Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Presence and severity of coronary artery disease in patients who achieved intensive blood pressure reduction at the time of coronary computed tomography angiography

Abstract

Blood pressure (BP)-lowering treatment should be aimed at achieving intensive BP control. Coronary computed tomography angiography (CCTA) has become more widely available and enables the accurate noninvasive assessment of coronary artery stenosis for screening. The presence and severity of coronary artery disease (CAD) in patients who achieved intensive BP control at the time of CCTA were compared to those in patients without hypertension (HTN). Nine hundred eighty-five consecutive subjects who were clinically suspected of having CAD or who had at least one cardiac risk factor underwent CCTA. The patients were divided into four groups: patients without HTN (non-HTN group), hypertensive patients who underwent intensive BP lowering (intensive group, <130/80 mmHg), patients who underwent standard BP lowering (standard group, 130–139/80–89 mmHg) and patients with uncontrolled BP (uncontrolled group, >140/90 mmHg). Interestingly, %CAD in the Intensive group was significantly higher than that in patients without HTN. The Intensive group was older and had a higher body mass index, more significantly stenosed coronary vessels, lower levels of high-density lipoprotein cholesterol in the blood, and higher rates of dyslipidemia, diabetes, and anti-dyslipidemia and anti-diabetic medication use than the non-HTN group. The presence of CAD in the Intensive group was independently associated with age, male and smoking, whereas the presence of CAD in the non-HTN group was associated with age, male and family history. Finally, predictors of the number of VDs in the non-HTN and intensive BP-lowering groups were age, male, DL, and intensive BP lowering. In conclusion, these results suggest that hypertensive patients need more rigorous management of other coronary risk factors, despite receiving intensive BP-lowering treatment.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

Similar content being viewed by others

References

  1. Ikeda N, Inoue M, Iso H, Ikeda S, Satoh T, Noda M, et al. Adult mortality attributable to preventable risk factors for non-communicable diseases and injuries in Japan: a comparative risk assessment. PLoS Med. 2012;9:e1001160.

    Article  Google Scholar 

  2. Umemura S, Arima H, Arima S, Asayama K, Dohi Y, Hirooka Y, et al. The Japanese Society of Hypertension guidelines for the manageme nt of hypertension (JSH 2019). Hypertens Res. 2019;42:1235–481.

    Article  Google Scholar 

  3. Satoh A, Arima H, Ohkubo T, Nishi N, Okuda N, Ae R, et al. NIPPON DATA2010 Research Group. Associations of socioeconomic status with prevalence, awareness, treatment, and control of hypertension in a general Japanese population: NIPPON DATA2010. J Hypertens. 2017;35:401–8.

    Article  CAS  Google Scholar 

  4. Rumberger JA, Sheedy PF 3rd, Breen JF, Schwartz RS. Coronary calcium, as determined by electron beam computed tomography, and coronary disease on arteriogram. Effect of patient’s sex on diagnosis. Circulation. 1995;91:1363–7.

    Article  CAS  Google Scholar 

  5. Nitta K, Akiba T, Suzuki K, Uchida K, Ogawa T, Majima K, et al. Assessment of coronary artery calcification in hemodialysis patients using multi-detector spiral CT scan. Hypertens Res. 2004;27:527–33.

    Article  Google Scholar 

  6. Achenbach S, Ropers D, Hoffmann U, MacNeill B, Baum U, Pohle K, et al. Assessment of coronary remodeling in stenotic and nonstenotic coronary atherosclerotic lesions by multidetector spiral computed tomography. J Am Coll Cardiol. 2004;43:842–7.

    Article  Google Scholar 

  7. Ueda Y, Shiga Y, Idemoto Y, Tashiro K, Motozato K, Koyoshi R, et al. Association between the presence or severity of coronary artery disease and pericardial fat, paracardial fat, epicardial fat, visceral fat, and subcutaneous fat as assessed by multi-detector row computed tomography. Int Heart J. 2018;59:695–704.

    Article  CAS  Google Scholar 

  8. Mitsutake R, Niimura H, Miura S, Zhang B, Iwata A, Nishikawa H, et al. Clinical significance of the coronary calcification score by multidetector row computed tomography for the evaluation of coronary stenosis in Japanese patients. Circ J. 2006;70:1122–7.

    Article  Google Scholar 

  9. Gensini GG. A more meaningful scoring system for determining the severity of coronary heart disease. Am J Cardiol. 1983;51:606.

    Article  CAS  Google Scholar 

  10. Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M Jr, Detrano R. Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol. 1990;15:827–32.

    Article  CAS  Google Scholar 

  11. Kinoshita M, Yokote K, Arai H, Iida M, Ishigaki Y, Ishibashi S, et al. The Japan Atherosclerosis Society. Japan Atherosclerosis Society (JAS) Guidelines for Prevention of Atherosclerotic Cardiovascular Diseases 2017. J Atheroscler Thromb. 2018;25:846–984.

    Article  Google Scholar 

  12. American Diabetes Association. Screening for type 2 diabetes. Diabetes Care. 2004;27:S11–14.

    Article  Google Scholar 

  13. The Examination committee of criteria for diagnosis of metabolic syndrome. Definition and criteria for diagnosis of metabolic syndrome. J Jpn Soc Int Med. 2005;94:794–809.

    Article  Google Scholar 

  14. Kim HL, Jin KN, Seo JB, Choi YH, Chung WY, Kim SH, et al. The association of brachial-ankle pulse wave velocity with coronary artery disease evaluated by coronary computed tomography angiography. PLoS One. 2015;10:e0123164.

    Article  Google Scholar 

  15. Arima H, Tanizaki Y, Kiyohara Y, Tsuchihashi T, Kato I, Kubo M, et al. Validity of the JNC VI recommendations for the management of hypertension in a general population of Japanese elderly: the Hisayama study. Arch Intern Med. 2003;163:361–6.

    Article  Google Scholar 

  16. Ueda K, Omae T, Hasuo Y, Kiyohara Y, Fujii I, Wada J, et al. Prognosis and outcome of elderly hypertensives in a Japanese community: results from a long-term prospective study. J Hypertens. 1988;6:991–7.

    Article  CAS  Google Scholar 

  17. Nicholls SJ, Tuzcu EM, Sipahi I, Grasso AW, Schoenhagen P, Hu T, et al. Statins, high-density lipoprotein cholesterol, and regression of coronary atherosclerosis. JAMA. 2007;297:499–508.

    Article  CAS  Google Scholar 

  18. Fukuda Y, Miura S, Tsuchiya Y, Inoue-Sumi Y, Kubota K, Takamiya Y, et al. Lower frequency of non-target lesion intervention in post-successful percutaneous coronary intervention patients with an LDL to HDL cholesterol ratio below 1.5. Int J Cardiol. 2011;149:120–2.

    Article  Google Scholar 

  19. Mitsutake R, Miura S, Shiga Y, Uehara Y, Saku K. Association between hypertension and coronary artery disease as assessed by coronary computed tomography. J Clin Hypertens (Greenwich). 2011;13:198–204.

    Article  Google Scholar 

  20. Grundy SM, Pasternak R, Greenland P, Smith S, Fuster V. Assessment of cardiovascular risk by use of multiple-risk-factor assessment equations. Circulation. 1999;100:1481–92.

    Article  CAS  Google Scholar 

  21. Naito R, Miyauchi K. Coronary artery disease and Type 2 diabetes mellitus. Int Heart J. 2017;58:475–80.

    Article  CAS  Google Scholar 

  22. Ropers D, Rixe J, Anders K, Küttner A, Baum U, Bautz W, et al. Usefulness of multidetector row computed tomography with 64- x 0.6-mm collimation and 330-ms rotation for the noninvasive detection of significant coronary artery stenoses. Am J Cardiol. 2006;97:343–8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin-ichiro Miura.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsukihashi, Y., Shiga, Y., Suematsu, Y. et al. Presence and severity of coronary artery disease in patients who achieved intensive blood pressure reduction at the time of coronary computed tomography angiography. Hypertens Res 44, 206–214 (2021). https://doi.org/10.1038/s41440-020-00545-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-020-00545-6

Keywords

This article is cited by

Search

Quick links