Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Guard cell endomembrane Ca2+-ATPases underpin a ‘carbon memory’ of photosynthetic assimilation that impacts on water-use efficiency

Abstract

Stomata of most plants close to preserve water when the demand for CO2 by photosynthesis is reduced. Stomatal responses are slow compared with photosynthesis, and this kinetic difference erodes assimilation and water-use efficiency under fluctuating light. Despite a deep knowledge of guard cells that regulate the stoma, efforts to enhance stomatal kinetics are limited by our understanding of its control by foliar CO2. Guided by mechanistic modelling that incorporates foliar CO2 diffusion and mesophyll photosynthesis, here we uncover a central role for endomembrane Ca2+ stores in guard cell responsiveness to fluctuating light and CO2. Modelling predicted and experiments demonstrated a delay in Ca2+ cycling that was enhanced by endomembrane Ca2+-ATPase mutants, altering stomatal conductance and reducing assimilation and water-use efficiency. Our findings illustrate the power of modelling to bridge the gap from the guard cell to whole-plant photosynthesis, and they demonstrate an unforeseen latency, or ‘carbon memory’, of guard cells that affects stomatal dynamics, photosynthesis and water-use efficiency.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of CO2 diffusion from the atmosphere, through the stomatal pore and point p near the inner mouth of the pore, to the CO2 sink of photosynthesis in the mesophyll of the leaf.
Fig. 2: OnGuard3 reproduces gs and its dependence on \(pCO_{2}\) and light for photosynthesis in Arabidopsis.
Fig. 3: OnGuard3 predicts an elevation in [Ca2+]i on steps to 1,000 μbar CO2 and an undershoot in [Ca2+]i on its return.
Fig. 4: \(pCO_{2}\) elevation and its recovery identify a hysteresis in [Ca2+]i and K+ channel activities predicted with OnGuard3.
Fig. 5: Repeated \(pCO_{2}\) challenge uncovers a latency in stomatal kinetics that depends on guard cell endomembrane Ca2+ stores.
Fig. 6: Latency in stomatal kinetics affects long-term WUE and plant growth.
Fig. 7: A latent carbon memory in stomatal responsiveness depends on guard cell endomembrane Ca2+ stores.

Similar content being viewed by others

Data availability

All data generated and analysed during this study are included in this published article and its supplementary information files and are also available on reasonable request to the corresponding author. Source data are provided with this paper.

Code availability

The OnGuard3 platform (v. 3.3.1.6) and the model parameter sets for wild-type and aca mutant Arabidopsis as binary code described herein are freely available and may be downloaded from www.psrg.org.uk.

References

  1. Jezek, M. & Blatt, M. R. The membrane transport system of the guard cell and its integration for stomatal dynamics. Plant Physiol. 174, 487–519 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lawson, T. & Blatt, M. R. Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency. Plant Physiol. 164, 1556–1570 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Roelfsema, M. R. & Hedrich, R. Making sense out of Ca2+ signals: their role in regulating stomatal movements. Plant Cell Environ. 33, 305–321 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Willmer, C. M. & Fricker, M. Stomata Vol. 2 (Chapman and Hall, 1996).

  5. Buckley, T. N. & Mott, K. A. Dynamics of stomatal water relations during the humidity response: implications of two hypothetical mechanisms. Plant Cell Environ. 25, 407–419 (2002).

    Article  Google Scholar 

  6. Shope, J. C., Peak, D. & Mott, K. A. Stomatal responses to humidity in isolated epidermes. Plant Cell Environ. 31, 1290–1298 (2008).

    Article  PubMed  Google Scholar 

  7. Ball, J. T., Woodrow, I. E. & Berry, J. A. in Progress in Photosynthesis Research Vol. 1 (ed. Biggens, J.) 221–224 (Martinus-Nijhoff, 1987).

  8. Mott, K. A., Sibbernsen, E. D. & Shope, J. C. The role of the mesophyll in stomatal responses to light and CO2. Plant Cell Environ. 31, 1299–1306 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Papanatsiou, M. et al. Optogenetic manipulation of stomatal kinetics improves carbon assimilation and water use efficiency. Science 363, 1456–1459 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Blatt, M. R. & Armstrong, F. K+ channels of stomatal guard cells: abscisic acid-evoked control of the outward rectifier mediated by cytoplasmic pH. Planta 191, 330–341 (1993).

    Article  CAS  Google Scholar 

  11. Irving, H. R., Gehring, C. A. & Parish, R. W. Changes in cytosolic pH and calcium of guard cells precede stomatal movements. Proc. Natl Acad. Sci. USA 89, 1790–1794 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Webb, A. A. R., McAinsh, M. R., Mansfield, T. A. & Hetherington, A. M. Carbon dioxide induces increases in guard cell cytosolic free calcium. Plant J. 9, 297–304 (1996).

    Article  CAS  Google Scholar 

  13. Assmann, S. M. & Jegla, T. Guard cell sensory systems: recent insights on stomatal responses to light, abscisic acid, and CO2. Curr. Opin. Plant Biol. 33, 157–167 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Zhang, J. et al. Insights into the molecular mechanisms of CO2-mediated regulation of stomatal movements. Curr. Biol. 28, R1356–R1363 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. Brearley, J., Venis, M. A. & Blatt, M. R. The effect of elevated CO2 concentrations on K+ and anion channels of Vicia faba L. guard cells. Planta 203, 145–154 (1997).

    Article  CAS  Google Scholar 

  16. Wang, Y. et al. Unexpected connections between humidity and ion transport discovered using a model to bridge guard cell-to-leaf scales. Plant Cell 29, 2921–2139 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pilot, G. et al. Guard cell inward K+ channel activity in Arabidopsis involves expression of the twin channel subunits KAT1 and KAT2. J. Biol. Chem. 276, 3215–3221 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Geiger, D. et al. Guard cell anion channel SLAC1 is regulated by CDPK protein kinases with distinct Ca2+ affinities. Proc. Natl Acad. Sci. USA 107, 8023–8028 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Brandt, B. et al. Reconstitution of abscisic acid activation of SLAC1 anion channel by CPK6 and OST1 kinases and branched ABI1 PP2C phosphatase action. Proc. Natl Acad. Sci. USA 109, 10593–10598 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang, C. et al. Reconstitution of CO2 regulation of SLAC1 anion channel and function of CO2-permeable PIP2;1 aquaporin as CARBONIC ANHYDRASE4 interactor. Plant Cell 28, 568–582 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hills, A., Chen, Z. H., Amtmann, A., Blatt, M. R. & Lew, V. L. OnGuard, a computational platform for quantitative kinetic modeling of guard cell physiology. Plant Physiol. 159, 1026–1042 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen, Z. H. et al. Systems dynamic modeling of the stomatal guard cell predicts emergent behaviors in transport, signaling, and volume control. Plant Physiol. 159, 1235–1251 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang, Y. et al. Systems dynamic modelling of a guard cell Cl channel mutant uncovers an emergent homeostatic network regulating stomatal transpiration. Plant Physiol. 160, 1956–1972 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jezek, M., Hills, A., Blatt, M. R. & Lew, V. L. A constraint–relaxation–recovery mechanism for stomatal dynamics. Plant Cell Environ. 42, 2399–2410 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Peak, D. & Mott, K. A. A new, vapour-phase mechanism for stomatal responses to humidity and temperature. Plant Cell Environ. 34, 162–178 (2011).

    Article  PubMed  Google Scholar 

  26. Berry, J. A., Beerling, D. J. & Franks, P. J. Stomata: key players in the Earth system, past and present. Curr. Opin. Plant Biol. 13, 233–240 (2010).

    Article  PubMed  Google Scholar 

  27. Lawson, T., Simkin, A. J., Kelly, G. & Granot, D. Mesophyll photosynthesis and guard cell metabolism impacts on stomatal behaviour. New Phytol. 203, 1064–1081 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Buckley, T. N. & Mott, K. A. Modelling stomatal conductance in response to environmental factors. Plant Cell Environ. 36, 1691–1699 (2013).

    Article  PubMed  Google Scholar 

  29. Vialet-Chabrand, S. et al. Global sensitivity analysis of OnGuard models identifies key hubs for transport interaction in stomatal dynamics. Plant Physiol. 174, 680–688 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Roelfsema, M. R. G. & Hedrich, R. In the light of stomatal opening: new insights into ‘the Watergate’. New Phytol. 167, 665–691 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Kollist, H., Nuhkat, M. & Roelfsema, M. R. G. Closing gaps: linking elements that control stomatal movement. New Phytol. 203, 44–62 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Hu, H. H. et al. Carbonic anhydrases are upstream regulators of CO2-controlled stomatal movements in guard cells. Nat. Cell Biol. 12, 87–90 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Morison, J. I. L. & Jarvis, P. G. Direct and indirect effects of light on stomata II. In Commelina communis L. Plant Cell Environ. 6, 103–109 (1983).

    Article  Google Scholar 

  34. Zhu, J., Talbott, L. D., Jin, X. & Zeiger, E. The stomatal response to CO2 is linked to changes in guard cell zeaxanthin. Plant Cell Environ. 21, 813–820 (1998).

    Article  CAS  Google Scholar 

  35. Hiyama, A. et al. Blue light and CO2 signals converge to regulate light-induced stomatal opening. Nat. Commun. https://doi.org/10.1038/s41467-017-01237-5 (2017).

  36. Medeiros, D. B. et al. Enhanced photosynthesis and growth in atquac1 knockout mutants are due to altered organic acid accumulation and an increase in both stomatal and mesophyll conductance. Plant Physiol. 170, 86–101 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. Merilo, E. et al. PYR/RCAR receptors contribute to ozone-, reduced air humidity-, darkness-, and CO2-induced stomatal regulation. Plant Physiol. 162, 1652–1668 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tian, W. et al. A molecular pathway for CO2 response in Arabidopsis guard cells. Nat. Commun. https://doi.org/10.1038/ncomms7057 (2015).

  39. Grabov, A. & Blatt, M. R. A steep dependence of inward-rectifying potassium channels on cytosolic free calcium concentration increase evoked by hyperpolarization in guard cells. Plant Physiol. 119, 277–287 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Minguet-Parramona, C. et al. An optimal frequency in Ca2+ oscillations for stomatal closure Is an emergent property of ion transport in guard cells. Plant Physiol. 170, 32–45 (2016).

    Article  CAS  Google Scholar 

  41. Grabov, A. & Blatt, M. R. Membrane voltage initiates Ca2+ waves and potentiates Ca2+ increases with abscisic acid in stomatal guard cells. Proc. Natl Acad. Sci. USA 95, 4778–4783 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Blatt, M. R. Cellular signaling and volume control in stomatal movements in plants. Annu. Rev. Cell Dev. Biol. 16, 221–241 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Boursiac, Y. et al. Disruption of the vacuolar calcium-ATPases in Arabidopsis results in the activation of a salicylic acid-dependent programmed cell death pathway. Plant Physiol. 154, 1158–1171 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hwang, I., Sze, H. & Harper, J. F. A calcium-dependent protein kinase can inhibit a calmodulin- timulated Ca2+ pump (ACA2) located in the endoplasmic reticulum of Arabidopsis. Proc. Natl Acad. Sci. USA 97, 6224–6229 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Conn, S. J. et al. Cell-specific vacuolar calcium storage mediated by CAX1 regulates apoplastic calcium concentration, gas exchange, and plant productivity in Arabidopsis. Plant Cell 23, 240–257 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rahmati-Ishka, M. et al. Arabidopsis Ca2+-ATPases 1, 2, and 7 in the endoplasmic reticulum contribute to growth and pollen fitness. Plant Physiol. 185, 1966–1985 (2021).

    Article  PubMed  CAS  Google Scholar 

  47. Takemiya, A. et al. Phosphorylation of BLUS1 kinase by phototropins is a primary step in stomatal opening. Nat. Commun. https://doi.org/10.1038/ncomms3094 (2013).

  48. Isner, J. C., Begum, A., Nuehse, T., Hetherington, A. M. & Maathuis, F. J. M. KIN7 kinase regulates the vacuolar TPK1 K+ channel during stomatal closure. Curr. Biol. 28, 466–472 (2018).

    Article  CAS  PubMed  Google Scholar 

  49. Ando, E. & Kinoshita, T. Red light-induced phosphorylation of plasma membrane H+-ATPase in stomatal guard cells. Plant Physiol. 178, 838–849 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Farquhar, G. D. & Sharkey, T. D. Stomatal conductance and photosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 33, 317–345 (1982).

    Article  CAS  Google Scholar 

  51. Endy, D. & Brent, R. Modelling cellular behaviour. Nature 409, 391–395 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Xue, S. et al. Central functions of bicarbonate in S-type anion channel activation and OST1 protein kinase in CO2 signal transduction in guard cell. EMBO J. 30, 1645–1658 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Merlot, S. et al. Constitutive activation of a plasma membrane H+-ATPase prevents abscisic acid-mediated stomatal closure. EMBO J. 26, 3216–3226 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. McAinsh, M. R., Webb, A. A. R., Taylor, J. E. & Hetherington, A. M. Stimulus-induced oscillations in guard cell cytosolic-free calcium. Plant Cell 7, 1207–1219 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Garcia-Mata, C. et al. Nitric oxide regulates K+ and Cl channels in guard cells through a subset of abscisic acid-evoked signaling pathways. Proc. Natl Acad. Sci. USA 100, 11116–11121 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Thor, K. & Peiter, E. Cytosolic calcium signals elicited by the pathogen-associated molecular pattern flg22 in stomatal guard cells are of an oscillatory nature. New Phytol. 204, 873–881 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. Resentini, F., Ruberti, C., Grenzi, M., Bonza, M. & Costa, A. The signatures of organellar calcium. Plant Physiol. https://doi.org/10.1093/plphys/kiab189 (2021).

  58. Yang, H. M., Zhang, X. Y., Wang, G. X. & Zhang, J. H. Water channels are involved in stomatal oscillations encoded by parameter-specific cytosolic calcium oscillations. J. Integr. Plant Biol. 48, 790–799 (2006).

    Article  CAS  Google Scholar 

  59. Kaiser, H. & Kappen, L. Stomatal oscillations at small apertures: indications for a fundamental insufficiency of stomatal feedback-control inherent in the stomatal turgor mechanism. J. Exp. Bot. 52, 1303–1313 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Cowan, I. R. Oscillations in stomatal conductance and plant functioning associated with stomatal conductance: observations and a model. Planta 106, 185–219 (1972).

    Article  CAS  PubMed  Google Scholar 

  61. Lang, A. R. G., Klepper, B. & Cumming, M. J. Leaf water balance during oscillation of stomatal aperture. Plant Physiol. 44, 826–832 (1969).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Eckstein, J., Beyschlag, W., Mott, K. A. & Ryel, R. J. Changes in photon flux can induce stomatal patchiness. Plant Cell Environ. 19, 1066–1074 (1996).

    Article  Google Scholar 

  63. Vialet-Chabrand, S. R. M. et al. Temporal dynamics of stomatal behavior: modeling and implications for photosynthesis and water use. Plant Physiol. 174, 603–613 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yang, X. et al. A roadmap for research on crassulacean acid metabolism (CAM) to enhance sustainable food and bioenergy production in a hotter, drier world. New Phytol. 207, 491–504 (2015).

    Article  CAS  PubMed  Google Scholar 

  65. Manzoni, S. et al. Hydraulic limits on maximum plant transpiration and the emergence of the safety–efficiency trade-off. New Phytol. 198, 169–178 (2013).

    Article  PubMed  Google Scholar 

  66. Vico, G., Manzoni, S., Palmroth, S. & Katul, G. Effects of stomatal delays on the economics of leaf gas exchange under intermittent light regimes. New Phytol. 192, 640–652 (2011).

    Article  CAS  PubMed  Google Scholar 

  67. Buckley, T. N. & Schymanski, S. J. Stomatal optimisation in relation to atmospheric CO2. New Phytol. 201, 372–377 (2014).

    Article  CAS  PubMed  Google Scholar 

  68. Lin, Y.-S. et al. Optimal stomatal behaviour around the world. Nat. Clim. Change 5, 459–464 (2015).

    Article  CAS  Google Scholar 

  69. Schymanski, S. J., Roderick, M. L., Sivapalan, M., Hutley, L. B. & Beringer, J. A canopy-scale test of the optimal water-use hypothesis. Plant Cell Environ. 31, 97–111 (2008).

    PubMed  Google Scholar 

  70. Ball, M. C. & Farquhar, G. D. Photosynthetic and stomatal responses of 2 mangrove species, Aegiceras corniculatum and Avicennia marina, to long-term salinity and humidity conditions. Plant Physiol. 74, 1–6 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Pieruschka, R., Huber, G. & Berry, J. A. Control of transpiration by radiation. Proc. Natl Acad. Sci. USA 107, 13372–13377 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Damour, G., Simonneau, T., Cochard, H. & Urban, L. An overview of models of stomatal conductance at the leaf level. Plant Cell Environ. 33, 1419–1438 (2010).

    PubMed  Google Scholar 

  73. Lavergne, A. et al. Observed and modelled historical trends in the water-use efficiency of plants and ecosystems. Glob. Change Biol. 25, 2242–2257 (2019).

    Article  Google Scholar 

  74. Keenan, T. F. et al. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature 499, 324–327 (2013).

    Article  CAS  PubMed  Google Scholar 

  75. Rasband, W. S. & Bright, D. S. NIH Image: a public domain image-processing program for the Macintosh. Microbeam Anal. 4, 137–149 (1995).

    CAS  Google Scholar 

  76. Alonso, J. M. et al. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301, 653–657 (2003).

    Article  PubMed  Google Scholar 

  77. Kleinboelting, N., Huep, G., Kloetgen, A., Viehoever, P. & Weisshaar, B. GABI-Kat SimpleSearch: new features of the Arabidopsis thaliana T-DNA mutant database. Nucleic Acids Res. 40, D1211–D1215 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. McElver, J. et al. Insertional mutagenesis of genes required for seed development in Arabidopsis thaliana. Genetics 159, 1751–1763 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Chen, Z. H., Hills, A., Lim, C. K. & Blatt, M. R. Dynamic regulation of guard cell anion channels by cytosolic free Ca2+ concentration and protein phosphorylation. Plant J. 61, 816–825 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Blatt, M. R. Electrical characteristics of stomatal guard cells: the contribution of ATP-dependent, “electrogenic” transport revealed by current-voltage and difference-current-voltage analysis. J. Membr. Biol. 98, 257–274 (1987).

    Article  CAS  Google Scholar 

  81. MacRobbie, E. A. C. & Lettau, J. Ion content and aperture in isolated guard cells of Commelina communis L. J. Membr. Biol. 53, 199–205 (1980).

    Article  CAS  Google Scholar 

  82. Squire, G. R. & Mansfield, T. A. Simple method of isolating stomata on detached epidermis by low pH treatment: observations of importance of subsidiary cells. New Phytol. 71, 1033–1043 (1972).

    Article  Google Scholar 

  83. Kurebayashi, N., Harkins, A. B. & Baylor, S. M. Use of fura red as an intracellular calcium indicator in frog skeletal-muscle fibers. Biophys. J. 64, 1934–1960 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. von Caemmerer, S. Steady-state models of photosynthesis. Plant Cell Environ. 36, 1617–1630 (2013).

    Article  CAS  Google Scholar 

  85. Ogren, E. & Evans, J. R. Photosynthetic light-response curves: I. The influence of CO2 partial-pressure and leaf inversion. Planta 189, 182–190 (1993).

    Article  Google Scholar 

  86. Morison, J. I. L. et al. Lateral diffusion of CO2 in leaves is not sufficient to support photosynthesis. Plant Physiol. 139, 254–266 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Parkhurst, D. F., Wong, S. C., Farquhar, G. D. & Cowan, I. R. Gradients of intercellular CO2 levels across the leaf mesophyll. Plant Physiol. 86, 1032–1037 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Marquardt, D. An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11, 431–441 (1963).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by BBSRC grants BB/L001276/1, BB/L019205/1, BB/M001601/1 and BB/N01832X/1 to M.R.B. and by National Science Foundation grant IOS 1656774 to J.F.H. Y.W. was supported by the National Science Foundation of China grant 31871537 and the Central Universities Fundamental Research Fund 2020XZZX002-21. F.A.L.S.-A. was supported by a Lord Kelvin and Adam Smith PhD studentship. We thank A. Ruiz-Pardo for help in plant maintenance.

Author information

Authors and Affiliations

Authors

Contributions

M.R.B., A.H. and V.L.L. conceived the work and developed the model platform; A.H. encoded the platform; M.R.B., M.J., B.H. and Y.H. resolved the models; M.J., J.S. and Y.H. carried out gas exchange and aperture measurements; F.A.L.S.-A., N.D. and M.R.B. carried out growth studies, biochemical and Ca2+ analyses; Y.W. and F.A.L.S.-A. carried out voltage clamp experiments and M.J., Y.W. and F.A.L.S.-A. analysed the results with M.R.B.; M.R.B. wrote the manuscript with M.J., A.H., F.A.L.S.-A. and V.L.L.; all authors edited and approved the manuscript.

Corresponding author

Correspondence to Michael R. Blatt.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Plants thanks Toshinori Kinoshita and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Appendices 1–3 (including Supplementary Tables 1 and 2) and Figs. 1–9.

Reporting Summary

Source data

Source Data Fig. 2

Compiled statistical source data and analysis.

Source Data Fig. 4

Compiled statistical source data and analysis.

Source Data Fig. 5

Compiled statistical source data and analysis.

Source Data Fig. 6

Compiled statistical source data and analysis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jezek, M., Silva-Alvim, F.A.L., Hills, A. et al. Guard cell endomembrane Ca2+-ATPases underpin a ‘carbon memory’ of photosynthetic assimilation that impacts on water-use efficiency. Nat. Plants 7, 1301–1313 (2021). https://doi.org/10.1038/s41477-021-00966-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-021-00966-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing