Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Exosomal PD-L1 confers chemoresistance and promotes tumorigenic properties in esophageal cancer cells via upregulating STAT3/miR-21

Abstract

Chemotherapy resistance remains a major obstacle in the treatment of esophageal cancer. Previous researches have shown that an increase in exosomal PD-L1 expression was positively associated with a more advanced clinical stage, a poorer prognosis as well as drug resistance in patients with esophageal squamous cell carcinoma (ESCC). To explore the role of exosomal PD-L1 in ESCC, we performed bioinformatics analysis as well as several in vitro/in vivo functional experiments in a parental sensitive cell line EC-9706 and its derivative, a paclitaxel-resistant subline EC-9706R, and found that the exosomal PD-L1 from EC-9706R was higher than that from EC-9706. Moreover, exosomes from EC-9706R significantly increased invasion, migration and chemoresistance of EC-9706. Anti-PD-L1 treatment in combination with chemotherapy also led to reduced tumor burden in vivo. Inhibition of the release of exosomes by GW4869 or inhibition of STAT3 phosphorylation by stattic could effectively reverse the resistance to paclitaxel mediated by exosomal PD-L1. Furthermore, we found that PD-L1, miR-21, and multidrug resistance (MDR1) gene are involved in the process of exosomal transfer. Moreover, PD-L1 could enhance miR-21 expression by increasing the enrichment of STAT3 on miR-21 promoter. Our results suggested that exosomal PD-L1 may contribute to drug resistance to paclitaxel by regulating the STAT3/miR-21/PTEN/Akt axis and promote tumorigenic phenotype. This study provides a novel potential therapeutic approach to reverse chemoresistance and tumor progression through exosomal PD-L1 in ESCC patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The expression levels of PD-L1 or exosomal PD-L1 were upregulated in esophageal cancer.
Fig. 2: Isolation and characterization of exosomes.
Fig. 3: Uptake of EC-9706R-exo by 9706 cells.
Fig. 4: Exosomes from EC-9706R contribute to drug resistance in ESCC.
Fig. 5: Exosomal PD-L1 enhanced paclitaxel resistance in ESCC through STAT3/miR-21.
Fig. 6: Exosomal PD-L1 mediated paclitaxel resistance in ESCC through modulation PTEN/Akt pathway.
Fig. 7: Exosomal PD-L1 promotes drug resistance of esophageal cancer cells in vivo.
Fig. 8: Exosomal PD-L1 induces apoptosis and enhances paclitaxel sensitivity.
Fig. 9: Schematic of the potential role of exosomal PD-L1 in paclitaxel resistance in esophageal squamous cell carcinoma.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the article. The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Di Pardo BJ, Bronson NW, Diggs BS, Thomas CR, Hunter JG, Dolan JP. The global burden of esophageal cancer: a disability-adjusted life-year approach. World J Surg. 2016;40:395–401.

    Article  PubMed  Google Scholar 

  2. Fan JH, Liu ZQ, Mao XH, Tong X, Zhang TJ, Suo C, et al. Global trends in the incidence and mortality of esophageal cancer from 1990 to 2017. Cancer Med. 2020;9:6875–87.

    Article  PubMed  Google Scholar 

  3. Huang FL, Yu SJ. Esophageal cancer: risk factors, genetic association, and treatment. Asian J Surg. 2018;41:210–5.

    Article  PubMed  Google Scholar 

  4. Kakeji Y, Oshikiri T, Takiguchi G, Kanaji S, Matsuda T, Nakamura T, et al. Multimodality approaches to control esophageal cancer: development of chemoradiotherapy, chemotherapy, and immunotherapy. Esophagus. 2021;18:25–32.

    Article  PubMed  Google Scholar 

  5. Jiang TZ, Chen L, Huang YK, Wang JH, Xu MJ, Zhou SL, et al. Metformin and docosahexaenoic acid hybrid micelles for premetastatic niche modulation and tumor metastasis suppression. Nano Lett. 2019;19:3548–62.

