Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

GC-rich coding sequences reduce transposon-like, small RNA-mediated transgene silencing

Abstract

The molecular basis of transgene susceptibility to silencing is poorly characterized in plants; thus, we evaluated several transgene design parameters as means to reduce heritable transgene silencing. Analyses of Arabidopsis plants with transgenes encoding a microalgal polyunsaturated fatty acid (PUFA) synthase revealed that small RNA (sRNA)-mediated silencing, combined with the use of repetitive regulatory elements, led to aggressive transposon-like silencing of canola-biased PUFA synthase transgenes. Diversifying regulatory sequences and using native microalgal coding sequences (CDSs) with higher GC content improved transgene expression and resulted in a remarkable trans-generational stability via reduced accumulation of sRNAs and DNA methylation. Further experiments in maize with transgenes individually expressing three crystal (Cry) proteins from Bacillus thuringiensis (Bt) tested the impact of CDS recoding using different codon bias tables. Transgenes with higher GC content exhibited increased transcript and protein accumulation. These results demonstrate that the sequence composition of transgene CDSs can directly impact silencing, providing design strategies for increasing transgene expression levels and reducing risks of heritable loss of transgene expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Establishment of transgene silencing is alleviated in Arabidopsis mutants defective in TGS or PTGS gene silencing.
Fig. 2: Transgenes with distinct construct designs encountered different degrees of transgene silencing.
Fig. 3: DNA cytosine methylation correlates with the loss of LC-PUFA accumulation in plants containing pDAB454, pDAB588 and pDAB525 transgenes.
Fig. 4: Cry protein accumulation in transgenic maize plants.
Fig. 5: Molecular analyses of transgenic plants with different cry CDS biases.

Similar content being viewed by others

References

  1. Butaye, K. M., Cammue, B. P., Delaure, S. L. & De Bolle, M. F. Approaches to minimize variation of transgene expression in plants. Mol. Breeding 16, 79–91 (2005).

    Article  Google Scholar 

  2. van der Krol, A., Mur, L., Beld, M., Mol, J. & Stutje, A. Flavonoid genes in petunia: addition of a limited number of gene copies may lead to a suppression of gene expression. Plant Cell 4, 291–299 (1990).

    Article  Google Scholar 

  3. Napoli, C., Lemieux, C. & Jorgensen, R. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2, 279–289 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mette, M. F., van der Winden, J., Matzke, M. A. & Matzke, A. J. Production of aberrant promoter transcripts contributes to methylation and silencing of unlinked homologous promoters in trans. EMBO J. 18, 241–248 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Matzke, M. A. & Mosher, R. A. RNA-directed DNA methylation: an epigenetic pathway of increasing complexity. Nat. Rev. Genet. 15, 394–408 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Fultz, D. & Slotkin, R. K. Exogenous transposable elements circumvent identity-based silencing, permitting the dissection of expression-dependent silencing. Plant Cell 29, 360–376 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fultz, D., Choudury, S. G. & Slotkin, R. K. Silencing of active transposable elements in plants. Curr. Opin. Plant Biol. 27, 67–76 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Mari-Ordonez, A. et al. Reconstructing de novo silencing of an active plant retrotransposon. Nat. Genet. 45, 1029–1039 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Bond, D. M. & Baulcombe, D. C. Epigenetic transitions leading to heritable, RNA-mediated de novo silencing in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 112, 917–922 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Panda, K. et al. Full-length autonomous transposable elements are preferentially targeted by expression-dependent forms of RNA-directed DNA methylation. Genome Biol. 17, 170 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Nuthikattu, S. et al. The initiation of epigenetic silencing of active transposable elements is triggered by RDR6 and 21-22 nucleotide small interfering RNAs. Plant Physiol. 162, 116–131 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. McCue, A. D. et al. ARGONAUTE 6 bridges transposable element mRNA-derived siRNAs to the establishment of DNA methylation. EMBO J. 34, 20–35 (2014).

  13. Fojtova, M., Van Houdt, H., Depicker, A. & Kovarik, A. Epigenetic switch from posttranscriptional to transcriptional silencing is correlated with promoter hypermethylation. Plant Physiol. 133, 1240–1250 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kasai, M. et al. Deep sequencing uncovers commonality in small RNA profiles between transgene-induced and naturally occurring RNA silencing of chalcone synthase-A gene in petunia. BMC Genom. 14, 63 (2013).

    Article  CAS  Google Scholar 

  15. You, W., Lorkovic, Z. J., Matzke, A. J. & Matzke, M. Interplay among RNA polymerases II, IV and V in RNA-directed DNA methylation at a low copy transgene locus in Arabidopsis thaliana. Plant Mol. Biol. 82, 85–96 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Walsh, T. A. et al. Canola engineered with a microalgal polyketide synthase-like system produces oil enriched in docosahexaenoic acid. Nat. Biotechnol. 34, 881–887 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Velten, J., Cakir, C. & Cazzonelli, C. I. A spontaneous dominant-negative mutation within a 35S::AtMYB90 transgene inhibits flower pigment production in tobacco. PLoS ONE 5, e9917 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Dalakouras, A., Moser, M., Boonrod, K., Krczal, G. & Wassenegger, M. Diverse spontaneous silencing of a transgene among two Nicotiana species. Planta 234, 699–707 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Jauvion, V., Elmayan, T. & Vaucheret, H. The conserved RNA trafficking proteins HPR1 and TEX1 are involved in the production of endogenous and exogenous small interfering RNA in Arabidopsis. Plant Cell 22, 2697–2709 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Feng, S. et al. Conservation and divergence of methylation patterning in plants and animals. Proc. Natl Acad. Sci. USA 107, 8689–8694 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tatarinova, T., Elhaik, E. & Pellegrini, M. Cross-species analysis of genic GC3 content and DNA methylation patterns. Genome Biol. Evol. 5, 1443–1456 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. James, C. A global overview of biotech (GM) crops: adoption, impact and future prospects. GM Crops 1, 8–12 (2010).

    Article  PubMed  Google Scholar 

  23. Diehn, S. H., Chiu, W. L., De Rocher, E. J. & Green, P. J. Premature polyadenylation at multiple sites within a Bacillus thuringiensis toxin gene-coding region. Plant Physiol. 117, 1433–1443 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Diehn, S. H., De Rocher, E. J. & Green, P. J. in Genetic Engineering: Principles and Methods Vol. 18 (ed. Setlow, J. K.) 83–99 (Springer, New York, 1996).

    Article  CAS  Google Scholar 

  25. De Rocher, E. J., Vargo-Gogola, T. C., Diehn, S. H. & Green, P. J. Direct evidence for rapid degradation of Bacillus thuringiensis toxin mRNA as a cause of poor expression in plants. Plant Physiol. 117, 1445–1461 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Larrinua, I., Merlo, D., Reddy, S., Thirumalaiswamysekhar, A. & Woosley, A. Synthetic genes. US patent 20160304900 A1 (2016).

  27. Vaistij, F. E., Jones, L. & Baulcombe, D. C. Spreading of RNA targeting and DNA methylation in RNA silencing requires transcription of the target gene and a putative RNA-dependent RNA polymerase. Plant Cell 14, 857–867 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Petersen, B. O. & Albrechtsen, M. Evidence implying only unprimed RdRP activity during transitive gene silencing in plants. Plant Mol. Biol. 58, 575–583 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Bleys, A., Van Houdt, H. & Depicker, A. Down-regulation of endogenes mediated by a transitive silencing signal. RNA 12, 1633–1639 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bleys, A., Vermeersch, L., Van Houdt, H. & Depicker, A. The frequency and efficiency of endogene suppression by transitive silencing signals is influenced by the length of sequence homology. Plant Physiol. 142, 788–796 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kudla, G., Lipinski, L., Caffin, F., Helwak, A. & Zylicz, M. High guanine and cytosine content increases mRNA levels in mammalian cells. PLoS Biol. 4, e180 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Barahimipour, R., Neupert, J. & Bock, R. Efficient expression of nuclear transgenes in the green alga Chlamydomonas: synthesis of an HIV antigen and development of a new selectable marker. Plant Mol. Biol. 90, 403–418 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Barahimipour, R. et al. Dissecting the contributions of GC content and codon usage to gene expression in the model alga Chlamydomonas reinhardtii. Plant J. 84, 704–717 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tatarinova, T. V., Alexandrov, N. N., Bouck, J. B. & Feldmann, K. A. GC3 biology in corn, rice, sorghum and other grasses. BMC Genom. 11, 308 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Plotkin, J. B. & Kudla, G. Synonymous but not the same: the causes and consequences of codon bias. Nat. Rev. Genet. 12, 32–42 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Bali, V. & Bebok, Z. Decoding mechanisms by which silent codon changes influence protein biogenesis and function. Int. J. Biochem. Cell Biol. 64, 58–74 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tuller, T., Waldman, Y. Y., Kupiec, M. & Ruppin, E. Translation efficiency is determined by both codon bias and folding energy. Proc. Natl Acad. Sci. USA 107, 3645–3650 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Newman, Z. R., Young, J. M., Ingolia, N. T. & Barton, G. M. Differences in codon bias and GC content contribute to the balanced expression of TLR7 and TLR9. Proc. Natl Acad. Sci. USA 113, E1362–1371 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kaplan, N. et al. The DNA-encoded nucleosome organization of a eukaryotic genome. Nature 458, 362–366 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Dekker, J. GC- and AT-rich chromatin domains differ in conformation and histone modification status and are differentially modulated by Rpd3p. Genome Biol. 8, R116 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Cuerda-Gil, D. & Slotkin, R. K. Non-canonical RNA-directed DNA methylation. Nat. Plants 2, 16163 (2016).

    Article  CAS  PubMed  Google Scholar 

  42. Pikaard, C. S., Haag, J. R., Pontes, O. M., Blevins, T. & Cocklin, R. A transcription fork model for Pol IV and Pol V-dependent RNA-directed DNA methylation. Cold Spring Harb. Symp. Quant. Biol. 77, 205–212 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Haag, J. R. et al. In vitro transcription activities of Pol IV, Pol V, and RDR2 reveal coupling of Pol IV and RDR2 for dsRNA synthesis in plant RNA silencing. Mol. Cell 48, 811–818 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liu, Q., Wang, F. & Axtell, M. J. Analysis of complementarity requirements for plant microRNA targeting using a Nicotiana benthamiana quantitative transient assay. Plant Cell 26, 741–753 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dadami, E. et al. An endogene-resembling transgene delays the onset of silencing and limits siRNA accumulation. FEBS Lett. 587, 706–710 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

At Dow AgroSciences, we thank M. German for his review and comments on the manuscript; S. Dhavala for initial consultations regarding statistical data analysis; W. Case for Arabidopsis mutant validation, development of high throughput qPCR assays and transgene copy number and zygosity analyses in Arabidopsis and maize; R. Hampton, C. Larsen and M. Foster for Arabidopsis protein analyses; and C. Ransom, V. Stoltz and D. Gachotte for LC-PUFA analyses. We thank S. Jamidar (University of Delaware) and R. McEwan (Dow AgroSciences) for assistance on NGS analyses of maize transgene-derived sRNAs.

Author information

Authors and Affiliations

Authors

Contributions

L.V.S., T.L., A.W. and B.C.M. designed studies, executed experiments and interpreted data. L.V.S., T.L., A.W., T.A.W. and B.C.M. cowrote the paper with participation from all authors. Specifically, L.V.S. designed and led execution of Arabidopsis and maize experiments and worked with W.A.M. and S.W. on experiment planning, sample collection, data generation and analyses. T.L. conducted Arabidopsis NGS library preparation and related data analysis. A.W. developed maize transgenes, including CDSs biasing, and led analyses of protein accumulation in maize transgenic plants. W.A.M. conducted Arabidopsis molecular analysis to identify and select plants for studies, and coordinated transfer of materials between labs. S.A.B. developed canola-biased CDS optimizations and designed and participated in building of all of the constructs used in the Arabidopsis study. T.P.G. provided protein data analyses and contributed to writing. P.H.W. designed and executed a subset of maize experiments and contributed to writing. X.Y. and S.S. executed maize sRNA data analyses, interpreted results and prepared figures. X.W. carried out statistical analysis and contributed to writing. P.A.O.M., T.A.W. and B.C.M. conceived the project and provided overall guidance for teams at Dow AgroSciences (P.A.O.M., T.A.W.) and the University of Delaware (B.C.M.).

Corresponding author

Correspondence to Blake C. Meyers.

Ethics declarations

Competing interests

This work was part of the research and development programs of Dow AgroSciences LLC, a for-profit agricultural technology company. Part of the work was performed within a research collaboration with BCM (affiliated with University of Delaware, DE and Donald Danforth Plant Science Center, MO). L.V.S., A.W., W.A.M., S.A.B., P.A.O.M., T.A.W., X.W., S.W., T.P.G., P.H.W., X.Y. and S.S. were employees of Dow AgroSciences LLC. T.L. and B.C.M. were employees of the University of Delaware, DE and Donald Danforth Plant Science Center, MO. Some of the data was used in patent applications US2013 0150599 A1, US2014 0359900, WO2015 081270 A1.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary Figures 1–16, Supplementary Tables 1–6, Supplementary Methods, Supplementary References

Life sciences reporting summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sidorenko, L.V., Lee, Tf., Woosley, A. et al. GC-rich coding sequences reduce transposon-like, small RNA-mediated transgene silencing. Nature Plants 3, 875–884 (2017). https://doi.org/10.1038/s41477-017-0040-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-017-0040-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing