Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Intracellular parasitism, the driving force of evolution of Legionella pneumophila and the genus Legionella

Abstract

Legionella pneumophila is an intracellular pathogen that causes a severe pneumonia called Legionnaires’ disease that is often fatal when not promptly diagnosed and treated. However, L. pneumophila is mainly an environmental pathogen of protozoa. This bacterium parasitizes free-living amoeba and other aquatic protozoa with which it co-evolved over an evolutionary long time. Due to the close relationship between hosts and pathogens, their co-evolution leads to molecular interactions such as the exchange of genetic material through horizontal gene transfer (HGT). Those genes that confer an advantage to the bacteria were fixed in their genomes and help these pathogens to subvert host functions to their advantage. Genome sequencing of L. pneumophila and recently of the entire genus Legionella that comprises over 60 species revealed that Legionellae have co-opted genes and thus cellular functions from their eukaryotic hosts to a surprisingly high extent never observed before for an prokaryotic organism. Acquisition and loss of these eukaryotic-like genes and eukaryotic domains is an ongoing process underlining the highly dynamic nature of the Legionella genomes. Although the large amount and diversity of HGT that occurred between Legionella and their protozoan hosts seems to be unique in the prokaryotic world, the analyses of more and more genomes from environmental organisms and symbionts of amoeba revealed that such genetic exchanges occur among all amoeba-associated bacteria and also among the different microorganisms that infect amoeba such as viruses. This dynamic reshuffling and gene-acquisition has led to the emergence of major human pathogens such as Legionella and may lead to the emergence of new human pathogens from the environment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ochiai K, Yamanaka T, Kimura K, Sawada O. Inheritance of drug resistance (and its transfer) between Shigella strains and between Shigella and E. coli strains. Hihon Iji Shimpor (in Japanese). 1959:34.

  2. Boto L. Horizontal gene transfer in evolution: facts and challenges. Proc Biol Sci. 2010;277:819–27.

    Article  Google Scholar 

  3. McDade JE, Shepard CC, Fraser DW, Tsai TR, Redus MA, Dowdle WR. Legionnaires’ disease: isolation of a bacterium and demonstration of its role in other respiratory disease. N Engl J Med. 1977;297:1197–203.

    Article  CAS  Google Scholar 

  4. Newton HJ, Ang DK, van Driel IR, Hartland EL. Molecular pathogenesis of infections caused by Legionella pneumophila. Clin Microbiol Rev. 2010;23:274–98.

    Article  CAS  Google Scholar 

  5. Rowbotham TJ. Preliminary report on the pathogenicity of Legionella pneumophila for freshwater and soil amoebae. J Clin Pathol. 1980;33:1179–83.

    Article  CAS  Google Scholar 

  6. Horwitz MA, Silverstein SC. Legionnaires’ disease bacterium (Legionella pneumophila) multiples intracellularly in human monocytes. J Clin Invest. 1980;66:441–50.

    Article  CAS  Google Scholar 

  7. Nash TW, Libby DM, Horwitz MA. Interaction between the legionnaires’ disease bacterium (Legionella pneumophila) and human alveolar macrophages. Influence of antibody, lymphokines, and hydrocortisone. J Clin Invest. 1984;74:771–82.

    Article  CAS  Google Scholar 

  8. Berger KH, Isberg RR. Two distinct defects in intracellular growth complemented by a single genetic locus in Legionella pneumophila. Mol Microbiol. 1993;7:7–19.

    Article  CAS  Google Scholar 

  9. Marra A, Blander SJ, Horwitz MA, Shuman HA. Identification of a Legionella pneumophila locus required for intracellular multiplication in human macrophages. Proc Natl Acad Sci USA. 1992;89:9607–11.

    Article  CAS  Google Scholar 

  10. Escoll P, Rolando M, Gomez-Valero L, Buchrieser C. From amoeba to macrophages: exploring the molecular mechanisms of Legionella pneumophila infection in both hosts. Curr Top Microbiol Immunol. 2013;376:1–34.

    PubMed  Google Scholar 

  11. Hubber A, Roy CR. Modulation of host cell function by Legionella pneumophila type IV effectors. Annu Rev Cell Dev Biol. 2010;26:261–83.

    Article  CAS  Google Scholar 

  12. Isberg RR, O’Connor TJ, Heidtman M. The Legionella pneumophila replication vacuole: making a cosy niche inside host cells. Nat Rev Microbiol. 2009;7:13–24.

    Article  CAS  Google Scholar 

  13. Cazalet C, Rusniok C, Bruggemann H, Zidane N, Magnier A, Ma L, et al. Evidence in the Legionella pneumophila genome for exploitation of host cell functions and high genome plasticity. Nat Genet. 2004;36:1165–73.

    Article  CAS  Google Scholar 

  14. Nagai H, Kagan JC, Zhu X, Kahn RA, Roy CR. A bacterial guanine nucleotide exchange factor activates ARF on Legionella phagosomes. Science. 2002;295:679–82.

    Article  CAS  Google Scholar 

  15. Rolando M, Buchrieser C. Post-translational modifications of host proteins by Legionella pneumophila: a sophisticated survival strategy. Future Microbiol. 2012;7:369–81.

    Article  CAS  Google Scholar 

  16. Kubori T, Hyakutake A, Nagai H. Legionella translocates an E3 ubiquitin ligase that has multiple U-boxes with distinct functions. Mol Microbiol. 2008;67:1307–19.

    Article  CAS  Google Scholar 

  17. Price CT, Al-Khodor S, Al-Quadan T, Santic M, Habyarimana F, Kalia A, et al. Molecular mimicry by an F-Box effector of Legionella pneumophila hijacks a conserved polyubiquitination machinery within macrophages and protozoa. PLoS Pathog. 2009;5:e1000704.

    Article  Google Scholar 

  18. Ivanov SS, Charron G, Hang HC, Roy CR. Lipidation by the host prenyltransferase machinery facilitates membrane localization of Legionella pneumophila effector proteins. J Biol Chem. 2010;285:34686–98.

    Article  CAS  Google Scholar 

  19. Price CT, Al-Quadan T, Santic M, Jones SC, Abu Kwaik Y. Exploitation of conserved eukaryotic host cell farnesylation machinery by an F-box effector of Legionella pneumophila. J Exp Med. 2010;207:1713–26.

    Article  CAS  Google Scholar 

  20. DebRoy S, Dao J, Soderberg M, Rossier O, Cianciotto NP. Legionella pneumophila type II secretome reveals unique exoproteins and a chitinase that promotes bacterial persistence in the lung. Proc Natl Acad Sci USA. 2006;103:19146–51.

    Article  CAS  Google Scholar 

  21. Lifshitz Z, Burstein D, Peeri M, Zusman T, Schwartz K, Shuman HA, et al. Computational modeling and experimental validation of the Legionella and Coxiella virulence-related type-IVB secretion signal. Proc Natl Acad Sci USA. 2013;110:E707–15.

    Article  Google Scholar 

  22. Zhu W, Banga S, Tan Y, Zheng C, Stephenson R, Gately J, et al. Comprehensive identification of protein substrates of the Dot/Icm type IV transporter of Legionella pneumophila. PLoS ONE. 2011;6:e17638.

    Article  CAS  Google Scholar 

  23. Crabill E, Schofield WB, Newton HJ, Goodman AL, Roy CR. Dot/Icm-translocated proteins important for biogenesis of the Coxiella burnetii-containing vacuole identified by screening of an effector mutant sublibrary. Infect Immun. 2018;86:e00758–17.

    Article  Google Scholar 

  24. O’Connor TJ, Adepoju Y, Boyd D, Isberg RR. Minimization of the Legionella pneumophila genome reveals chromosomal regions involved in host range expansion. Proc Natl Acad Sci USA. 2011;108:14733–40.

    Article  Google Scholar 

  25. Bacigalupe R, Lindsay D, Edwards G, Fitzgerald JR. Population genomics of Legionella longbeachae and hidden complexities of infection source attribution. Emerg Infect Dis. 2017;23:750–7.

    Article  CAS  Google Scholar 

  26. Cazalet C, Gomez-Valero L, Rusniok C, Lomma M, Dervins-Ravault D, Newton HJ, et al. Analysis of the Legionella longbeachae genome and transcriptome uncovers unique strategies to cause Legionnaires’ disease. PLoS Genet. 2010;6:e1000851.

    Article  Google Scholar 

  27. Burstein D, Amaro F, Zusman T, Lifshitz Z, Cohen O, Gilbert JA, et al. Genomic analysis of 38 Legionella species identifies large and diverse effector repertoires. Nat Genet. 2016;48:167–75.

    Article  CAS  Google Scholar 

  28. Gomez-Valero L, Rusniok C, Carson D, Mondino S, Perez-Cobas AE, Rolando M, et al. More than 18,000 effectors in the Legionella genus genome provide multiple, independent combinations for replication in human cells. Proc Natl Acad Sci USA. 2019;116:2265–73.

    Article  CAS  Google Scholar 

  29. Riedmaier P, Sansom FM, Sofian T, Beddoe T, Schuelein R, Newton HJ, et al. Multiple ecto-nucleoside triphosphate diphosphohydrolases facilitate intracellular replication of Legionella pneumophila. Biochem J. 2014;462:279–89.

    Article  CAS  Google Scholar 

  30. Summers EL, Cumming MH, Oulavallickal T, Roberts NJ, Arcus VL. Structures and kinetics for plant nucleoside triphosphate diphosphohydrolases support a domain motion catalytic mechanism. Protein Sci. 2017;26:1627–38.

    Article  CAS  Google Scholar 

  31. Rolando M, Sanulli S, Rusniok C, Gomez-Valero L, Bertholet C, Sahr T, et al. Legionella pneumophila effector RomA uniquely modifies host chromatin to repress gene expression and promote intracellular bacterial replication. Cell Host Microbe. 2013;13:395–405.

    Article  CAS  Google Scholar 

  32. de Felipe KS, Pampou S, Jovanovic OS, Pericone CD, Ye SF, Kalachikov S, et al. Evidence for acquisition of Legionella type IV secretion substrates via interdomain horizontal gene transfer. J Bacteriol. 2005;187:7716–26.

    Article  Google Scholar 

  33. Gomez Valero L, Runsiok C, Cazalet C,CB. Comparative and functional genomics of Legionella identified eukaryotic like proteins as key players in host-pathogen interactions. Front Microbiol. 2011;2:208.

    Article  Google Scholar 

  34. Lurie-Weinberger MN, Gomez-Valero L, Merault N, Glockner G, Buchrieser C, Gophna U. The origins of eukaryotic-like proteins in Legionella pneumophila. Int J Med Microbiol. 2010;300:470–81.

    Article  CAS  Google Scholar 

  35. Ensminger AW. Legionella pneumophila, armed to the hilt: justifying the largest arsenal of effectors in the bacterial world. Curr Opin Microbiol. 2016;29:74–80.

    Article  CAS  Google Scholar 

  36. Escoll P, Mondino S, Rolando M, Buchrieser C. Targeting of host organelles by pathogenic bacteria: a sophisticated subversion strategy. Nat Rev Microbiol. 2016;14:5–19.

    Article  CAS  Google Scholar 

  37. Gomez-Valero L, Rusniok C, Cazalet C, Buchrieser C. Comparative and functional genomics of Legionella identified eukaryotic like proteins as key players in host-pathogen interactions. Front Microbiol. 2011;2:208.

    Article  Google Scholar 

  38. Qiu J, Luo ZQ. Legionella and Coxiella effectors: strength in diversity and activity. Nat Rev Microbiol. 2017;15:591–605.

    Article  CAS  Google Scholar 

  39. Rolando M, Buchrieser C. Legionella pneumophila type IV effectors hijack the transcription and translation machinery of the host cell. Trends Cell Biol. 2014;24:771–8.

    Article  CAS  Google Scholar 

  40. Barlocher K, Welin A, Hilbi H. Formation of the Legionella replicative compartment at the crossroads of retrograde trafficking. Front Cell Infect Microbiol. 2017;7:482.

    Article  Google Scholar 

  41. Merrill AH, Sandhoff K. Sphingolipids: metabolism and cell signalling In: Vance DE, Vance JE, editors. Biochemistry of lipids, lipoproteins and membranes, Vol. 36. Elsevier Science: Amsterdam; 2002. p. 373−407.

  42. Heung JL, Luberto C, Del Poeta M. Role of sphingolipids in microbial pathogenesis. Infect Immun. 2006;74:28–39.

    Article  CAS  Google Scholar 

  43. Shabardina V, Kischka T, Kmita H, Suzuki Y, Makalowski W. Environmental adaptation of Acanthamoeba castellanii and Entamoeba histolytica at genome level as seen by comparative genomic analysis. Int J Biol Sci. 2018;14:306–20.

    Article  CAS  Google Scholar 

  44. Rolando M, Escoll P, Buchrieser C. Legionella pneumophila restrains autophagy by modulating the host’s sphingolipid metabolism. Autophagy. 2016;12:1053–4.

    Article  CAS  Google Scholar 

  45. Rolando M, Escoll P, Nora T, Botti J, Boitez V, Bedia C, et al. Legionella pneumophila S1P-lyase targets host sphingolipid metabolism and restrains autophagy. Proc Natl Acad Sci USA. 2016;113:1901–6.

    Article  CAS  Google Scholar 

  46. Degtyar E, Zusman T, Ehrlich M, Segal GA. Legionella effector acquired from protozoa is involved in sphingolipids metabolism and is targeted to the host cell mitochondria. Cell Microbiol. 2009;11:1219–35.

    Article  CAS  Google Scholar 

  47. Gomez-Valero L, Buchrieser C. Genome dynamics in Legionella: the basis of versatility and adaptation to intracellular replication. Cold Spring Harb Perspect Med. 2013;3:a009993.

    Article  Google Scholar 

  48. Choy A, Dancourt J, Mugo B, O’Connor TJ, Isberg RR, Melia TJ, et al. The Legionella effector RavZ inhibits host autophagy through irreversible Atg8 deconjugation. Science. 2012;338:1072–6.

    Article  CAS  Google Scholar 

  49. Schmitz-Esser S, Tischler P, Arnold R, Montanaro J, Wagner M, Rattei T, et al. The genome of the amoeba symbiont “Candidatus Amoebophilus asiaticus” reveals common mechanisms for host cell interaction among amoeba-associated bacteria. J Bacteriol. 2010;192:1045–57.

    Article  CAS  Google Scholar 

  50. Casadevall A, Fu MS, Guimaraes AJ, Albuquerque P. The ‘amoeboid predator-fungal animal virulence’ hypothesis. J Fungi (Basel). 2019;5:E10.

    Article  Google Scholar 

  51. Raoult D, Audic S, Robert C, Abergel C, Renesto P, Ogata H, et al. The 1.2-megabase genome sequence of Mimivirus. Science. 2004;306:1344–50.

    Article  CAS  Google Scholar 

  52. Moreira D, Brochier-Armanet C. Giant viruses, giant chimeras: the multiple evolutionary histories of Mimivirus genes. BMC Evol Biol. 2008;8:12.

    Article  Google Scholar 

  53. Ogata H, La Scola B, Audic S, Renesto P, Blanc G, Robert C, et al. Genome sequence of Rickettsia bellii illuminates the role of amoebae in gene exchanges between intracellular pathogens. PLoS Genet. 2006;2:e–76.

    Article  Google Scholar 

  54. Gomez-Valero L, Neou Bonora M, Gribaldo S, Buchrieser C. Interdomain horizontal gene transfer shaped the genomes of Legionella pneumophila and Legionella longbeachae. In: Gophna U, editor. Lateral gene transfer in evolution. New York, NY: Springer; 2013. p. 199−219.

    Chapter  Google Scholar 

  55. Nyvltova E, Sut’ak R, Zarsky V, Harant K, Hrdy I, Tachezy J. Lateral gene transfer of p-cresol- and indole-producing enzymes from environmental bacteria to Mastigamoeba balamuthi. Environ Microbiol. 2017;19:1091–102.

    Article  CAS  Google Scholar 

  56. Kaneko T, Stogios PJ, Ruan X, Voss C, Evdokimova E, Skarina T, et al. Identification and characterization of a large family of superbinding bacterial SH2 domains. Nat Commun. 2018;9:4549.

    Article  Google Scholar 

  57. de Felipe KS, Glover RT, Charpentier X, Anderson OR, Reyes M, Pericone CD, et al. Legionella eukaryotic-like type IV substrates interfere with organelle trafficking. PLoS Pathog. 2008;4:e1000117.

    Article  Google Scholar 

  58. Gimenez G, Bertelli C, Moliner C, Robert C, Raoult D, Fournier PE, et al. Insight into cross-talk between intra-amoebal pathogens. BMC Genom. 2011;12:542.

    Article  CAS  Google Scholar 

  59. Gomez-Valero L, Rusniok C, Jarraud S, Vacherie B, Rouy Z, Barbe V, et al. Extensive recombination events and horizontal gene transfer shaped the Legionella pneumophila genomes. BMC Genom. 2011;12:536.

    Article  CAS  Google Scholar 

  60. Wang Z, Wu M. Comparative genomic analysis of Acanthamoeba endosymbionts highlights the role of amoebae as a “melting pot” shaping the Rickettsiales evolution. Genome Biol Evol. 2017;9:3214–24.

    Article  CAS  Google Scholar 

  61. Bertelli C, Greub G. Lateral gene exchanges shape the genomes of amoeba-resisting microorganisms. Front Cell Infect Microbiol. 2012;2:110.

    Article  Google Scholar 

  62. Buchrieser C, Charpentier X. Induction of competence for natural transformation in Legionella pneumophila and exploitation for mutant construction. Methods Mol Biol. 2013;954:183–95.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Work in the CB laboratory is financed by the Institut Pasteur and has received funding from the French Government’s Investissement d’Avenir program, Laboratoire d’Excellence “Integrative Biology of Emerging Infectious Diseases” (grant no. ANR-10-LABX-62-IBEID) and grant ANR 15 CE17 0014 03.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Buchrieser.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomez-Valero, L., Buchrieser, C. Intracellular parasitism, the driving force of evolution of Legionella pneumophila and the genus Legionella. Genes Immun 20, 394–402 (2019). https://doi.org/10.1038/s41435-019-0074-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41435-019-0074-z

This article is cited by

Search

Quick links