382–398 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Vale, R. D. The molecular motor toolbox for intracellular transport. Cell 112, 467–480 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Encalada, S. E. & Goldstein, L. S. B. Biophysical challenges to axonal transport: motor-cargo deficiencies and neurodegeneration. Annu. Rev. Biophys. 43, 141–169 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Hirokawa, N., Niwa, S. & Tanaka, Y. Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. Neuron 68, 610–638 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Vale, R. D., Reese, T. S. & Sheetz, M. P. Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell 42, 39–50 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Leopold, P. L., McDowall, A. W., Pfister, K. K., Bloom, G. S. & Brady, S. T. Association of kinesin with characterized membrane-bounded organelles. Cell Motil. 23, 19–33 (1992).

    Article  CAS  Google Scholar 

  8. Nakata, T. & Hirokawa, N. Microtubules provide directional cues for polarized axonal transport through interaction with kinesin motor head. J. Cell Biol. 162, 1045–1055 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Splinter, D. et al. Bicaudal D2, dynein, and kinesin-1 associate with nuclear pore complexes and regulate centrosome and nuclear positioning during mitotic entry. PLoS Biol. 8, e1000350 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Tanaka, Y. et al. Targeted disruption of mouse conventional kinesin heavy chain kif5B, results in abnormal perinuclear clustering of mitochondria. Cell 93, 1147–1158 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Zimyanin, V. L. et al. In vivo imaging of oskar mRNA transport reveals the mechanism of posterior localization. Cell 134, 843–853 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rogers, S. L. & Gelfand, V. I. Membrane trafficking, organelle transport, and the cytoskeleton. Curr. Opin. Cell Biol. 12, 57–62 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Welte, M. A. Bidirectional transport along microtubules. Curr. Biol. 14, R525–R537 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Shimmen, T. & Yokota, E. Cytoplasmic streaming in plants. Curr. Opin. Cell Biol. 16, 68–72 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Tominaga, M. & Ito, K. The molecular mechanism and physiological role of cytoplasmic streaming. Curr. Opin. Plant Biol. 27, 104–110 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Tamura, K. et al. Myosin XI-i links the nuclear membrane to the cytoskeleton to control nuclear movement and shape in Arabidopsis. Curr. Biol. 23, 1776–1781 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Kong, S.-G. & Wada, M. Molecular basis of chloroplast photorelocation movement. J. Plant Res. 129, 159–166 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Frey, N., Klotz, J. & Nick, P. A kinesin with calponin-homology domain is involved in premitotic nuclear migration. J. Exp. Bot. 61, 3423–3437 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Katsuta, J. & Shibaoka, H. The roles of the cytoskeleton and the cell wall in nuclear positioning in tobacco BY-2 cells. Plant Cell Physiol. 29, 403–413 (1988).

    CAS  Google Scholar 

  20. Katsuta, J., Hashiguchi, Y. & Shibaoka, H. The role of the cytoskeleton in positioning of the nucleus in premitotic tobacco BY-2 cells. J. Cell Sci. 95, 413–422 (1990).

    Article  Google Scholar 

  21. Muroyama, A., Gong, Y. & Bergmann, D. C. Opposing, polarity-driven nuclear migrations underpin asymmetric divisions to pattern Arabidopsis stomata. Curr. Biol. 30, 4467–4475 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zonia, L., Tupý, J. & Staiger, C. J. Unique actin and microtubule arrays co-ordinate the differentiation of microspores to mature pollen in Nicotiana tabacum. J. Exp. Bot. 50, 581–594 (1999).

    Article  CAS  Google Scholar 

  23. Hiwatashi, Y., Sato, Y. & Doonan, J. H. Kinesins have a dual function in organizing microtubules during both tip growth and cytokinesis in Physcomitrella patens. Plant Cell 26, 1256–1266 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yamada, M. & Goshima, G. The KCH kinesin drives nuclear transport and cytoskeletal coalescence to promote tip cell growth in Physcomitrella patens. Plant Cell. 30, 1496–1510 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yamada, M., Tanaka-Takiguchi, Y., Hayashi, M., Nishina, M. & Goshima, G. Multiple kinesin-14 family members drive microtubule minus end–directed transport in plant cells. J. Cell Biol. 216, 1705–1714 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yoshida, M. W., Yamada, M. & Goshima, G. Moss kinesin-14 KCBP accelerates chromatid motility in anaphase. Cell Struct. Funct. 44, 95–104 (2019).

    Article  PubMed  Google Scholar 

  27. Shen, Z., Collatos, A. R., Bibeau, J. P., Furt, F. & Vidali, L. Phylogenetic analysis of the kinesin superfamily from Physcomitrella. Front. Plant. Sci. 3, 230 (2012).

  28. Gabrych, D. R., Lau, V. Z., Niwa, S. & Silverman, M. A. Going too far is the same as falling short: kinesin-3 family members in hereditary spastic paraplegia. Front. Cell. Neurosci. 13, 419 (2019).

  29. Siddiqui, N. & Straube, A. Intracellular cargo transport by kinesin-3 motors. Biochem. Mosc. 82, 803–815 (2017).

    Article  CAS  Google Scholar 

  30. Miki, T., Nishina, M. & Goshima, G. RNAi screening identifies the armadillo repeat-containing kinesins responsible for microtubule-dependent nuclear positioning in Physcomitrella patens. Plant Cell Physiol. 56, 737–749 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Jonsson, E., Yamada, M., Vale, R. D. & Goshima, G. Clustering of a kinesin-14 motor enables processive retrograde microtubule-based transport in plants. Nat. Plants 1, 15087 (2015).

  32. Eng, R. C. & Wasteneys, G. O. The microtubule plus-end tracking protein ARMADILLO-REPEAT KINESIN1 promotes microtubule catastrophe in Arabidopsis. Plant Cell. 26, 3372–3386 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sun, J., Zhang, M., Qi, X., Doyle, C. & Zheng, H. Armadillo-repeat kinesin1 interacts with Arabidopsis atlastin RHD3 to move ER with plus-end of microtubules. Nat. Commun. 11, 5510 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tran, P. T., Marsh, L., Doye, V., Inoué, S. & Chang, F. A mechanism for nuclear positioning in fission yeast based on microtubule pushing. J. Cell Biol. 153, 397–412 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kanda, A., Otani, K., Takahashi, T. & Motose, H. Plant specific armadillo repeat kinesin directs organelle transport and microtubule convergence to promote tip growth. Preprint at bioRxiv https://doi.org/10.1101/2022.07.08.499237 (2022).

  36. Miki, T., Naito, H., Nishina, M. & Goshima, G. Endogenous localizome identifies 43 mitotic kinesins in a plant cell. Proc. Natl Acad. Sci. USA 111, E1053–E1061 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lopez-Obando, M. et al. Simple and efficient targeting of multiple genes through CRISPR-Cas9 in Physcomitrella patens. G3 Genes Genomes Genet. 6, 3647–3653 (2016).

    CAS  Google Scholar 

  38. Yi, P. & Goshima, G. Transient cotransformation of CRISPR/Cas9 and oligonucleotide templates enables efficient editing of target loci in Physcomitrella patens. Plant Biotechnol. J. 18, 599–601 (2020).

    Article  PubMed  Google Scholar 

  39. Kull, F. J., Sablin, E. P., Lau, R., Fletterick, R. J. & Vale, R. D. Crystal structure of the kinesin motor domain reveals a structural similarity to myosin. Nature 380, 550–555 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nakata, T. & Hirokawa, N. Point mutation of adenosine triphosphate-binding motif generated rigor kinesin that selectively blocks anterograde lysosome membrane transport. J. Cell Biol. 131, 1039–1053 (1995).

    Article  CAS  PubMed  Google Scholar 

  41. Furt, F., Lemoi, K., Tüzel, E. & Vidali, L. Quantitative analysis of organelle distribution and dynamics in Physcomitrella patens protonemal cells. BMC Plant Biol. 12, 70 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Orr, R. G., Cheng, X., Vidali, L. & Bezanilla, M. Orchestrating cell morphology from the inside out—using polarized cell expansion in plants as a model. Curr. Opin. Cell Biol. 62, 46–53 (2020).

    Article  CAS  PubMed  Google Scholar 

  43. Chow, C.-M., Neto, H., Foucart, C. & Moore, I. Rab-A2 and Rab-A3 GTPases define a trans-Golgi endosomal membrane domain in Arabidopsis that contributes substantially to the cell plate. Plant Cell. 20, 101–123 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pang, L. et al. The small GTPase RABA2a recruits SNARE proteins to regulate the secretory pathway in parallel with the exocyst complex in Arabidopsis. Mol. Plant. 15, 398–418 (2022).

    Article  CAS  PubMed  Google Scholar 

  45. Leong, S. Y., Edzuka, T., Goshima, G. & Yamada, M. Kinesin-13 and kinesin-8 function during cell growth and division in the moss Physcomitrella patens. Plant Cell 32, 683–702 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nakaoka, Y., Kimura, A., Tani, T. & Goshima, G. Cytoplasmic nucleation and atypical branching nucleation generate endoplasmic microtubules in Physcomitrella patens. Plant Cell 27, 228–242 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Shaner, N. C. et al. A bright monomeric green fluorescent protein derived from Branchiostoma lanceolatum. Nat. Methods 10, 407–409 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Allen, R. D., Metuzals, J., Tasaki, I., Brady, S. T. & Gilbert, S. P. Fast axonal transport in squid giant axon. Science 218, 1127–1129 (1982).

    Article  CAS  PubMed  Google Scholar 

  49. Hunt, A. J., Gittes, F. & Howard, J. The force exerted by a single kinesin molecule against a viscous load. Biophys. J. 67, 766–781 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Coates, J. C. Armadillo repeat proteins: beyond the animal kingdom. Trends Cell Biol. 13, 463–471 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Eng, R. C. et al. The ARM domain of ARMADILLO-REPEAT KINESIN 1 is not required for microtubule catastrophe but can negatively regulate NIMA-RELATED KINASE 6 in Arabidopsis thaliana. Plant Cell Physiol. 58, 1350–1363 (2017).

    Article  CAS  PubMed  Google Scholar 

  52. Russell, P. & Nurse, P. Negative regulation of mitosis by wee1+, a gene encoding a protein kinase homolog. Cell 49, 559–567 (1987).

    Article  CAS  PubMed  Google Scholar 

  53. Doonan, J. H., Cove, D. J. & Lloyd, C. W. Microtubules and microfilaments in tip growth: evidence that microtubules impose polarity on protonemal growth in Physcomitrella patens. J. Cell Sci. 89, 533–540 (1988).

    Article  Google Scholar 

  54. Vidali, L., Augustine, R. C., Kleinman, K. P. & Bezanilla, M. Profilin is essential for tip growth in the moss Physcomitrella patens. Plant Cell. 19, 3705–3722 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wu, S.-Z. & Bezanilla, M. Actin and microtubule cross talk mediates persistent polarized growth. J. Cell Biol. 217, 3531–3544 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Burkart, G. M., Baskin, T. I. & Bezanilla, M. A family of ROP proteins that suppresses actin dynamics, and is essential for polarized growth and cell adhesion. J. Cell Sci. 128, 2553–2564 (2015).

    CAS  PubMed  Google Scholar 

  57. Etienne-Manneville, S. & Hall, A. Rho GTPases in cell biology. Nature 420, 629–635 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Kost, B. Spatial control of Rho (Rac-Rop) signaling in tip-growing plant cells. Trends Cell Biol. 18, 119–127 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Cheng, X., Mwaura, B. W., Chang Stauffer, S. R. & Bezanilla, M. A fully functional ROP fluorescent fusion protein reveals roles for this GTPase in subcellular and tissue-level patterning. Plant Cell. 32, 3436–3451 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Finka, A. et al. The knock-out of ARP3a gene affects F-actin cytoskeleton organization altering cellular tip growth, morphology and development in moss Physcomitrella patens. Cell Motil. 65, 769–784 (2008).

    Article  CAS  Google Scholar 

  61. Vidali, L. et al. Rapid formin-mediated actin-filament elongation is essential for polarized plant cell growth. Proc. Natl Acad. Sci. USA 106, 13341–13346 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Asada, T. & Collings, D. Molecular motors in higher plants. Trends Plant Sci. 2, 29–37 (1997).

    Article  Google Scholar 

  63. Kirchner, J., Woehlke, G. & Schliwa, M. Universal and unique features of kinesin motors: insights from a comparison of fungal and animal conventional kinesins. Biol. Chem. 380, 915–921 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Reddy, A. S. & Day, I. S. Kinesins in the Arabidopsis genome: a comparative analysis among eukaryotes. BMC Genomics 2, 2 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Piel, M. & Tran, P. T. Cell shape and cell division in fission yeast. Curr. Biol. 19, R823–R827 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kong, Z. et al. Kinesin-4 functions in vesicular transport on cortical microtubules and regulates cell wall mechanics during cell elongation in plants. Mol. Plant 8, 1011–1023 (2015).

    Article  CAS  PubMed  Google Scholar 

  67. Zhu, C. & Dixit, R. Single molecule analysis of the Arabidopsis FRA1 kinesin shows that it is a functional motor protein with unusually high processivity. Mol. Plant 4, 879–885 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Zhu, C. et al. The fragile Fiber1 kinesin contributes to cortical microtubule-mediated trafficking of cell wall components. Plant Physiol. 167, 780–792 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Maney, T., Wagenbach, M. & Wordeman, L. Molecular dissection of the microtubule depolymerizing activity of mitotic centromere-associated kinesin. J. Biol. Chem. 276, 34753–34758 (2001).

    Article  CAS  PubMed  Google Scholar 

  70. Rounds, C. M. & Bezanilla, M. Growth mechanisms in tip-growing plant cells. Annu. Rev. Plant Biol. 64, 243–265 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. Dickson, B. J. Rho GTPases in growth cone guidance. Curr. Opin. Neurobiol. 11, 103–110 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Riquelme, M. Tip growth in filamentous fungi: a road trip to the apex. Annu. Rev. Microbiol. 67, 587–609 (2013).

    Article  CAS  PubMed  Google Scholar 

  73. Shirae-Kurabayashi, M., Edzuka, T., Suzuki, M. & Goshima, G. Cell tip growth underlies injury response of marine macroalgae. PLoS ONE 17, e0264827 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bibeau, J. P., Galotto, G., Wu, M., Tüzel, E. & Vidali, L. Quantitative cell biology of tip growth in moss. Plant Mol. Biol. 107, 227–244 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Doonan, J. H., Cove, D. J. & Lloyd, C. W. Immunofluorescence microscopy of microtubules in intact cell lineages of the moss, Physcomitrella patens. I. Normal and CIPC-treated tip cells. J. Cell Sci. 75, 131–147 (1985).

    Article  CAS  PubMed  Google Scholar 

  76. Hachet, O., Bendezú, F. O. & Martin, S. G. Fission yeast: in shape to divide. Curr. Opin. Cell Biol. 24, 858–864 (2012).

    Article  CAS  PubMed  Google Scholar 

  77. Martin, S. G., McDonald, W. H., Yates, J. R. & Chang, F. Tea4p links microtubule plus ends with the formin For3p in the establishment of cell polarity. Dev. Cell 8, 479–491 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Martin, S. G., Rincón, S. A., Basu, R., Pérez, P. & Chang, F. Regulation of the formin for3p by cdc42p and bud6p. Mol. Biol. Cell. 18, 4155–4167 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Browning, H. et al. Tea2p is a kinesin-like protein required to generate polarized growth in fission yeast. J. Cell Biol. 151, 15–28 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Browning, H., Hackney, D. D. & Nurse, P. Targeted movement of cell end factors in fission yeast. Nat. Cell Biol. 5, 812–818 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. Busch, K. E., Hayles, J., Nurse, P. & Brunner, D. Tea2p kinesin is involved in spatial microtubule organization by transporting Tip1p on microtubules. Dev. Cell 6, 831–843 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Kreitzer, G. & Myat, M. M. Microtubule motors in establishment of epithelial cell polarity. Cold Spring Harb. Perspect. Biol. 10, a027896 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Müsch, A. Microtubule organization and function in epithelial cells. Traffic 5, 1–9 (2004).

    Article  PubMed  Google Scholar 

  84. Rodriguez-Boulan, E. & Macara, I. G. Organization and execution of the epithelial polarity programme. Nat. Rev. Mol. Cell Biol. 15, 225–242 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sakai, T. et al. Armadillo repeat-containing kinesins and a NIMA-related kinase are required for epidermal-cell morphogenesis in Arabidopsis. Plant J. 53, 157–171 (2008).

    Article  CAS  PubMed  Google Scholar 

  86. Lan, M., Kang, E., Liu, X., Fu, Y. & Zhu, L. Stable ARMADILLO REPEAT KINESIN 2 in light inhibits hypocotyl elongation and facilitates light-induced cortical microtubule reorientation in Arabidopsis. J. Exp. Bot. 77, 800–816 (2023).

    Article  Google Scholar 

  87. Malcos, J. L. & Cyr, R. J. An ungrouped plant kinesin accumulates at the preprophase band in a cell cycle-dependent manner. Cytoskeleton 68, 247–258 (2011).

    Article  CAS  PubMed  Google Scholar 

  88. Lau, O. S. et al. Direct roles of SPEECHLESS in the specification of stomatal self-renewing cells. Science 345, 1605–1609 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Almonacid, M., Terret, M.-E. & Verlhac, M.-H. Nuclear positioning as an integrator of cell fate. Curr. Opin. Cell Biol. 56, 122–129 (2019).

    Article  CAS  PubMed  Google Scholar 

  90. Del Bene, F., Wehman, A. M., Link, B. A. & Baier, H. Regulation of neurogenesis by interkinetic nuclear migration through an apical-basal notch gradient. Cell 134, 1055–1065 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Gundersen, G. G. & Worman, H. J. Nuclear positioning. Cell 152, 1376–1389 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ashton, N. W. & Cove, D. J. The isolation and preliminary characterisation of auxotrophic and analogue resistant mutants of the moss, Physcomitrella patens. Mol. Gen. Genet. 154, 87–95 (1977).

    Article  Google Scholar 

  93. Yamada, M., Miki, T. & Goshima, G. in The Mitotic Spindle: Methods and Protocols (eds Chang, P. & Ohi R.) 263–282 (Humana Press, 2016).

  94. Collonnier, C. et al. CRISPR-Cas9-mediated efficient directed mutagenesis and RAD 51-dependent and RAD 51-independent gene targeting in the moss Physcomitrella patens. Plant Biotechnol. J. 15, 122–131 (2017).

    Article  CAS  PubMed  Google Scholar 

  95. Naito, H. & Goshima, G. NACK kinesin is required for metaphase chromosome alignment and cytokinesis in the moss Physcomitrella patens. Cell Struct. Funct. 40, 31–41 (2015).

    Article  CAS  PubMed  Google Scholar 

  96. Yi, P. & Goshima, G. Rho of plants GTPases and cytoskeletal elements control nuclear positioning and asymmetric cell division during Physcomitrella patens branching. Curr. Biol. 30, 2860–2868 (2020).

    Article  CAS  PubMed  Google Scholar 

  97. Nakaoka, Y. et al. An inducible RNA interference system in Physcomitrella patens reveals a dominant role of augmin in phragmoplast microtubule generation. Plant Cell 24, 1478–1493 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Uchida, M., Ohtani, S., Ichinose, M., Sugita, C. & Sugita, M. The PPR-DYW proteins are required for RNA editing of rps14, cox1 and nad5 transcripts in Physcomitrella patens mitochondria. FEBS Lett. 585, 2367–2371 (2011).

    Article  CAS  PubMed  Google Scholar 

  99. Galotto, G. et al. Myosin XI drives polarized growth by vesicle focusing and local enrichment of F-actin in Physcomitrium patens. Plant Physiol. 187, 2509–2529 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Ta, K. N. et al. Control of plant cell growth and proliferation by MO25A, a conserved major component of the Mammalian Sterile20-like kinase pathway. Plant Cell Physiol. 64, 336–351 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to M. Bezanilla, P. Yi and M. Yamada for providing the moss lines and plasmids; N. Oguri, C. Koketsu and R. Inaba for media preparation; and H. Motose for communicating unpublished data. This work was funded by the Japan Society for the Promotion of Science KAKENHI (17H06471, 18KK0202, 22H04717 and 22H02644 to G.G.). M.W.Y. is a recipient of the Japan Society for the Promotion of Science predoctoral fellowship.

Author information

Authors and Affiliations

Authors

Contributions

M.W.Y. and G.G. designed the research. M.W.Y. performed the experiments and analysed the data. M.W.Y. and M.H. selected the transgenic lines. M.W.Y. and G.G. wrote the paper.

Corresponding author

Correspondence to Gohta Goshima.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Plants thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Establishment of Physcomitrium patens ARK mutants.

(a)Three-week-old ARK mutant moss. mCherry-α-tubulin line was used as control. Scale bar: 5 mm. (b) Sequencing revealed frameshift mutations in the ARKabc-1 and ARKabcd-1 sequences used in this study (displayed as SnapGene sequence files). The altered amino acid sequences are shown in Supplementary Table 1. (c) Rhizoid images. The images presented in Fig. 1a are cropped and magnified. Scale bar: 1 mm. (d) Rhizoid length comparison. The mean length (mm) was 2.53 ± 0.132 (control, ±SEM, n = 40), 0.510 ± 0.0406 (ARKabc-1, ±SEM, n = 34), 2.21 ± 0.138 (ARKabc-1/ARKb-mNG full-length OX, ± SEM, n = 37), 0.683 ± 0.0427 (ARKabc-1/ARKb (T169N) -mNG OX, ± SEM, n = 38), 0.387 ± 0.0275 (ARKabcd-1, ±SEM, n = 30). P values were calculated using two-sided Steel–Dwass test; P < 0.0000001 (control—ARKabc-1), P < 0.0000001 (ARKabc-1 - ARKabc-1/ARKb-mNG OX), P = 0.0295 (ARKabc-1 - ARKabc-1/ARKb(T169N)-mNG OX). P = 0.3144 (ARKabc-1 - ARKabcd-1).

Extended Data Fig. 2 ARK deletion does not affect microtubule polymerization dynamics.

(a) Comparison of microtubule polymerization dynamics. Upper row, control (mCherry-α-tubulin) and ARKabc-1; lower row, control (GFP-α-tubulin/Histone-mCherry), and ARKabcd-1. The mean ± SEM, number of samples, and P values are shown in Supplementary Table 2. (b) Comparison of microtubule orientation in apical cells based on EB1-Citrine tracking. The quantification method is described in the Methods section. The frequency of tip-directed movement (%) was 88.5 ± 2.61 (mCherry-α-Tubulin, ±SEM, n = 16) and 97.0 ± 1.16 (ARKabc-1, ±SEM, n = 18). The P value was calculated using two-sided Mann–Whitney U-test; P = 0.0366.

Extended Data Fig. 3 Organelle motility rate.

(a) Rate of nuclear motility in apical cells of the control and ΔKCHabcd lines. Rate of nuclear anterograde motility in apical cells of the ΔKCHabcd line was measured to exclude retrograde motility. Mean rate: 11.6 ± 3.44 nm/s (control, ±SD, n = 23), 11.1 ± 6.49 nm/s (ΔKCHabcd, ±SD, n = 24). (b) Rate of chloroplast motility in apical cells of the control and ΔKCBPabcd lines. Rate of chloroplast anterograde motility in apical cells of the ΔKCBPabcd line was measured to exclude retrograde motility. The mean rate was 35.7 ± 1.91 nm/s (control, apical direction, ±SD, n = 101) or 42.9 ± 24.2 nm/s (ΔKCBPabcd, apical direction, ±SD, n = 160). (c) Rate of mitochondrial motility in apical cells of the control line (mCherry-α-tubulin). The mean rate was 219 ± 110 nm/s (apical direction, ±SD, n = 15). (d) Rate of motility of RabA2b-positive vesicle in apical cells of the control line (mCherry-α-tubulin). The mean rate was 922 ± 674 nm/s (apical direction, ±SD, n = 85).

Extended Data Fig. 4 The truncation-rescue assay reveals the essentiality of ARM repeats.

(a) Truncated ARKb-mNG constructs used in this experiment. The protein domains were predicted using NCBI’s conserved domain database (https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi) and SMART (http://smart.embl.de). (b) Area comparison of 3-week-old moss. A single protoplast was cultured for three weeks on BCDAT medium. The datasets of ARKabc-1/FL (full-length) are identical to those shown in Fig. 1b. The mean area (mm2) was 4.88 ± 0.651 (ARKabc-1/ΔARM, ± SEM, n = 18), 7.04 ± 1.07 (ARKabc-1/ΔTail, ±SEM, n = 18). (c) Relative intensity of chloroplasts along the apical cell at 150 min after anaphase onset (mean ± SEM). The chloroplasts remained accumulated near the basal cell wall after the expression of the ΔARM (n = 7) or ΔTail (n = 12) construct.

Extended Data Fig. 5 ARK deletion affects cell length and Arp3a localization, but not the cell cycle duration or Rop4 localization.

(a) Comparison of cell cycle durations. The mean duration (h) was 7.43 ± 0.307 (control, ±SEM, n = 24), 7.58 ± 0.232 (ARKabc-1, ±SEM, n = 13), 6.93 ± 0.220 (ARKabc-1/ARKb-mNG OX, ± SEM, n = 36). (b) Comparison of tip growth rates in the presence of 500 pM or 50 nM latrunculin A (LatA). The mCherry-α-tubulin line was used for drug treatment. The mean rate (µm/h) was 9.69 ± 1.20 (ARKabc-1, ±SEM, n = 5), 23.0 ± 1.00 (control [+0.5% DMSO], ± SEM, n = 5), 16.7 ± 1.20 (+500 pM LatA, ±SEM, n = 6), 9.64 ± 0.702 (+50 nM LatA, ± SEM, n = 17). (c) Representative images and comparison of intensities of functional Rop4-mNG at the cell tip. Images were acquired using a spinning-disc confocal microscope with a z-series taken every 0.5 µm for a range of 15 µm. The best focal plane is presented. Scale bar: 5 µm. The mean intensity was 1.29 ± 0.0724 (control, ±SEM, n = 6), 1.54 ± 0.140 (ARKabc-1, ±SEM, n = 6). (d) Representative images and comparison of intensities of Arp3a-mNG at the cell tip. Images were acquired using a spinning-disc confocal microscope with a z-series taken every 0.5 µm for a range of 15 µm. The best focal plane is presented. Scale bar: 5 µm. The mean intensity was 1.75 ± 0.0814 (control, ±SEM, n = 29), 0.726 ± 0.107 (ARKabc-1, ±SEM, n = 20). P value was calculated using Student’s two-sample t-test: P < 0.0000001 (Control—ARKabc-1). (e) The apical accumulation of RopGEF3 and RopGEF6 depends on the microtubules. Snapshots of the same cell before and 50-min after oryzalin addition are shown. DMSO was used as a control. mCherry-α-tubulin-expressing RopGEF3-mNG or RopGEF6-mNG was used in this experiment. Images were acquired with a spinning-disc confocal microscope using a z-series taken every 1.5 µm for a range of 6 µm. The best focal plane is presented. Scale bar: 5 µm. (f) Temporal changes in RopGEF3-mNG or RopGEF6-mNG intensity at the cell tip after drug addition. A decrease in localization was observed after microtubule disruption with oryzalin. Intensities relative to those before drug treatment are plotted (±SEM). DMSO control (RopGEF3-mNG), n = 12. +Oryzalin (RopGEF3-mNG), n = 6. DMSO control (RopGEF6-mNG), n = 8. +Oryzalin (RopGEF6-mNG), n = 13. (g)- (I) Relative intensity between tip and cytoplasm. Mean ±SEM. The identical dataset to Fig. 6d–f was used. (G) For2A-mNG; 4.28 ± 0.222 (n = 36), 2.98 ± 0.222 (n = 36), 4.71 ± 0.184 (n = 36). P values were calculated using two-sided Games–Howell test; P = 0.0003 (control—ARKabc-1), P < 0.0000001 (ARKabc-1 - ARKabc-1/ARKb OX). (H) RopGEF3-mNG; 1.30 ± 0.0274 (n = 48), 1.11 ± 0.0247 (n = 85), 1.43 ± 0.0231 (n = 74). P values were calculated using two-sided Steel–Dwass test; P < 0.0000001 (control—ARKabc-1), P < 0.0000001 (ARKabc-1 - ARKabc-1/ARKb OX). (I) RopGEF6-mNG; 3.43 ± 0.236 (n = 43), 2.03 ± 0.159 (n = 29), 3.26 ± 0.295 (n = 30). P values were calculated using two-sided Steel–Dwass test; P < 0.0000001 (control—ARKabc-1), P < 0.0000001 (ARKabc-1 - ARKabc-1/ARKb OX).

Extended Data Fig. 6 RNAi of ARKd in ARKabc-1 causes abnormal outgrowth.

(a) Representative image sequences of abnormal cell growth after ARKd RNAi induction by β-estradiol. Left, outgrowth in the apical cell; right, outgrowth in the subapical cell. Scale bars, 50 µm. Images were acquired using a wide-field microscope with transmission light. (b) Comparison of apical cell shape after 1 µM β-estradiol or control 0.1% DMSO treatment. The numbers shown in the bar graphs indicate the actual number of counted cells.

Extended Data Fig. 7 ARK deletion does not affect RopGEF or For2A expression level.

(a) (left) A test result of Western blot following immunoprecipitation (IP). Moss lines overexpressing MO25A2-mNG-FLAG100 and the RopGEF3-mNG-FLAG (endogenously-tagged) lines were used. Anti-FLAG-conjugated magnetic agarose beads were used for IP, whereas anti-mNeonGreen antibody was used for western blotting. The negative control represents a moss line without mNG expression. Red arrowheads indicate the RopGEF3-mNG-FLAG protein size. Detection of MO25A2 with much brighter signals than RopGEF3 indicated that the antibody attached to the beads was not saturated during IP of RopGEF3-mNG-FLAG. (right) Loading control. The moss extracts used for IP were subjected to SDS–PAGE, followed by Coomassie Brilliant Blue staining. (b) - (d) (top) Western blot following IP (mNG-FLAG-tagged For2A, RopGEF3, and RopGEF6). The identical method to (A) was applied. The negative control represents a moss line without mNG expression. Red arrowheads indicate the target protein size; smaller bands indicate degradation products or cross-reactions. The results of band intensity quantification are shown in Supplementary Table 4. (bottom) Coomassie staining of the extracts.

Source data

Extended Data Fig. 8 AtARK2 and AtARK3 expression rescued rhizoid development, but did not alter microtubule polymerization dynamics.

(a) Representative images of gametophores in the indicated lines. The image of the mutant line is identical to that presented in Fig. 1a. Scale bar: 1 mm. (b) Rhizoid length comparison. The mean length (mm) was 0.510 ± 0.0406 (ARKabc-1, ±SEM, n = 34), 1.14 ± 0.0793 (ARKabc-1/ARK2-mNG OX, ± SEM, n = 41), 1.37 ± 0.0992 (ARKabc-1/ARK3-mNG OX, ± SEM, n = 43). The dataset of ARKabc-1 is identical to that shown in Extended Data Fig. 1d. P values were calculated using the two-sided Steel–Dwass test: P = 0.00000003 (ARKabc-1 - ARKabc-1/ARK2-mNG OX), P < 0.0000001 (ARKabc-1 - ARKabc-1/ARK3-mNG OX). (c) Comparison of microtubule polymerization dynamics. The mean ± SEM, number of samples, and P values are shown in Supplementary Table 3; none of the P values were <0.05.

Extended Data Fig. 9 Confirmation of the moss lines established in this study.

Genotyping PCR strategy (left) and PCR results (right) for the moss lines established in this study. (a) Exogenous integration, (b) C-terminal tagging, (c) N-terminal tagging, and (d) knockout. Band-size markers are shown at the leftmost lane of each panel, and the actual band sizes are described in (e). Asterisks indicate non-specific bands. The number in each lane indicates the line ID, and the genotype of each ID is shown in Supplementary Table 5. ‘C’ indicates the control (parental line). Primers used are listed in Supplementary Table 8.

Supplementary information

Reporting Summary

Supplementary Tables

Supplementary Table 1: Mutant alleles used in this study. Supplementary Table 2: Statistical analysis of microtubule dynamics in ARK mutants. Supplementary Table 3: Statistical analysis of microtubule dynamics in moss lines expressing AtARK2 or AtARK3. Supplementary Table 4: Band intensity after immunoprecipitation. Supplementary Table 5: Moss lines used in this study. Supplementary Table 6: Plasmids used in this study. Supplementary Table 7: Primers used for plasmid construction and sequencing. Supplementary Table 8: Primers used for genotyping PCR.

Supplementary Video 1

Overall basal motility of chloroplasts after cell division in ARKabc-1. Time-lapse video of microtubules (mCherry-α-tubulin, magenta) and chloroplasts (autofluorescence, cyan) in apical cells after anaphase onset (0.0 min). The bright magenta signals on the left represent the anaphase spindles and phragmoplasts. White arrowheads indicate the positions of the nuclei. Control (expressing mCherry-α-tubulin) and ARKabc-1 lines are also shown. Videos were acquired using spinning-disc confocal microscopy and processed using maximum z-projection (2.5 µm ×3 sections). Scale bar, 20 µm.

Supplementary Video 2

Motility of mitochondria along cytoplasmic microtubules. Bidirectional movement of a mitochondrion (γF1ATPase-mNG, green) along the microtubule (mCherry-α-tubulin, magenta). Images were acquired using oblique illumination fluorescence microscopy. The faint green signals on the left represent chloroplast autofluorescence. Scale bar, 1 µm.

Supplementary Video 3

Cytoplasmic movement of mNG-RabA2b-marked vesicles. Time-lapse video of cytoplasmic movement of RabA2b-marked vesicles (mNG-RabA2b) in the control, ARKabc-1 mutant, and rescue lines.Videos were acquired using spinning-disc confocal microscopy. Autofluorescent chloroplasts are also faintly visualized. Scale bar, 20 µm.

Supplementary Video 4

mNG-RabA2b-marked vesicles at the protonemal cell tip. Time-lapse video of the cluster of mNG-RabA2b-positive vesicles (green) at the cell tip. Magenta, mCherry-α-tubulin. Autofluorescent chloroplasts in the cytoplasm are also visible in the green channel. Videos were acquired using spinning-disc confocal microscopy and processed using maximum z-projection (0.5 µm ×35 sections). Scale bar, 10 µm.

Supplementary Video 5

Dynamics of cytoplasmic microtubules. Time-lapse video of cytoplasmic microtubules (GFP-α-tubulin) in interphase protonemal cells of control and ARKabdc-1 lines. Microtubule dynamics were comparable between these lines (Supplementary Table 2). Videos were acquired using oblique illumination fluorescence microscopy. Scale bar, 2 µm.

Supplementary Video 6

Motility of ARKb-mNG on cytoplasmic microtubules. Time-lapse video of ARKb-mNG obtained using oblique illumination fluorescence microscopy. White arrowheads indicate the puncta of ARKb-mNG that move processively and unidirectionally on the microtubules. Magenta, tubulin; green, ARKb-mNG. Scale bar, 1 µm.

