Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Key challenges in exploring the rat as a preclinical neurostimulation model for aortic baroreflex modulation in hypertension

Abstract

Electrode-based electrophysiological interfaces with peripheral nerves have come a long way since the 1960s, with several neurostimulation applications witnessing widespread clinical implementation since then. In resistant hypertension, previous clinical trials have shown that “carotid” baroreflex stimulation using device-based baroreflex activation therapy (BAT) can effectively lower blood pressure (BP). However, device-based “aortic” baroreflex stimulation remains untouched for clinical translation. The rat is a remarkable animal model that facilitates exploration of mechanisms pertaining to the baroreceptor reflex and preclinical development of novel therapeutic strategies for BP modulation and hypertension treatment. Specifically, the aortic depressor nerve (ADN) in rats carries a relatively pure population of barosensitive afferent neurons, which enable selective investigation of the aortic baroreflex function. In a rat model of essential hypertension, the spontaneously hypertensive rat (SHR), we have recently investigated the aortic baroreceptor afferents as an alternate target for BP modulation, and showed that “low intensity” stimulation is able to evoke clinically meaningful reductions in BP. Deriving high quality short-term and long-term data on aortic baroreflex modulation in rats is currently hampered by a number of unresolved experimental challenges, including anatomical variations across rats which complicates identification of the ADN, the use of unrefined neurostimulation tools or paradigms, and issues arising from anesthetized and conscious surgical preparations. With the goal of refining existing experimental protocols designed for preclinical investigation of the baroreflex, this review seeks to outline current challenges hindering further progress in aortic baroreflex modulation studies in rats and present some practical considerations and recently emerging ideas to overcome them.

Aortic baroreflex modulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. World Health Organization. World health statistics 2021: monitoring health for the SDGs, Sustainable Development Goals. Licence: CC BY-NC-SA 3.0 IGO. Geneva: World Health Organization; (2021).

  2. Birmingham K, Gradinaru V, Anikeeva P, Grill WM, Pikov V, McLaughlin B, et al. Bioelectronic medicines: a research roadmap. Nat Rev Drug Discov. 2014;13:399–400.

    Article  PubMed  CAS  Google Scholar 

  3. Doumas M, Faselis C, Kokkinos P, Anyfanti P, Tsioufis C, Papademetriou V. Carotid baroreceptor stimulation: a promising approach for the management of resistant hypertension and heart failure. Curr Vasc Pharmacol. 2014;12:30–37.

    Article  PubMed  CAS  Google Scholar 

  4. Heusser K, Tank J, Engeli S, Diedrich A, Menne J, Eckert S, et al. Carotid baroreceptor stimulation, sympathetic activity, baroreflex function, and blood pressure in hypertensive patients. Hypertension. 2010;55:619–26.

    Article  PubMed  CAS  Google Scholar 

  5. Scheffers IJ, Kroon AA, Schmidli J, Jordan J, Tordoir JJ, Mohaupt MG, et al. Novel baroreflex activation therapy in resistant hypertension: results of a European multi-center feasibility study. J Am Coll Cardiol. 2010;56:1254–8.

    Article  PubMed  Google Scholar 

  6. Wallbach M, Böhning E, Lehnig LY, Schroer C, Müller GA, Wachter R, et al. Safety profile of baroreflex activation therapy (NEO) in patients with resistant hypertension. J Hypertens. 2018;36:1762–9.

    Article  PubMed  CAS  Google Scholar 

  7. Bisognano JD, Bakris G, Nadim MK, Sanchez L, Kroon AA, Schafer J, et al. Baroreflex activation therapy lowers blood pressure in patients with resistant hypertension: results from the double-blind, randomized, placebo-controlled rheos pivotal trial. J Am Coll Cardiol. 2011;58:765–73.

    Article  PubMed  Google Scholar 

  8. Tohyama T, Hosokawa K, Saku K, Oga Y, Tsutsui H, Sunagawa K. Smart baroreceptor activation therapy strikingly attenuates blood pressure variability in hypertensive rats with impaired baroreceptor. Hypertension. 2020;75:885–92.

    Article  PubMed  CAS  Google Scholar 

  9. de Leeuw PW, Bisognano JD, Bakris GL, Nadim MK, Haller H, Kroon AA. Sustained reduction of blood pressure with baroreceptor activation therapy: results of the 6-year open follow-up. Hypertension. 2017;69:836–43.

    Article  PubMed  Google Scholar 

  10. Halbach M, Grothaus D, Hoffmann F, Madershahian N, Kuhr K, Reuter H. Baroreflex activation therapy reduces frequency and duration of hypertension-related hospitalizations in patients with resistant hypertension. Clin Auton Res. 2020;30:541–8.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Norman RA Jr, Coleman TG, Dent AC. Continuous monitoring of arterial pressure indicates sinoaortic denervated rats are not hypertensive. Hypertension. 1981;3:119–25.

    Article  PubMed  Google Scholar 

  12. VanNess JM, Hinojosa-Laborde C, Craig T, Haywood JR. Effect of sinoaortic deafferentation on renal wrap hypertension. Hypertension. 1999;33:476–81.

    Article  PubMed  CAS  Google Scholar 

  13. Fan W, Reynolds PJ, Andresen MC. Baroreflex frequency-response characteristics to aortic depressor and carotid sinus nerve stimulation in rats. Am J Physiol. 1996;271:H2218–2227.

    PubMed  CAS  Google Scholar 

  14. Lau EO, Lo CY, Yao Y, Mak AF, Jiang L, Huang Y, et al. Aortic baroreceptors display higher mechanosensitivity than carotid baroreceptors. Front Physiol. 2016;7:384.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Trippodo NC, Frohlich ED. Similarities of genetic (spontaneous) hypertension. Man and rat. Circ Res. 1981;48:309–19.

    Article  PubMed  CAS  Google Scholar 

  16. Sapru HN, Gonzalez E, Krieger AJ. Aortic nerve stimulation in the rat: cardiovascular and respiratory responses. Brain Res Bull. 1981;6:393–8.

    Article  PubMed  CAS  Google Scholar 

  17. Sapru HN, Krieger AJ. Carotid and aortic chemoreceptor function in the rat. J Appl Physiol. 1977;42:344–8.

    Article  PubMed  CAS  Google Scholar 

  18. Kobayashi M, Cheng ZB, Tanaka K, Nosaka S. Is the aortic depressor nerve involved in arterial chemoreflexes in rats? J Auton Nerv Syst. 1999;78:38–48.

    Article  PubMed  CAS  Google Scholar 

  19. Numao Y, Siato M, Terui N, Kumada M. The aortic nerve-sympathetic reflex in the rat. J Auton Nerv Syst. 1985;13:65–79.

    Article  PubMed  CAS  Google Scholar 

  20. Ma X, Abboud FM, Chapleau MW. Analysis of afferent, central, and efferent components of the baroreceptor reflex in mice. Am J Physiol Regul Integr Comp Physiol. 2002;283:R1033–1040.

    Article  PubMed  Google Scholar 

  21. Salman IM. Current approaches to quantifying tonic and reflex autonomic outflows controlling cardiovascular function in humans and experimental animals. Curr Hypertens Rep. 2015;17:015–0597.

    Article  Google Scholar 

  22. Fan W, Andresen MC. Differential frequency-dependent reflex integration of myelinated and nonmyelinated rat aortic baroreceptors. Am J Physiol. 1998;275:H632–640.

    PubMed  CAS  Google Scholar 

  23. Fan W, Schild JH, Andresen MC. Graded and dynamic reflex summation of myelinated and unmyelinated rat aortic baroreceptors. Am J Physiol. 1999;277:R748–756.

    PubMed  CAS  Google Scholar 

  24. Salman IM, Ameer OZ, McMurray S, Hassan SF, Sridhar A, Lewis SJ, et al. Low intensity stimulation of aortic baroreceptor afferent fibers as a potential therapeutic alternative for hypertension treatment. Sci Rep. 2022;12:12242.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Salman IM, Ameer OZ, Sridhar A, Lewis SJ, Hsieh Y-H. Abstract P110: low intensity stimulation of aortic baroreceptors as a potential therapeutic alternative for hypertension treatment. Hypertension. 2017;70:AP110–AP110.

    Article  Google Scholar 

  26. Cheng Z, Powley TL, Schwaber JS, Doyle FJ 3rd. A laser confocal microscopic study of vagal afferent innervation of rat aortic arch: chemoreceptors as well as baroreceptors. J Auton Nerv Syst. 1997;67:1–14.

    Article  PubMed  CAS  Google Scholar 

  27. Krieger EM, Marseillan RF. Aortic depressor fibers in the rat: an electrophysiological study. Am J Physiol. 1963;205:771–4.

    Article  PubMed  CAS  Google Scholar 

  28. Loewy AD, Spyer KM Central regulation of autonomic functions. Oxford University Press, USA; (1990).

  29. Sato T, Kawada T, Miyano H, Shishido T, Inagaki M, Yoshimura R, et al. New simple methods for isolating baroreceptor regions of carotid sinus and aortic depressor nerves in rats. Am J Physiol. 1999;276:H326–332.

    PubMed  CAS  Google Scholar 

  30. Mc CJ, Masson GM, Page IH. Aortic depressor nerves of the rat. Arch internationales de pharmacodynamie et de therapie. 1958;114:303–6.

    Google Scholar 

  31. Andrew BL. A laryngeal pathway for aortic baroceptor impulses. J Physiol. 1954;125:352–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Salman IM, Hildreth CM, Ameer OZ, Phillips JK. Differential contribution of afferent and central pathways to the development of baroreflex dysfunction in chronic kidney disease. Hypertension. 2014;63:804–10.

    Article  PubMed  CAS  Google Scholar 

  33. Salman IM, Phillips JK, Ameer OZ, Hildreth CM. Abnormal central control underlies impaired baroreflex control of heart rate and sympathetic nerve activity in female lewis polycystic kidney rats. J Hypertens. 2015;33:1418–28.

    Article  PubMed  CAS  Google Scholar 

  34. Salgado HC, Barale ÁR, Castania JA, Machado BH, Chapleau MW, Fazan R. Baroreflex responses to electrical stimulation of aortic depressor nerve in conscious SHR. Am J Physiol Heart Circ Physiol. 2007;292:H593–600.

    Article  PubMed  CAS  Google Scholar 

  35. Brognara F, Dias DP, Castania JA, Fazan R Jr, Lewis SJ, Salgado HC. Cardiovascular responses elicited by continuous versus intermittent electrical stimulation of the aortic depressor nerve in conscious rats. Life Sci. 2016;148:99–105.

    Article  PubMed  CAS  Google Scholar 

  36. Possas OS, Johnson AK, Lewis SJ. Role of nitrosyl factors in the hindlimb vasodilation elicited by baroreceptor afferent nerve stimulation. Am J Physiol Regul Integr Comp Physiol. 2006;290:R741–748.

    Article  PubMed  CAS  Google Scholar 

  37. Li BY, Qiao GF, Feng B, Zhao RB, Lu YJ, Schild JH. Electrophysiological and neuroanatomical evidence of sexual dimorphism in aortic baroreceptor and vagal afferents in rat. Am J Physiol Regul Integr Comp Physiol. 2008;295:R1301–1310.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Santa Cruz Chavez GC, Li BY, Glazebrook PA, Kunze DL, Schild JH. An afferent explanation for sexual dimorphism in the aortic baroreflex of rat. Am J Physiol Heart Circ Physiol. 2014;307:H910–921.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Fazan PV, Junior FR, Salgado CH, Barreira AA. Morphology of aortic depressor nerve myelinated fibers in normotensive Wistar-Kyoto and spontaneously hypertensive rats. J Auton Nerv Syst. 1999;77:133–9.

    Article  PubMed  Google Scholar 

  40. Fazan VP, Salgado HC, Barreira AA. Aortic depressor nerve unmyelinated fibers in spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol. 2001;280:H1560–1564.

    Article  PubMed  CAS  Google Scholar 

  41. Fazan VP, Salgado HC, dos Reis GC, Barreira AA. Relation between myelin area and axon diameter in the aortic depressor nerve of spontaneously hypertensive rats. J Neurosci Methods. 2005;148:130–6.

    Article  PubMed  CAS  Google Scholar 

  42. Salman IM. Differential frequency-dependent reflex summation of the aortic baroreceptor afferent input. Pflug Arch: Eur J Physiol. 2023;475:933–44.

    Article  CAS  Google Scholar 

  43. Salman IM, Ameer OZ, McMurray S, Giarola AS, Sridhar A, Lewis SJ, et al. Laterality influences central integration of baroreceptor afferent input in male and female Sprague Dawley rats. Front Physiol. 2020;11:499.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Barringer DL, Buñag RD. Differential anesthetic depression of chronotropic baroreflexes in rats. J Cardiovasc Pharmacol. 1990;15:10–15.

    Article  PubMed  CAS  Google Scholar 

  45. Murakami M, Niwa H, Kushikata T, Watanabe H, Hirota K, Ono K, et al. Inhalation anesthesia is preferable for recording rat cardiac function using an electrocardiogram. Biol Pharm Bull. 2014;37:834–9.

    Article  PubMed  CAS  Google Scholar 

  46. Stornetta RL, Guyenet PG, McCarty RC. Autonomic nervous system control of heart rate during baroreceptor activation in conscious and anesthetized rats. J Auton Nerv Syst. 1987;20:121–7.

    Article  PubMed  CAS  Google Scholar 

  47. Bencze M, Behuliak M, Zicha J. The impact of four different classes of anesthetics on the mechanisms of blood pressure regulation in normotensive and spontaneously hypertensive rats. Physiol Res. 2013;62:471–8.

    Article  PubMed  CAS  Google Scholar 

  48. Kubota Y, Umegaki K, Kagota S, Tanaka N, Nakamura K, Kunitomo M, et al. Evaluation of blood pressure measured by tail-cuff methods (without heating) in spontaneously hypertensive rats. Biol Pharm Bull. 2006;29:1756–8.

    Article  PubMed  CAS  Google Scholar 

  49. Shimokawa A, Kunitake T, Takasaki M, Kannan H. Differential effects of anesthetics on sympathetic nerve activity and arterial baroreceptor reflex in chronically instrumented rats. J Auton Nerv Syst. 1998;72:46–54.

    Article  PubMed  CAS  Google Scholar 

  50. Harbin J. Comparative study of anesthesia’s effect on baroreceptor reflex and sympathetic nerve activity in adult rats. Health Sciences USA: East Tennessee State University 2021;40.

  51. Chapleau MW, Hajduczok G, Abboud FM. Mechanisms of resetting of arterial baroreceptors: an overview. Am J Med Sci. 1988;295:327–34.

    Article  PubMed  CAS  Google Scholar 

  52. Andresen MC. Short- and long-term determinants of baroreceptor function in aged normotensive and spontaneously hypertensive rats. Circ Res. 1984;54:750–9.

    Article  PubMed  CAS  Google Scholar 

  53. Watkins L, Maixner W. The effect of pentobarbital anesthesia on the autonomic nervous system control of heart rate during baroreceptor activation. J Auton Nerv Syst. 1991;36:107–14.

    Article  PubMed  CAS  Google Scholar 

  54. Matsukawa K, Ninomiya I, Nishiura N. Effects of anesthesia on cardiac and renal sympathetic nerve activities and plasma catecholamines. Am J Physiol. 1993;265:R792–797.

    PubMed  CAS  Google Scholar 

  55. Yang CC, Kuo TB, Chan SH. Auto- and cross-spectral analysis of cardiovascular fluctuations during pentobarbital anesthesia in the rat. Am J Physiol. 1996;270:H575–582.

    PubMed  CAS  Google Scholar 

  56. Coote JH, Sato Y. Reflex regulation of sympathetic activity in the spontaneously hypertensive rat. Circ Res. 1977;40:571–7.

    Article  PubMed  CAS  Google Scholar 

  57. Seagard JL, Gallenberg LA, Hopp FA, Dean C. Acute resetting in two functionally different types of carotid baroreceptors. Circ Res. 1992;70:559–65.

    Article  PubMed  CAS  Google Scholar 

  58. Vayssettes-Courchay C, Melka J, Philouze C, Harouki N. Sympathetic nerve activity and baroreflex are strongly altered in a context of severe hypertension using the spontaneously hypertensive rat model associated with chronic reduction of nitric oxide. Int J hypertens. 2021;2021:4808657.

    Article  PubMed  PubMed Central  Google Scholar 

  59. de Paula PM, Castania JA, Bonagamba LG, Salgado HC, Machado BH. Hemodynamic responses to electrical stimulation of the aortic depressor nerve in awake rats. Am J Physiol. 1999;277:R31–38.

    PubMed  Google Scholar 

  60. Domingos-Souza G, Santos-Almeida FM, Meschiari CA, Ferreira NS, Pereira CA, Pestana-Oliveira N, et al. The ability of baroreflex activation to improve blood pressure and resistance vessel function in spontaneously hypertensive rats is dependent on stimulation parameters. Hypertens Res. 2021;44:932–40.

    Article  PubMed  CAS  Google Scholar 

  61. Durand MT, Mota AL, Barale AR, Castania JA, Fazan R Jr, Salgado HC. Time course of the hemodynamic responses to aortic depressor nerve stimulation in conscious spontaneously hypertensive rats. Braz J Med Biol Res. 2012;45:444–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Pinto TO, Lataro RM, Castania JA, Durand MT, Silva CA, Patel KP, et al. Electrical stimulation of the aortic depressor nerve in conscious rats overcomes the attenuation of the baroreflex in chronic heart failure. Am J Physiol Regul Integr Comp Physiol. 2016;310:R612–618.

    Article  PubMed  Google Scholar 

  63. de Toledo Durand M, Castania JA, Fazan R Jr, Salgado MC, Salgado HC. Hemodynamic responses to aortic depressor nerve stimulation in conscious L-NAME-induced hypertensive rats. Am J Physiol Regul Integr Comp Physiol. 2011;300:R418–427.

    Article  Google Scholar 

  64. Salman IM. Major autonomic neuroregulatory pathways underlying short- and long-term control of cardiovascular function. Curr Hypertens Rep. 2016;18:016–0625.

    Article  Google Scholar 

  65. Yu DT Electrical stimulation. In: Braddom RL, editor. Physical Medicine and Rehabilitation E-book: Elsevier Health Sciences; (2010). 469-81.

  66. Alnima T, Goedhart EJBM, Seelen R, van der Grinten CPM, de Leeuw PW, Kroon AA. Baroreflex activation therapy lowers arterial pressure without apparent stimulation of the carotid bodies. Hypertension. 2015;65:1217–22.

    Article  PubMed  CAS  Google Scholar 

  67. Katayama PL, Castania JA, Dias DP, Patel KP, Fazan R, Jr., Salgado HC Role of chemoreceptor activation in hemodynamic responses to electrical stimulation of the carotid sinus in conscious rats. Hypertension. 2015;598-603.

  68. Wallbach M, Lehnig LY, Schroer C, Lüders S, Böhning E, Müller GA, et al. Effects of baroreflex activation therapy on ambulatory blood pressure in patients with resistant hypertension. Hypertension. 2016;67:701–9.

    Article  PubMed  CAS  Google Scholar 

  69. Krauthamer V, Bekken M, Horowitz JL. Morphological and electrophysiological changes produced by electrical stimulation in cultured neuroblastoma cells. Bioelectromagnetics. 1991;12:299–314.

    Article  PubMed  CAS  Google Scholar 

  70. Tilki HE, Stålberg E, Coşkun M, Güngör L. Effect of heating on nerve conduction in carpal tunnel syndrome. J Clin Neurophysiol. 2004;21:451–6.

    Article  PubMed  Google Scholar 

  71. Heusser K, Tank J, Brinkmann J, Menne J, Kaufeld J, Linnenweber-Held S, et al. Acute response to unilateral unipolar electrical carotid sinus stimulation in patients with resistant arterial hypertension. Hypertension. 2016;67:585–91.

    Article  PubMed  CAS  Google Scholar 

  72. Salman IM, Ameer OZ, McMurray S, Hassan SF, Sridhar A, Lewis SJ, et al. Differential central integration of left versus right baroreceptor afferent input in spontaneously hypertensive rats. J Hypertens. 2023;41:1191–1200.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Salman IM. Functional symmetry of the aortic baroreflex in female spontaneously hypertensive rats. J Hypertens. 2023;41:1456–65.

    Article  PubMed  CAS  Google Scholar 

  74. de Leeuw PW, Alnima T, Lovett E, Sica D, Bisognano J, Haller H, et al. Bilateral or unilateral stimulation for baroreflex activation therapy. Hypertension. 2015;65:187–92.

    Article  PubMed  Google Scholar 

  75. Irigoyen MC, Moreira ED, Werner A, Ida F, Pires MD, Cestari IA, et al. Aging and baroreflex control of RSNA and heart rate in rats. Am J Physiol Regul Integr Comp Physiol. 2000;279:R1865–1871.

    Article  PubMed  CAS  Google Scholar 

  76. Ferrari AU, Daffonchio A, Albergati F, Mancia G. Differential effects of aging on the heart rate and blood pressure influences of arterial baroreceptors in awake rats. J Hypertens. 1991;9:615–21.

    Article  PubMed  CAS  Google Scholar 

  77. Monahan KD. Effect of aging on baroreflex function in humans. Am J Physiol Regul Integr Comp Physiol. 2007;293:R3–R12.

    Article  PubMed  CAS  Google Scholar 

  78. Chapleau MW, Sabharwal R. Methods of assessing vagus nerve activity and reflexes. Heart Fail Rev. 2011;16:109–27.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Amorim MM, Castania JA, Salgado HC, Fazan VPS. Aortic depressor nerve morphology in developing spontaneously hypertensive rats. FASEB J. 2016;30:227.222–227.222.

    Article  Google Scholar 

  80. Hajduczok G, Chapleau MW, Abboud FM. Rapid adaptation of central pathways explains the suppressed baroreflex with aging. Neurobiol Aging. 1991;12:601–4.

    Article  PubMed  CAS  Google Scholar 

  81. Stauss HM. Differential hemodynamic and respiratory responses to right and left cervical vagal nerve stimulation in rats. Physiol Rep. 2017;5:13244.

    Article  Google Scholar 

  82. Lilly JC, Hughes JR, Alvord EC Jr, Galkin TW. Brief, noninjurious electric waveform for stimulation of the brain. Science. 1955;121:468–9.

    Article  PubMed  CAS  Google Scholar 

  83. Merrill DR, Bikson M, Jefferys JG. Electrical stimulation of excitable tissue: design of efficacious and safe protocols. J Neurosci Methods. 2005;141:171–98.

    Article  PubMed  Google Scholar 

  84. Morton SL, Daroux ML, Mortimer JT. The role of oxygen reduction in electrical stimulation of neural tissue. J Electrochem Soc. 1994;141:122.

    Article  CAS  Google Scholar 

  85. Brummer SB, McHardy J, Turner MJ. Electrical stimulation with Pt electrodes: trace analysis for dissolved platinum and other dissolved electrochemical products. Brain Behav Evol. 1977;14:10–22.

    Article  PubMed  CAS  Google Scholar 

  86. Musa S, Rand DR, Bartic C, Eberle W, Nuttin B, Borghs G. Coulometric detection of irreversible electrochemical reactions occurring at Pt microelectrodes used for neural stimulation. Anal Chem. 2011;83:4012–22.

    Article  PubMed  CAS  Google Scholar 

  87. Piallat B, Chabardès S, Devergnas A, Torres N, Allain M, Barrat E, et al. Monophasic but not biphasic pulses induce brain tissue damage during monopolar high-frequency deep brain stimulation. Neurosurgery. 2009;64:156–62.

    Article  PubMed  Google Scholar 

  88. Butterwick A, Vankov A, Huie P, Freyvert Y, Palanker D. Tissue damage by pulsed electrical stimulation. IEEE Trans Biomed Eng. 2007;54:2261–7.

    Article  PubMed  CAS  Google Scholar 

  89. Alnima T, de Leeuw PW, Kroon AA. Baroreflex activation therapy for the treatment of drug-resistant hypertension: new developments. Cardiol Res Pract. 2012;2012:587194.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Larson CE, Meng E. A review for the peripheral nerve interface designer. J Neurosci Methods. 2020;332:108523.

    Article  PubMed  Google Scholar 

  91. Turi Z, Ambrus GG, Ho KA, Sengupta T, Paulus W, Antal A. When size matters: large electrodes induce greater stimulation-related cutaneous discomfort than smaller electrodes at equivalent current density. Brain Stimul. 2014;7:460–7.

    Article  PubMed  Google Scholar 

  92. Otchy TM, Michas C, Lee B, Gopalan K, Nerurkar V, Gleick J, et al. Printable microscale interfaces for long-term peripheral nerve mapping and precision control. Nat Commun. 2020;11:020–18032.

    Article  Google Scholar 

  93. Spearman BS, Desai VH, Mobini S, McDermott MD, Graham JB, Otto KJ, et al. Tissue‐engineered peripheral nerve interfaces. Adv Funct Mater. 2018;28:1701713.

    Article  PubMed  Google Scholar 

  94. Famm K, Litt B, Tracey KJ, Boyden ES, Slaoui M. Drug discovery: a jump-start for electroceuticals. Nature. 2013;496:159–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Lissandrello CA, Gillis WF, Shen J, Pearre BW, Vitale F, Pasquali M, et al. A micro-scale printable nanoclip for electrical stimulation and recording in small nerves. J Neural Eng. 2017;14:1741–2552.

    Article  Google Scholar 

  96. Hosokawa K, Sunagawa K. Closed-loop neuromodulation technology for baroreflex blood pressure control. Proc IEEE. 2015;104:432–43.

    Article  Google Scholar 

  97. Sato T, Kawada T, Shishido T, Sugimachi M, Alexander J Jr, Sunagawa K. Novel therapeutic strategy against central baroreflex failure: a bionic baroreflex system. Circulation. 1999;100:299–304.

    Article  PubMed  CAS  Google Scholar 

  98. Gao XY, Huang XL, Wang HJ, Zhou LM, Xu Y, Wang W, et al. Depressor effect of closed-loop chip system in spontaneously hypertensive rats. Auton Neurosci. 2007;137:84–91.

    Article  PubMed  Google Scholar 

  99. Hosokawa K, Ide T, Tobushi T, Sakamoto K, Onitsuka K, Sakamoto T, et al. Bionic baroreceptor corrects postural hypotension in rats with impaired baroreceptor. Circulation. 2012;126:1278–85.

    Article  PubMed  Google Scholar 

  100. Wark HA, Sharma R, Mathews KS, Fernandez E, Yoo J, Christensen B, et al. A new high-density (25 electrodes/mm²) penetrating microelectrode array for recording and stimulating sub-millimeter neuroanatomical structures. J Neural Eng. 2013;10:1741–2560.

    Article  Google Scholar 

  101. Yoshida K, Pellinen D, Pivin D, Rousche P, Kipke D. Development of the thin-film longitudinal intra-fascicular electrode. Proceedings of the 5th Annual Conference of the International Functional Electrical Stimulation Society: Citeseer; (2000). 279-81.

  102. Boretius T, Badia J, Pascual-Font A, Schuettler M, Navarro X, Yoshida K, et al. A transverse intrafascicular multichannel electrode (TIME) to interface with the peripheral nerve. Biosens Bioelectron. 2010;26:62–69.

    Article  PubMed  CAS  Google Scholar 

  103. Cutrone A, Del Valle J, Santos D, Badia J, Filippeschi C, et al. A three-dimensional self-opening intraneural peripheral interface (SELINE). J Neural Eng. 2015;12:1741–2560.

    Article  Google Scholar 

  104. Gillis WF, Lissandrello CA, Shen J, Pearre BW, Mertiri A, Deku F, et al. Carbon fiber on polyimide ultra-microelectrodes. J Neural Eng. 2018;15:1741–2552.

    Article  Google Scholar 

  105. Bradley RM, Cao X, Akin T, Najafi K. Long term chronic recordings from peripheral sensory fibers using a sieve electrode array. J Neurosci Methods. 1997;73:177–86.

    Article  PubMed  CAS  Google Scholar 

  106. Lacour SP, Fitzgerald JJ, Lago N, Tarte E, McMahon S, Fawcett J. Long micro-channel electrode arrays: a novel type of regenerative peripheral nerve interface. IEEE Trans Neural Syst Rehabil Eng. 2009;17:454–60.

    Article  PubMed  Google Scholar 

  107. Seifert JL, Desai V, Watson RC, Musa T, Kim YT, Keefer EW, et al. Normal molecular repair mechanisms in regenerative peripheral nerve interfaces allow recording of early spike activity despite immature myelination. IEEE Trans Neural Syst Rehabil Eng. 2012;20:220–7.

    Article  PubMed  Google Scholar 

  108. Desai VH, Spearman BS, Shafor CS, Natt S, Teem B, Graham JB, et al. Design, fabrication, and characterization of a scalable tissue-engineered-electronic-nerve-interface (TEENI) device. 2017 8th International IEEE/EMBS Conference on Neural Engineering (NER): IEEE; 2017;203-6.

  109. Tarler MD, Mortimer JT. Comparison of joint torque evoked with monopolar and tripolar-cuff electrodes. IEEE Trans Neural Syst Rehabil Eng. 2003;11:227–35.

    Article  PubMed  Google Scholar 

  110. Tyler DJ, Durand DM. Functionally selective peripheral nerve stimulation with a flat interface nerve electrode. IEEE Trans Neural Syst Rehabil Eng. 2002;10:294–303.

    Article  PubMed  Google Scholar 

  111. Elyahoodayan S, Larson C, Cobo AM, Meng E, Song D. Acute in vivo testing of a polymer cuff electrode with integrated microfluidic channels for stimulation, recording, and drug delivery on rat sciatic nerve. J Neurosci Methods. 2020;336:108634.

    Article  PubMed  CAS  Google Scholar 

  112. Xiang Z, Sheshadri S, Lee SH, Wang J, Xue N, Thakor NV, et al. Mapping of small nerve trunks and branches using adaptive flexible electrodes. Adv Sci. 2016;3:1500386.

    Article  Google Scholar 

  113. Xiang Z, Yen SC, Sheshadri S, Wang J, Lee S, Liu YH, et al. Progress of flexible electronics in neural interfacing - a self-adaptive non-invasive neural ribbon electrode for small nerves recording. Adv Mater. 2016;28:4472–9.

    Article  PubMed  CAS  Google Scholar 

  114. González-González MA, Kanneganti A, Joshi-Imre A, Hernandez-Reynoso AG, Bendale G, Modi R, et al. Thin film multi-electrode softening cuffs for selective neuromodulation. Sci Rep. 2018;8:16390.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

IS contributed to literature review, prepared figures, drafted manuscript, and approved and submitted final version of manuscript.

Corresponding author

Correspondence to Ibrahim M. Salman.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salman, I.M. Key challenges in exploring the rat as a preclinical neurostimulation model for aortic baroreflex modulation in hypertension. Hypertens Res 47, 399–415 (2024). https://doi.org/10.1038/s41440-023-01486-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-023-01486-6

Keywords

Search

Quick links