Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Comprehensive analysis of biological landscape of oxidative stress-related genes in diabetic erectile dysfunction

Abstract

Oxidative stress plays a pivotal role in the pathogenesis of diabetic erectile dysfunction, while specific mechanisms have not been illuminated. The study aims to reveal the genetic expression patterns of oxidative stress in diabetic erectile dysfunction. Transcriptome data of diabetic erectile dysfunction and oxidative stress-related genes (OSRGs) in the Gene Expression Omnibus database were downloaded and analyzed based on differential expression. Functional enrichment analyses were conducted to clarify the biological functions. A protein interaction framework was established, and significant gene profiles were validated in the cavernous endothelial cells, clinical patients, and rat models. A miRNA–OSRGs network was predicted and validated. The results were analyzed using Student’s t-test. The analysis screened 203 differentially expressed OSRGs (p < 0.05), which had a close association with oxidoreductase activities, glutathione metabolism, and autophagy. A four-gene signature comprised of EPS8L2 (p = 0.044), GSTA3 (p = 0.015), LOX (p < 0.001) and MGST1 (p = 0.002) was well validated and regarded as the hub OSRGs. Compared with the control group, notable increases and decreases were observed in the expressions of GSTA3 (3.683 ± 0.636 vs. 0.416 ± 0.507) and LOX (2.104 ± 1.895 vs. 18.804 ± 2.751) in the validated diabetic erectile dysfunction group. The hub OSRGs-related miRNAs participated in smooth muscle cell proliferation. Besides, miR-125a-3p (p = 0.034) and miR-138-2-3p (p = 0.012) were validated as promising oxidative stress-related miRNA biomarkers. Our findings revealed the genetic alternations of oxidative stress in diabetic erectile dysfunction. These results will be instructive to explore the molecular landscape and the potential treatment for diabetic erectile dysfunction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The flow diagram of the study.
Fig. 2: Differentially expressed OSRGs analysis.
Fig. 3: Functional enrichment analysis of significant OSRGs.
Fig. 4: PPI network construction of significant OSRGs.
Fig. 5: The profiling of OSRGs in the cavernous endothelial cells and clinical patients.
Fig. 6: The profiling of hub OSRGs in DMED.
Fig. 7: Associations between DMED and autophagy.

Similar content being viewed by others

Data availability

The data that support the findings and codes in R software of this study are available on request from the corresponding author.

References

  1. Johannes CB, Araujo AB, Feldman HA, Derby CA, Kleinman KP, McKinlay JB. Incidence of erectile dysfunction in men 40 to 69 years old: longitudinal results from the Massachusetts male aging study. J Urol. 2000;163:460–3.

    Article  PubMed  CAS  Google Scholar 

  2. Yuan C, Jian Z, Gao X, Jin X, Wang M, Xiang L, et al. Type 2 diabetes mellitus increases risk of erectile dysfunction independent of obesity and dyslipidemia: a Mendelian randomization study. Andrology. 2022;10:518–24.

    Article  PubMed  CAS  Google Scholar 

  3. Salonia A, Bettocchi C, Boeri L, Capogrosso P, Carvalho J, Cilesiz NC, et al. European Association of Urology Guidelines on Sexual and Reproductive Health-2021 update: male sexual dysfunction. Eur Urol. 2021;80:333–57.

    Article  PubMed  Google Scholar 

  4. Penson DF, Latini DM, Lubeck DP, Wallace KL, Henning JM, Lue TF. Do impotent men with diabetes have more severe erectile dysfunction and worse quality of life than the general population of impotent patients? Results from the Exploratory Comprehensive Evaluation of Erectile Dysfunction (ExCEED) database. Diabetes Care. 2003;26:1093–9.

    Article  PubMed  Google Scholar 

  5. Song J, Tang Z, Li H, Jiang H, Sun T, Lan R, et al. Role of JAK2 in the pathogenesis of diabetic erectile dysfunction and an intervention with berberine. J Sex Med. 2019;16:1708–20.

    Article  PubMed  Google Scholar 

  6. Ma Z, Wang W, Pan C, Fan C, Li Y, Wang W, et al. N-acetylcysteine improves diabetic associated erectile dysfunction in streptozotocin-induced diabetic mice by inhibiting oxidative stress. J Cell Mol Med. 2022;26:3527–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Belba A, Cortelazzo A, Andrea G, Durante J, Nigi L, Dotta F, et al. Erectile dysfunction and diabetes: association with the impairment of lipid metabolism and oxidative stress. Clin Biochem. 2016;49:70–8.

    Article  PubMed  CAS  Google Scholar 

  8. Tang Z, Song J, Yu Z, Cui K, Ruan Y, Liu Y, et al. Inhibition of microRNA-92a improved erectile dysfunction in streptozotocin-induced diabetic rats via suppressing oxidative stress and endothelial dysfunction. World J Mens Health. 2023;41:142–54. https://doi.org/10.5534/wjmh.210177.

  9. Shamloul R, Ghanem H. Erectile dysfunction. Lancet (Lond, Engl). 2013;381:153–65.

    Article  CAS  Google Scholar 

  10. Bivalacqua TJ, Usta MF, Kendirci M, Pradhan L, Alvarez X, Champion HC, et al. Superoxide anion production in the rat penis impairs erectile function in diabetes: influence of in vivo extracellular superoxide dismutase gene therapy. J Sex Med. 2005;2:187–97.

    Article  PubMed  CAS  Google Scholar 

  11. Ryu JK, Kim DJ, Lee T, Kang YS, Yoon SM, Suh JK. The role of free radical in the pathogenesis of impotence in streptozotocin-induced diabetic rats. Yonsei Med J. 2003;44:236–41.

    Article  PubMed  CAS  Google Scholar 

  12. Yuan P, Ma D, Gao X, Wang J, Li R, Liu Z, et al. Liraglutide ameliorates erectile dysfunction via regulating oxidative stress, the RhoA/ROCK pathway and autophagy in diabetes mellitus. Front Pharmacol. 2020;11:1257.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Zhou B, Chen Y, Yuan H, Wang T, Feng J, Li M, et al. NOX1/4 inhibitor GKT-137831 improves erectile function in diabetic rats by ROS reduction and endothelial nitric oxide synthase reconstitution. J Sex Med. 2021;18:1970–83.

    Article  PubMed  CAS  Google Scholar 

  14. Huang J, Ma J, Wang J, Ma K, Zhou K, Huang W, et al. Whole-transcriptome analysis of rat cavernosum and identification of circRNA-miRNA-mRNA networks to investigate nerve injury erectile dysfunction pathogenesis. Bioengineered. 2021;12:6516–28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Zhao L, Han S, Su H, Li J, Zhi E, Li P, et al. Single-cell transcriptome atlas of the human corpus cavernosum. Nat Commun. 2022;13:4302.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Sullivan CJ, Teal TH, Luttrell IP, Tran KB, Peters MA, Wessells H. Microarray analysis reveals novel gene expression changes associated with erectile dysfunction in diabetic rats. Physiol Genomics. 2005;23:192–205.

    Article  PubMed  CAS  Google Scholar 

  17. Yin GN, Ock J, Choi MJ, Limanjaya A, Ghatak K, Song KM, et al. Gene expression profiling of mouse cavernous endothelial cells for diagnostic targets in diabetes-induced erectile dysfunction. Investig Clin Urol. 2021;62:90–9.

    Article  PubMed  Google Scholar 

  18. Xu H, Zhao B, Zhong W, Teng P, Qiao H. Identification of miRNA signature associated with erectile dysfunction in type 2 diabetes mellitus by support vector machine-recursive feature elimination. Front Genet. 2021;12:762136.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16:284–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinforma (Oxf, Engl). 2010;26:139–40.

    CAS  Google Scholar 

  23. Mehta N, Sikka S, Rajasekaran M. Rat as an animal model for male erectile function evaluation in sexual medicine research. J Sex Med. 2008;5:1278–83.

    Article  PubMed  Google Scholar 

  24. Gur S, Peak TC, Kadowitz PJ, Sikka SC, Hellstrom WJ. Review of erectile dysfunction in diabetic animal models. Curr Diabetes Rev. 2014;10:61–73.

    Article  PubMed  CAS  Google Scholar 

  25. Wang Y, Zhang X, Chen Y, Zhu B, Xing Q. Identification of hub biomarkers and exploring the roles of immunity, M6A, ferroptosis, or cuproptosis in rats with diabetic erectile dysfunction. Andrology. 2023;11:316–31. https://doi.org/10.1111/andr.13265.

  26. Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, et al. IDF Diabetes Atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022;183:109119.

    Article  PubMed  Google Scholar 

  27. Sheweita SA, Meftah AA, Sheweita MS, Balbaa ME. Erectile dysfunction drugs altered the activities of antioxidant enzymes, oxidative stress and the protein expressions of some cytochrome P450 isozymes involved in the steroidogenesis of steroid hormones. PLoS One. 2020;15:e0241509.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Lin HY, Lim SW, Hsu TI, Yang WB, Huang CC, Tsai YT, et al. CCAAT/enhancer-binding protein delta regulates glioblastoma survival through catalase-mediated hydrogen peroxide clearance. Oxid Med Cell Longev. 2022;2022:4081380.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Murat N, Korhan P, Kizer O, Evcim S, Kefi A, Demir Ö, et al. Resveratrol protects and restores endothelium-dependent relaxation in hypercholesterolemic rabbit corpus cavernosum. J Sex Med. 2016;13:12–21.

    Article  PubMed  Google Scholar 

  30. Kagan VE, Mao G, Qu F, Angeli JP, Doll S, Croix CS, et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem Biol. 2017;13:81–90.

    Article  PubMed  CAS  Google Scholar 

  31. Yang J, Zhang Y, Zang G, Wang T, Yu Z, Wang S, et al. Adipose-derived stem cells improve erectile function partially through the secretion of IGF-1, bFGF, and VEGF in aged rats. Andrology. 2018;6:498–509.

    Article  PubMed  CAS  Google Scholar 

  32. Ai X, Yu P, Luo L, Sun J, Tao H, Wang X, et al. Berberis dictyophylla F. inhibits angiogenesis and apoptosis of diabetic retinopathy via suppressing HIF-1α/VEGF/DLL-4/Notch-1 pathway. J Ethnopharmacol. 2022;296:115453.

    Article  PubMed  CAS  Google Scholar 

  33. An G, Guo F, Liu X, Wang Z, Zhu Y, Fan Y, et al. Functional reconstruction of injured corpus cavernosa using 3D-printed hydrogel scaffolds seeded with HIF-1α-expressing stem cells. Nat Commun. 2020;11:2687.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Liang L, Zheng D, Lu C, Xi Q, Bao H, Li W, et al. Exosomes derived from miR-301a-3p-overexpressing adipose-derived mesenchymal stem cells reverse hypoxia-induced erectile dysfunction in rat models. Stem Cell Res Ther. 2021;12:87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149:1060–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Wang YT, Liu TY, Shen CH, Lin SY, Hung CC, Hsu LC, et al. K48/K63-linked polyubiquitination of ATG9A by TRAF6 E3 ligase regulates oxidative stress-induced autophagy. Cell Rep. 2022;38:110354.

    Article  PubMed  CAS  Google Scholar 

  37. Lin H, Wang T, Ruan Y, Liu K, Li H, Wang S, et al. Rapamycin supplementation may ameliorate erectile function in rats with streptozotocin-induced type 1 diabetes by inducing autophagy and inhibiting apoptosis, endothelial dysfunction, and corporal fibrosis. J Sex Med. 2018;15:1246–59.

    Article  PubMed  Google Scholar 

  38. Lin W, Zhang J, Liu Y, Wu R, Yang H, Hu X, et al. Studies on diagnostic biomarkers and therapeutic mechanism of Alzheimer’s disease through metabolomics and hippocampal proteomics. Eur J Pharm Sci. 2017;105:119–26.

    Article  PubMed  CAS  Google Scholar 

  39. Dai J, Gu L, Su Y, Wang Q, Zhao Y, Chen X, et al. Inhibition of curcumin on influenza A virus infection and influenzal pneumonia via oxidative stress, TLR2/4, p38/JNK MAPK and NF-κB pathways. Int Immunopharmacol. 2018;54:177–87.

    Article  PubMed  CAS  Google Scholar 

  40. Lu Y, Zhang W, Zhang B, Heinemann SH, Hoshi T, Hou S, et al. Bilirubin Oxidation End Products (BOXes) induce neuronal oxidative stress involving the Nrf2 pathway. Oxid Med Cell Longev. 2021;2021:8869908.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Xiao Y, Zhang Z, Fu Y, Shan H, Cui S, Wu J. GSTA3 regulates TGF-β1-induced renal interstitial fibrosis in NRK-52E cells as a component of the PI3K-Keap1/Nrf2 pathway. J Int Med Res. 2019;47:5787–801.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Wang H, Zhang K, Ruan Z, Sun D, Zhang H, Lin G, et al. Probucol enhances the therapeutic efficiency of mesenchymal stem cells in the treatment of erectile dysfunction in diabetic rats by prolonging their survival time via Nrf2 pathway. Stem Cell Res Ther. 2020;11:302.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Yue XF, Shen CX, Wang JW, Dai LY, Fang Q, Long L, et al. The near-infrared dye IR-61 restores erectile function in a streptozotocin-induced diabetes model via mitochondrial protection. Asian J Androl. 2021;23:249–58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Li T, Fu F, Wu C, Qin F, Yuan J. Characteristics of penile growth in pubertal rats and a non-invasive method to lengthen the penis. Andrology. 2020;8:1884–94.

    Article  PubMed  CAS  Google Scholar 

  45. Liu SB, Ikenaga N, Peng ZW, Sverdlov DY, Greenstein A, Smith V, et al. Lysyl oxidase activity contributes to collagen stabilization during liver fibrosis progression and limits spontaneous fibrosis reversal in mice. FASEB J. 2016;30:1599–609.

    Article  PubMed  CAS  Google Scholar 

  46. Argyropoulos AJ, Robichaud P, Balimunkwe RM, Fisher GJ, Hammerberg C, Yan Y, et al. Alterations of dermal connective tissue collagen in diabetes: molecular basis of aged-appearing skin. PLoS One. 2016;11:e0153806.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ji L, Wang Q, Huang F, An T, Guo F, Zhao Y, et al. FOXO1 overexpression attenuates tubulointerstitial fibrosis and apoptosis in diabetic kidneys by ameliorating oxidative injury via TXNIP-TRX. Oxid Med Cell Longev. 2019;2019:3286928.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Wan ZH, Li GH, Guo YL, Li WZ, Chen L, Zhang YJ. Amelioration of cavernosal fibrosis and erectile function by lysyl oxidase inhibition in a rat model of cavernous nerve injury. J Sex Med. 2018;15:304–13.

    Article  PubMed  Google Scholar 

  49. Gao L, Wu C, Fu F, You X, Ma X, Qin F, et al. Effect of lysyl oxidase (LOX) on corpus cavernous fibrosis caused by ischaemic priapism. J Cell Mol Med. 2018;22:2018–22.

    Article  PubMed  CAS  Google Scholar 

  50. Kelner MJ, Bagnell RD, Montoya MA, Estes LA, Forsberg L, Morgenstern R. Structural organization of the microsomal glutathione S-transferase gene (MGST1) on chromosome 12p13.1-13.2. Identification of the correct promoter region and demonstration of transcriptional regulation in response to oxidative stress. J Biol Chem. 2000;275:13000–6.

    Article  PubMed  CAS  Google Scholar 

  51. Zeng B, Ge C, Li R, Zhang Z, Fu Q, Li Z, et al. Knockdown of microsomal glutathione S-transferase 1 inhibits lung adenocarcinoma cell proliferation and induces apoptosis. Biomed Pharmacother. 2020;121:109562.

    Article  PubMed  CAS  Google Scholar 

  52. Morgenstern R. Microsomal glutathione transferase 1. Methods Enzymol. 2005;401:136–46.

    Article  PubMed  CAS  Google Scholar 

  53. Morgenstern R, Lundqvist G, Andersson G, Balk L, DePierre JW. The distribution of microsomal glutathione transferase among different organelles, different organs, and different organisms. Biochem Pharmacol. 1984;33:3609–14.

    Article  PubMed  CAS  Google Scholar 

  54. Kuang F, Liu J, Xie Y, Tang D, Kang R. MGST1 is a redox-sensitive repressor of ferroptosis in pancreatic cancer cells. Cell Chem Biol. 2021;28:765–.e5.

    Article  PubMed  CAS  Google Scholar 

  55. Zuo X, Kwon SH, Janech MG, Dang Y, Lauzon SD, Fogelgren B, et al. Primary cilia and the exocyst are linked to urinary extracellular vesicle production and content. J Biol Chem. 2019;294:19099–110.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Cong R, Wang Y, Wang Y, Zhang Q, Zhou X, Ji C, et al. Comprehensive analysis of lncRNA expression pattern and lncRNA-miRNA-mRNA network in a rat model with cavernous nerve injury erectile dysfunction. J Sex Med. 2020;17:1603–17.

    Article  PubMed  CAS  Google Scholar 

  57. Zhou X, Cong R, Yao L, Zhou X, Luan J, Zhang Q, et al. Comparative transcriptome analyses of geriatric rats associate age-related erectile dysfunction with a lncRNA-miRNA-mRNA regulatory network. Front Endocrinol. 2022;13:887486.

    Article  Google Scholar 

  58. Hu W, Chang G, Zhang M, Li Y, Yin L, Huang Y, et al. MicroRNA-125a-3p affects smooth muscle cell function in vascular stenosis. J Mol Cell Cardiol. 2019;136:85–94.

    Article  PubMed  CAS  Google Scholar 

  59. Huang L, Li X, Ye H, Liu Y, Liang X, Yang C, et al. Long non-coding RNA NCK1-AS1 promotes the tumorigenesis of glioma through sponging microRNA-138-2-3p and activating the TRIM24/Wnt/β-catenin axis. J Exp Clin Cancer Res. 2020;39:63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Zhu Y, Shi LY, Lei YM, Bao YH, Li ZY, Ding F, et al. Radiosensitization effect of hsa-miR-138-2-3p on human laryngeal cancer stem cells. PeerJ. 2017;5:e3233.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the associated databases for the availability of the data. The present study was funded by grants from the Medical Science and Technology Research-related joint construction project of Henan Province (No. LHGJ20220343) and the National Natural Science Foundation of China (No. 82201775 and 82201758).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and design: PY, YC, QM. Acquisition of data: PY, TS, YS. Writing—original draft: PY, YC. Funding acquisition: PY, YC. Data collection and analysis: PY, LC, TL, YS, ZJ. Review and editing: PY, YC, TS, LC, TL, ZY, QM. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Penghui Yuan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, Q., Chen, Y., Cui, L. et al. Comprehensive analysis of biological landscape of oxidative stress-related genes in diabetic erectile dysfunction. Int J Impot Res (2023). https://doi.org/10.1038/s41443-023-00814-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41443-023-00814-1

Search

Quick links