Supplementary Video 7

In vitro motility of ARKb motor on microtubules. Time-lapse video of recombinant ARKb (1–613 aa)-GFP on microtubules obtained using TIRF microscopy (three microtubules are shown). Magenta, tubulin; green, ARKb-GFP. Scale bar, 5 µm.

Supplementary Video 8

Motor- or tail-deficient ARKb does not suppress chloroplast mispositioning or reduced tip growth in ARKabc-1 mutant. Time-lapse video of protonemal cells expressing truncated or mutated ARKb constructs. Magenta, mCherry-α-tubulin; cyan, chloroplast. Videos were acquired using an epifluorescence (wide-field) microscope at a single focal plane. Scale bar, 100 µm.

Supplementary Video 9

RNAi of ARKd in ARKabc-1 causes abnormal outgrowth. Time-lapse video of protonemal cells after ARKd RNAi induction by β-estradiol treatment. Left: outgrowth in the apical cell. Middle: outgrowth in the subapical cell. Right: no RNAi induction (control). Videos were acquired using a wide-field microscope with transmission light (×20 0.75 lens). Scale bar, 50 µm.

Supplementary Video 10

Instability of actin foci at the cell tip in ARKabc-1 mutant. Time-lapse video of actin near the cell tip (lifeact-mNG). Videos were acquired using spinning-disc confocal microscopy and processed using maximum z-projection (0.5 µm ×7 sections). Scale bar, 5 µm.

Supplementary Video 11

Actin foci disappear with cells expansion. Time-lapse video of lifeact-mNG (green) at the cell tip. Four cells are shown. Magenta, mCherry-α-tubulin. Autofluorescent chloroplasts in the cytoplasm are also visible in the green channel. Videos were acquired using spinning-disc confocal microscopy and processed using maximum z-projection (1 µm ×23 sections). Scale bar, 10 µm.

Supplementary Video 12

RopGEF3 at the protonemal cell tip. Time-lapse video of RopGEF3-3×mNG (green) at the cell tip. Magenta, mCherry-α-tubulin. Autofluorescent chloroplasts in the cytoplasm are also visible in the green channel. Videos were acquired using a spinning-disc confocal microscope with a z-series taken every 0.5 µm for a range of 17 µm. The best focal plane is presented. Scale bar, 10 µm.

Supplementary Video 13

RopGEF6 at the protonemal cell tip. Time-lapse video of RopGEF6-3×mNG (green) at the cell tip. Magenta, mCherry-α-tubulin. Autofluorescent chloroplasts in the cytoplasm are also visible in the green channel. Videos were acquired using a spinning-disc confocal microscope with a z-series taken every 0.5 µm for a range of 17 µm. The best focal plane is presented. Scale bar, 10 µm.

Supplementary Video 14

For2A at the protonemal cell tip. Time-lapse video of For2A-mNG (green) at the cell tip. Magenta, mCherry-α-tubulin. Note that autofluorescent chloroplasts in the cytoplasm are also visible in the green channel. Videos were acquired using a spinning-disc confocal microscope with a z-series taken every 0.5 µm for a range of 17 µm. The best focal plane is presented. Scale bar, 10 µm.

Supplementary Video 15

Dynamics of filamentous actin in the endoplasm. Time-lapse video of filamentous actin (lifeact-mNG) in interphase protonemal cells obtained using oblique illumination fluorescence microscopy. Tracking of individual F-actin ends revealed a slightly reduced growth rate in the mutant line (Fig. 5f). Scale bar, 5 µm.

Supplementary Video 16

Apical RopGEF3 signals diminish with cell expansion. Time-lapse video of RopGEF3-3×mNG (green) at the cell tip. Three cells are shown. Magenta, mCherry-α-tubulin. Autofluorescent chloroplasts in the cytoplasm are also visible in the green channel. Videos were acquired using spinning-disc confocal microscopy and processed using maximum z-projection (1 µm ×23 sections). Scale bar, 10 µm.

Supplementary Video 17

Apical RopGEF6 signals diminish with cell expansion. Time-lapse video of RopGEF6-3×mNG (green) at the cell tip. Three cells are shown. Magenta, mCherry-α-tubulin. Autofluorescent chloroplasts in the cytoplasm are also visible in the green channel. Videos were acquired using spinning-disc confocal microscopy and processed using maximum z-projection (1 µm ×23 sections). Scale bar, 10 µm.

Supplementary Video 18

Apical For2A signals diminish with cell expansion. Time-lapse video of For2A-mNG (green) at the cell tip. Three cells are shown. Magenta, mCherry-α-tubulin. Autofluorescent chloroplasts in the cytoplasm are also visible in the green channel. Videos were acquired using spinning-disc confocal microscopy and processed using maximum z-projection (1 µm ×23 sections). Scale bar, 10 µm.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Extended Data Fig. 7

Unprocessed gels.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoshida, M.W., Hakozaki, M. & Goshima, G. Armadillo repeat-containing kinesin represents the versatile plus-end-directed transporter in Physcomitrella. Nat. Plants 9, 733–748 (2023). https://doi.org/10.1038/s41477-023-01397-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-023-01397-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing