Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Seasonal variation in blood pressure: current evidence and recommendations for hypertension management

Abstract

Blood pressure (BP) exhibits seasonal variation, with an elevation of daytime BP in winter and an elevation of nighttime BP in summer. The wintertime elevation of daytime BP is largely attributable to cold temperatures. The summertime elevation of nighttime BP is not due mainly to temperature; rather, it is considered to be related to physical discomfort and poor sleep quality due to the summer weather. The winter elevation of daytime BP is likely to be associated with the increased incidence of cardiovascular disease (CVD) events in winter compared to other seasons. The suppression of excess seasonal BP changes, especially the wintertime elevation of daytime BP and the summertime elevation of nighttime BP, would contribute to the prevention of CVD events. Herein, we review the literature on seasonal variations in BP, and we recommend the following measures for suppressing excess seasonal BP changes as part of a regimen to manage hypertension: (1) out-of-office BP monitoring, especially home BP measurements, throughout the year to evaluate seasonal variations in BP; (2) the early titration and tapering of antihypertensive medications before winter and summer; (3) the optimization of environmental factors such as room temperature and housing conditions; and (4) the use of information and communication technology–based medicine to evaluate seasonal variations in BP and provide early therapeutic intervention. Seasonal BP variations are an important treatment target for the prevention of CVD through the management of hypertension, and further research is necessary to clarify these variations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Parati G. Blood pressure variability: its measurement and significance in hypertension. J Hypertens. 2005;23:S19–S25.

    Article  CAS  Google Scholar 

  2. Palatini P, Reboldi G, Beilin LJ, Casiglia E, Eguchi K, Imai Y, et al. Added predictive value of night-time blood pressure variability for cardiovascular events and mortality: the Ambultory Blood Pressure-International Study. Hypertension. 2014;64:487–93.

    Article  CAS  PubMed  Google Scholar 

  3. Hansen TW, Thijs L, Li Y, Boggia J, Kikuya M, Björklund-Bodegård K, et al. Prognostic value of reading-to-reading blood pressure variability over 24 h in 8939 subjects from 11 populations. Hypertension 2010;55:1049–57.

    Article  CAS  PubMed  Google Scholar 

  4. Johansson JK, Niiranen TJ, Pukka PJ, Jula AM. Prognostic value of the variability in home-measured blood pressure and heart rate: the Finn-Home study. Hypertension. 2012;59:212–8.

    Article  CAS  PubMed  Google Scholar 

  5. Hoside S, Yano Y, Mizuno H, Kanegae H, Kario K. Day-by-day variability of home blood pressure and incident cardiovascular disease in clinical practice: The J-HOP study (Japan Morning Surge-Home Blood Pressure). Hypertension. 2018;71:177–84.

    Article  CAS  Google Scholar 

  6. Rothwell PM, Howard SC, Dolan E, O’Brien E, Dobson JE, Dahlöf B, et al. Prognositc significance of visit-to-visit variability, maximum systolic blood pressure, and episodic hypertension. Lancet. 2010;375:895–905.

    Article  PubMed  Google Scholar 

  7. Stergiou GS, Palatini P, Modesti PA, Asayama K, Asmar R, Bilo G, et al. Seasonal variation in blood pressure: evidence, consensus and recommendations for clinical practice. Consensus statement by the European Society of Hypertension working group on blood pressure monitoring and cardiovascular variability. J Hypertens. 2020;38:1235–43.

    Article  CAS  PubMed  Google Scholar 

  8. Kollias A, Kyriakoulis KG, Stambolliu E, Ntineri A, Anagnostopoulos I, Stergiou GS. Seasonal blood pressure variation assessed by different measurement methods: systematic review and meta-analysis. J Hypertens. 2020;38:791–8.

    Article  CAS  PubMed  Google Scholar 

  9. Stergiou GS, Myrsilidi A, Kollias A, Destounis A, Roussias L, Kalogeropoulos P. Seasonal variation in meteorological parameters and office, ambulatory and home blood pressure: predicting factors and clinical implications. Hypertens Res. 2015;38:869–75.

    Article  PubMed  Google Scholar 

  10. Hanazawa T, Asayama K, Watabe D, Hosaka M, Satoh M, Yasui D, et al. Seasonal variation in self-measured home blood pressure among patients on antihypertensive medications: HOMED-BP study. Hypertens Res. 2017;40:284–90.

    Article  PubMed  Google Scholar 

  11. Iwahori T, Miura K, Obayashi K, Ohkubo T, Nakajima H, Shiga T, et al. Seasonal variation in home blood pressure: findings from nationwide web-based monitoring in Japan. BMJ Open. 2018;8:e017351.

    Article  PubMed  PubMed Central  Google Scholar 

  12. The Eurowinter Group. Cold exposure and winter mortality from ischaemic heart disease, cerebrovascular disease, respiratory disease, and all causes in warm and cold regions of Europe. The Eurowinter Group. Lancet. 1997;349:1341–6.

    Article  Google Scholar 

  13. Yang L, Li L, Lewington S, Guo Y, Sherliker P, Bian Z, et al. China Kadoorie Biobank Study Collaboration. Outdoor temperature, blood pressure, and cardiovascular disease mortality among 23,000 individuals with diagnosed cardiovascular disease from China. Eur Heart J. 2015;36:1178–85.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Morabito M, Crisci A, Orlandini S, Maracchi G, Gensini GF, Modesti PA. A synoptic approach to weather conditions discloses a relationship with ambulatory blood pressure in hypertensives. Am J Hypertens. 2008;21:748–52.

    Article  PubMed  Google Scholar 

  15. Gaspattini A, Guo Y, Hashizume M, Lavigne E, Zanobetti A, Schwartz J, et al. Mortality risk attributable to high and low ambient temperature: a multicountry observation study. Lancet. 2015;386:369–75.

    Article  Google Scholar 

  16. Modesti PA, Morabito M, Bertolozzi I, Massetti G, Panci G, Lumachi C, et al. Weather-related changes in 24-hour blood pressure profile: Effects of age and implications for hypertension management. Hypertension. 2006;47:155–61.

    Article  CAS  PubMed  Google Scholar 

  17. Sega R, Cesana G, Bombelli M, Grassi G, Stella ML, Zanchetti A, et al. Seasonal variations in home and ambulatory blood pressure in the PAMELA population. Pressione Arteriose Monitorate E Loro Associazioni. J Hypertens. 1998;16:1585–92.

    Article  CAS  PubMed  Google Scholar 

  18. Minami J, Kawano Y, Ishimitsu T, Yoshimi H, Takishita S. Seasonal variations in office, home and 24h ambulatory blood pressure in patients with essential hypertension. J Hypertens. 1996;14:1421–5.

    Article  CAS  PubMed  Google Scholar 

  19. Kimura T, Senda S, Masugata H, Yamagami A, Okuyama H, Kohno T, et al. Seasonal blood pressure variation and its relationship to environmental temperature in healthy elderly Japanese studied by home measurements. Clin Exp Hypertens. 2010;32:8–12.

    Article  PubMed  Google Scholar 

  20. Hozawa A, Kuriyama S, Shimazu T, Ohmori-Matsuda K, Tsuji I. Seasonal variation in home blood pressure measurements and relation to outside temperature in Japan. Clin Exp Hypertens. 2011;33:153–8.

    Article  PubMed  Google Scholar 

  21. Narita K, Hoshide S, Fujiwara T, Kanegae H, Kario K. Seasonal variation of home blood pressure and its association with target organ damage: The J-HOP Study (Japan Morning Surge-Home Blood Pressure). Am J Hypertens. 2020;33:620–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Whelton PK, Carey RM, Aronow WS, Casey DE Jr, Collins KJ, Dennison Himmelfarb C, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: executive summary: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension. 2018;71:1269–324.

    Article  CAS  PubMed  Google Scholar 

  23. Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, et al. ESC Scientific Document Group. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J. 2018;39:3021–104.

    Article  PubMed  Google Scholar 

  24. Umemura S, Arima H, Arima S, Asayama K, Dohi Y, Hirooka Y, et al. The Japanese Society of Hypertension Guidelines for the management of hypertension (JSH2019). Hypertens Res. 2019;42:1235–481.

    Article  PubMed  Google Scholar 

  25. Winnicki M, Canali C, Accurso V, Dorigatti F, Giovinazzo P, Palatini P. Relation of 24-hour ambulatory blood pressure and short-term blood pressure variability to seasonal changes in environmental temperature in stage I hypertensive subjects. Clin Exp Hypertens. 1996;18:995–1012.

    Article  CAS  PubMed  Google Scholar 

  26. Saeki K, Obayashi K, Iwamoto J, Tone N, Okamoto N, Tomioka K, et al. Stronger association of indoor temperature than outdoor temperature with blood pressure in colder months. J Hypertens. 2014;32:1582–9.

    Article  CAS  PubMed  Google Scholar 

  27. Imai Y, Munakata M, Ohkubo T, Satoh H, Yoshino H, Watanabe N, et al. Seasonal variation in blood pressure in normotensive women studied by home measurements. Clin Sci. 1996;90:55–60.

    Article  CAS  Google Scholar 

  28. Yatabe J, Yatabe MS, Morimoto S, Watanabe T, Ichihara A. Effects of room temperature on home blood pressure variations: Findings from a long-term observational study in Aizumisato Town. Hypertens Res. 2017;40:785–7.

    Article  PubMed  Google Scholar 

  29. Umishio W, Ikaga T, Kario K, Fujino Y, Hoshi T, Ando S, et al. SWH Survey Group. Cross-sectional analysis of the relationship between home blood pressure and indoor temperature in winter: A Nationwide Smart Wellness Housing Survey in Japan. Hypertension. 2019;74:756–66.

    Article  CAS  PubMed  Google Scholar 

  30. Murakami S, Otsuka K, Kono T, Soyama A, Umeda T, Yamamoto N, et al. Impact of outdoor temperature on prewaking morning surge and nocturnal decline in blood pressure in a Japanese population. Hypertens Res. 2011;34:70–73.

    Article  PubMed  Google Scholar 

  31. Kario K, Pickering TG, Hoshide S, Eguchi K, Ishikawa J, Morinari M, et al. Morning blood pressure surge and hypertensive cerebrovascular disease. Role of the alpha adrenergic sympathetic nervous system. Am J Hypertens. 2004;17:668–75.

    Article  CAS  PubMed  Google Scholar 

  32. Naito Y, Tsujino T, Fujioka Y, Ohyanagi M, Iwasaki T. Augmented diurnal variations of the cardiac renin-angiotensin system in hypertensive rats. Hypertension. 2002;40:827–33.

    Article  CAS  PubMed  Google Scholar 

  33. Fedecostante M, Barbatelli P, Guerra F, Espinosa E, Dessì-Fulgheri P, Sarzani R. Summer does not always mean lower: Seasonality of 24 h, daytime, and night-time blood pressure. J Hypertens. 2012;30:1392–8.

    Article  CAS  PubMed  Google Scholar 

  34. Modesti PA, Morabito M, Massetti L, Rapi S, Orlandini S, Mancia G, et al. Seasonal blood pressure changes: an independent relationship with temperature and daylight hours. Hypertension. 2013;61:908–14.

    Article  CAS  PubMed  Google Scholar 

  35. Tabara Y, Matsumoto T, Murase K, Nagashita S, Kosugi S, Nakayama T, et al. and the Nagahama Study Group. Seasonal variation in nocturnal home blood pressure fall: The Nagahama study. Hypertens Res. 2018;41:198–208.

    Article  PubMed  Google Scholar 

  36. Narita K, Hoshide S, Kanegae H, Kario K Seasonal variation in masked nocturnal hypertension: The J-HOP Nocturnal Blood Pressure Study. Am J Hypertens. 2020 Nov 27; hpaa193. https://doi.org/10.1093/ajh/hpaa193. Online ahead of print.

  37. Sega R, Facchetti R, Bombelli M, Cesana G, Corrao G, Grassi G, et al. Prognosis value of ambulatory and home blood pressure compared with office blood pressure in the general population: Follow-up results from the Pressioni Arteriose Monitorate e Loro Association (PAMELA) study. Circulation. 2005;111:1777–83.

    Article  PubMed  Google Scholar 

  38. Boggia J, Li Y, Thijs L, Hansen TW, Kikuya M, Björklund-Bodegård K, et al. International Database on Ambulatory Blood Pressure Monitoring in Relation to Cardiovascular Outcomes (IDACO) investigators. Prognostic accuracy of day versus night ambulatory blood pressure: a cohort study. Lancet. 2007;370:1219–29.

    Article  PubMed  Google Scholar 

  39. Kario K, Kanegae H, Tomitani N, Okawara Y, Fujiwara T, Yano Y, et al. Group., on behalf of the J-HOP Study. Nighttime blood pressure measured by home blood pressure monitoring as an independent predictor of cardiovascular events in general practice. Hypertension. 2019;73:1240–8.

    Article  CAS  PubMed  Google Scholar 

  40. Nishizawa M, Fujiwara T, Hoshide S, Sato K, Okawara Y, Tomitai N, et al. Winter morning surge in blood pressure after the Great East Japan Earthquake. J Clin Hypertens (Greenwich). 2019;21:208–16.

    Article  Google Scholar 

  41. Matsumoto T, Tabara Y, Murase K, Setoh K, Kawaguchi T, Nagashima S, et al. Nagahama Study Group. Nocturia and increase in nocturnal blood pressure: the Nagahama Study. J Hypertens. 2018;36:2185–92. https://doi.org/10.1097/HJH.0000000000001802

    Article  CAS  PubMed  Google Scholar 

  42. Ohishi M, Kubozono T, Higuchi K, Akasaki Y. Hypertension, cardiovascular disease, and nocturia: a systematic review of the pathophysiological mechanisms. Hypertens Res. 2021. https://doi.org/10.1038/s41440-021-00634-0

    Article  PubMed  Google Scholar 

  43. Thomas SJ, Booth JN 3rd, Jaeger BC, Hubbard D, Sakhuja S, Abdalla M, et al. Association of sleep characteristics with nocturnal hypertension and non-dipping blood pressure in the CARDIA Study. J Am Heart Assoc. 2020;9:e015062.

    PubMed  PubMed Central  Google Scholar 

  44. Hoshide S, Kario K, Chia YC, Siddique S, Buranakitjaroen P, Tsoi K, et al. Characteristics of hypertension in obstructive sleep apnea: an Asian experience. J Clin Hypertens. 2021;23:489–95.

    Article  Google Scholar 

  45. Modesti PA. Season, temperature and blood pressure: a complex interaction. Eur J Intern Med. 2013;24:604–7.

    Article  PubMed  Google Scholar 

  46. Yoshimura K, Kamoto T, Tsukamoto T, Oshiro K, Kinukawa N, Ogawa O. Seasonal alterations in nocturia and other storage symptoms in three Japanese communities. Urology 2007;69:864–70.

    Article  PubMed  Google Scholar 

  47. Cassol CM, Martinez D, Silva FABS, Fischer MK, Lenz MD, Bós AJG. Is sleep apnea a winter disease? Meteorologic and sleep laboratory evidence collected over 1 decade. Chest. 2012;142:1499–507.

    Article  PubMed  Google Scholar 

  48. Takizawa S, Shibata T, Takagi S, Kobayashi S, Japan Standard Stroke Registry Study Group. Seasonal variation of stroke incidence in Japan for 35631 stroke patients in the Japanese standard stroke registry, 1998–2007. J Stroke Cerebrovasc Dis. 2013;22:36–41.

    Article  PubMed  Google Scholar 

  49. Cannistraci CV, Nieminen T, Nishi M, Khachigian LM, Viikilä J, Laine M, et al. “Summer shift”: A potential effect of sunshine on the time onset of ST-elevation acute myocardial infarction. J Am Heart Assoc. 2018;7:e006878.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Modesti PA, Rapi S, Rogolino A, Tosi B, Galanti G. Seasonal blood pressure variation: Implications for cardiovascular risk stratification. Hypertens Res. 2018;41:475–82.

    Article  PubMed  Google Scholar 

  51. Muller JE, Tofler GH, Stone PH. Circadian variation and triggers of onset of acute cardiovascular disease. Circulation 1989;79:733–43.

    Article  CAS  PubMed  Google Scholar 

  52. Aubinière-Robb L, Jeemon P, Hastie CE, Patel RK, McCallum L, Morrison D, et al. Blood pressure response to patterns of weather fluctuations and effect on mortality. Hypertension. 2013;62:190–6.

    Article  PubMed  CAS  Google Scholar 

  53. Hanazawa T, Asayama K, Watabe D, Tanabe A, Satoh M, Inoue R, et al. Association between amplitude of seasonal variation in self-measured home blood pressure and cardiovascular outcomes: HOMED-BP (Hypertension Objective Treatment Based on Measurement By Electrical Devices of Blood Pressure) Study. J Am Heart Assoc. 2018;7:e008509.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Narita K, Hoshide S, Kario K Relationship between home blood pressure and the onset season of cardiovascular events: The J-HOP Study (Japan Morning Surge-Home Blood Pressure). Am J Hypertens. 2021; hpab016. https://doi.org/10.1093/ajh/hpab016.

  55. Park S, Kario K, Chia YC, Turana Y, Chen CH, Buranakitjaroen P, et al. HOPE Asia Network. The influence of the ambient temperature on blood pressure and how it will affect the epidemiology of hypertension in Asia. J Clin Hypertens (Greenwich). 2020;22:438–44.

    Article  Google Scholar 

  56. Saeki K, Obayashi K, Kurumatani N. Short-term effects of instruction in home heating on indoor temperature and blood pressure in elderly people: a randomized controlled trial. J Hypertens. 2015;33:2338–43.

    Article  CAS  PubMed  Google Scholar 

  57. WHO. Housing and Health Guidelines. 2018. https://www.who.int/publications/i/item/9789241550376. Accessed Dec 26, 2020.

  58. Shiue I, Shiue M. Indoor temperature below 18°C accounts for 9% of population attributable risk for high blood pressure in Scotland. Int J Cardiol. 2014;171:e1–e2.

    Article  PubMed  Google Scholar 

  59. Nishizawa M, Hoshide S, Okawara Y, Matsuo T, Kario K. Strict blood pressure control achieved using an ICT-based home blood pressure monitoring system in a catastrophically damaged area after a disaster. J Clin Hypertens (Greenwich). 2017;19:26–29.

    Article  Google Scholar 

  60. Kario K, Tomitani N, Kanegae H, Yasui N, Nishizawa M, Fujiwara T, et al. Development of a new ICT-based multisensory blood pressure monitoring system for use in hemodynamic biomarker-initiated anticipation medicine for cardiovascular disease: the national IMPACT program project. Prog Cardiovasc Dis. 2017;60:435–49.

    Article  PubMed  Google Scholar 

  61. Kario K. Management of hypertension in the digital era: Small wearable monitoring devices for remote blood pressure monitoring. Hypertension. 2020;76:640–50.

    Article  CAS  PubMed  Google Scholar 

  62. Kario K, Chia YC, Sukonthasarn A, Turana Y, Shin J, Chen CH, et al. Diversity of and initiatives for hypertension management in Asia–Why we need the HOPE Asia Network. J Clin Hypertens (Greenwich). 2020;22:331–43.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

KK takes primary responsibility for this paper. KN wrote the manuscript. All authors reviewed/edited the manuscript.

Corresponding author

Correspondence to Kazuomi Kario.

Ethics declarations

Conflict of interest

KK has received research funding from Teijin Pharma Limited, Omron Healthcare Co., Fukuda Denshi, Bayer Yakuhin Ltd., A&D Co., Daiichi Sankyo Co., Mochida Pharmaceutical Co., EA Pharma, Boehringer Ingelheim Japan Inc., Tanabe Mitsubishi Pharma Corp., Shionogi & Co., MSD K.K., Sanwa Kagaku Kenkyusho Co., and Bristol-Myers Squibb K.K., as well as honoraria from Takeda Pharmaceutical Co. and Omron Healthcare Co.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narita, K., Hoshide, S. & Kario, K. Seasonal variation in blood pressure: current evidence and recommendations for hypertension management. Hypertens Res 44, 1363–1372 (2021). https://doi.org/10.1038/s41440-021-00732-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-021-00732-z

Keywords

This article is cited by

Search

Quick links