    Article  CAS  PubMed  Google Scholar 

  6. Al-Mahmood S, Sapiezynski J, Garbuzenko OB, Minko T. Metastatic and triple-negative breast cancer: challenges and treatment options. Drug Deliv Transl Res. 2018;8:1483–507.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wang M, Qiu R, Yu SR, Xu XY, Li G, Gu RM, et al. Paclitaxel-resistant gastric cancer MGC-803 cells promote epithelial-to-mesenchymal transition and chemoresistance in paclitaxel-sensitive cells via exosomal delivery of miR-155-5p. Int J Oncol. 2019;54:326–38.

    CAS  PubMed  Google Scholar 

  8. Larionova I, Cherdyntseva N, Liu TF, Patysheva M, Rakina M, Kzhyshkowska J. Interaction of tumor-associated macrophages and cancer chemotherapy. Oncoimmunology. 2019;8. https://doi.org/10.1080/2162402x.2019.e1596004.

  9. Ocadlikova D, Lecciso M, Isidori A, Loscocco F, Visani G, Amadori S, et al. Chemotherapy-induced tumor cell death at the crossroads between immunogenicity and immunotolerance: focus on acute myeloid leukemia. Front Oncol. 2019;9. https://doi.org/10.3389/fonc.2019.01004.

  10. Peng J, Hamanishi J, Matsumura N, Abiko K, Murat K, Baba T, et al. Chemotherapy induces programmed cell death-ligand 1 overexpression via the nuclear factor-kappa B to foster an immunosuppressive tumor microenvironment in ovarian cancer. Cancer Res. 2015;75:5034–45.

    Article  CAS  PubMed  Google Scholar 

  11. Zhang M, Fan YB, Che XF, Hou KZ, Zhang CX, Li C, et al. 5-FU-induced upregulation of exosomal PD-L1 causes immunosuppression in advanced gastric cancer patients. Front Oncol. 2020;10. https://doi.org/10.3389/fonc.2020.00492.

  12. Konno-Kumagai T, Fujishima F, Nakamura Y, Nakano T, Nagai T, Kamei T, et al. Programmed death-1 ligands and tumor infiltrating T lymphocytes in primary and lymph node metastasis of esophageal cancer patients. Dis Esophagus. 2019;32. https://doi.org/10.1093/dote/doy063.

  13. Zhang Y, Liu YF, Liu HY, Tang WH. Exosomes: biogenesis, biologic function and clinical potential. Cell Biosci. 2019;9. https://doi.org/10.1186/s13578-019-0282-2.

  14. Wortzel I, Dror S, Kenific CM, Lyden D. Exosome-mediated metastasis: communication from a distance. Dev Cell. 2019;49:347–60.

    Article  CAS  PubMed  Google Scholar 

  15. He CJ, Zheng S, Luo Y, Wang B. Exosome theranostics: biology and translational medicine. Theranostics. 2018;8:237–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Baroni S, Romero-Cordoba S, Plantamura I, Dugo M, D’Ippolito E, Cataldo A, et al. Exosome-mediated delivery of miR-9 induces cancer-associated fibroblast-like properties in human breast fibroblasts. Cell Death Dis. 2016;7:e2312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Qin X, Guo HY, Wang XN, Zhu XQ, Yan M, Wang X, et al. Exosomal miR-196a derived from cancer-associated fibroblasts confers cisplatin resistance in head and neck cancer through targeting CDKN1B and ING5. Genome Biol. 2019;20. https://doi.org/10.1186/s13059-018-1604-0.

  18. Qin XB, Yu SR, Zhou LL, Shi MQ, Hu Y, Xu XY, et al. Cisplatin-resistant lung cancer cell-derived exosomes increase cisplatin resistance of recipient cells in exosomal miR-100-5p-dependent manner. Int J Nanomed. 2017;12:3721–33.

    Article  CAS  Google Scholar 

  19. Daassi D, Mahoney KM, Freeman GJ. The importance of exosomal PDL1 in tumour immune evasion. Nat Rev Immunol. 2020;20:209–15.

    Article  CAS  PubMed  Google Scholar 

  20. Tang YY, Zhang P, Wang YM, Wang JP, Su M, Wang Y, et al. The Biogenesis, biology, and clinical significance of exosomal PD-L1 in cancer. Front Immunol. 2020;11. https://doi.org/10.3389/fimmu.2020.00604.

  21. Shimada Y, Matsubayashi J, Kudo Y, Maehara S, Takeuchi S, Hagiwara M, et al. Serum-derived exosomal PD-L1 expression to predict anti-PD-1 response and in patients with non-small cell lung cancer. Sci Rep. 2021;11. https://doi.org/10.1038/s41598-021-87575-3.

  22. Del Re M, Marconcini R, Pasquini G, Rofi E, Vivaldi C, Bloise F, et al. PD-L1 mRNA expression in plasma-derived exosomes is associated with response to anti-PD-1 antibodies in melanoma and NSCLC. Br J Cancer. 2018;118:820–4.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Fan YB, Che XF, Qu JL, Hou KZ, Wen T, Li Z, et al. Exosomal PD-L1 retains immunosuppressive activity and is associated with gastric cancer prognosis. Ann Surg Oncol. 2019;26:3745–55.

    Article  PubMed  Google Scholar 

  24. Cordonnier M, Nardin C, Chanteloup G, Derangere V, Algros MP, Arnould L, et al. Tracking the evolution of circulating exosomal-PD-L1 to monitor melanoma patients. J Extracell Vesicles. 2020;9:e1710899.

    Article  Google Scholar 

  25. Zhu LP, Tian T, Wang JY, He JN, Chen T, Pan M, et al. Hypoxia-elicited mesenchymal stem cell-derived exosomes facilitates cardiac repair through miR-125b-mediated prevention of cell death in myocardial infarction. Theranostics. 2018;8:6163–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ding SG, Zheng YF, Xu YM, Zhao XJ, Zhong CJ. MiR-21/PTEN signaling modulates the chemo-sensitivity to 5-fluorouracil in human lung adenocarcinoma A549 cells. Int J Clin Exp Pathol. 2019;12:2339–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu HY, Zhang YY, Zhu BL, Feng FZ, Yan H, Zhang HY, et al. miR-21 regulates the proliferation and apoptosis of ovarian cancer cells through PTEN/PI3K/AKT. Eur Rev Med Pharmacol Sci. 2019;23:4149–55.

    PubMed  Google Scholar 

  28. Liu HW, Wang J, Tao YX, Li XM, Qin JL, Bai Z, et al. Curcumol inhibits colorectal cancer proliferation by targeting miR-21 and modulated PTEN/PI3K/Akt pathways. Life Sci. 2019;221:354–61.

    Article  CAS  PubMed  Google Scholar 

  29. Jafari S, Lavasanifar A, Hejazi MS, Maleki-Dizaji N, Mesgari M, Molavi O. STAT3 inhibitory stattic enhances immunogenic cell death induced by chemotherapy in cancer cells. Daru. 2020;28:159–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yuan L, Wu LH, Chen JA, Wu QA, Hu SH. Paclitaxel acts as an adjuvant to promote both Th1 and Th2 immune responses induced by ovalbumin in mice. Vaccine. 2010;28:4402–10.

    Article  CAS  PubMed  Google Scholar 

  31. Kim ES. Chemotherapy resistance in lung cancer. Adv Exp Med Biol. 2016;893:189–209.

    Article  PubMed  Google Scholar 

  32. Bukowski K, Kciuk M, Kontek R. Mechanisms of multidrug resistance in cancer chemotherapy. Int J Mol Sci. 2020;21:e3233.

    Article  Google Scholar 

  33. Weaver BA. How taxol/paclitaxel kills cancer cells. Mol Biol Cell. 2014;25:2677–81.

    Article  PubMed  PubMed Central  Google Scholar 

  34. John J, Ismail M, Riley C, Askham J, Morgan R, Melcher A, et al. Differential effects of paclitaxel on dendritic cell function. Bmc Immunol. 2010;11. https://doi.org/10.1186/1471-2172-11-14.

  35. Chen J, Song Y, Miao F, Chen G, Zhu YJ, Wu N, et al. PDL1-positive exosomes suppress antitumor immunity by inducing tumor-specific CD8(+) T cell exhaustion during metastasis. Cancer Sci. 2021;112:3437–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Poggio M, Hu TY, Pai CC, Chu B, Belair CD, Chang A, et al. Suppression of exosomal PD-L1 induces systemic anti-tumor immunity and memory. Cell. 2019;177:414–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yang Y, Li CW, Chan LC, Wei YK, Hsu JM, Xia WY, et al. Exosomal PD-L1 harbors active defense function to suppress T cell killing of breast cancer cells and promote tumor growth. Cell Res. 2018;28:862–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Theodoraki MN, Yerneni SS, Hoffmann TK, Gooding WE, Whiteside TL. Clinical significance of PD-L1(+) exosomes in plasma of head and neck cancer patients. Clin Cancer Res. 2018;24:896–905.

    Article  CAS  PubMed  Google Scholar 

  39. Theodoraki MN, Yerneni S, Gooding WE, Ohr J, Clump DA, Bauman JE, et al. Circulating exosomes measure responses to therapy in head and neck cancer patients treated with cetuximab, ipilimumab, and IMRT. Oncoimmunology. 2019;8. https://doi.org/10.1080/2162402X.2019.1593805.

  40. Nardin C, Cordonnier M, Chanteloup G, Derangere V, Algros M, Arnould L, et al. Circulating PD-L1-exosomes to monitor tumor response in melanoma patients. J Investig Dermatol. 2019;139:S304.

    Article  Google Scholar 

  41. Majidi M, Safaee S, Amini M, Baghbanzadeh A, Hajiasgharzadeh K, Hashemzadeh S, et al. The effects of chemotherapeutic drugs on PD-L1 gene expression in breast cancer cell lines. Med Oncol. 2021;38. https://doi.org/10.1007/s12032-021-01556-0.

  42. Loh CY, Arya A, Naema AF, Wong WF, Sethi G, Looi CY. Signal transducer and activator of transcription (STATs) proteins in cancer and inflammation: functions and therapeutic implication. Front Oncol. 2019;9. https://doi.org/10.3389/fonc.2019.00048.

  43. Fang ZX, Chen WY, Yuan ZG, Liu XE, Jiang H. LncRNA-MALAT1 contributes to the cisplatin-resistance of lung cancer by upregulating MRP1 and MDR1 via STAT3 activation. Biomed Pharmacother. 2018;101:536–42.

    Article  CAS  PubMed  Google Scholar 

  44. Wang Y, Shen YC, Wang SN, Shen Q, Zhou X. The role of STAT3 in leading the crosstalk between human cancers and the immune system. Cancer Lett. 2018;415:117–28.

    Article  CAS  PubMed  Google Scholar 

  45. Hou JW, Zhao RC, Xia WY, Chang CW, You Y, Hsu JM, et al. PD-L1-mediated gasdermin C expression switches apoptosis to pyroptosis in cancer cells and facilitates tumour necrosis. Nat Cell Biol. 2020;22:1264–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sun SS, Zhou X, Huang YY, Kong LP, Mei M, Guo WY, et al. Targeting STAT3/miR-21 axis inhibits epithelial-mesenchymal transition via regulating CDK5 in head and neck squamous cell carcinoma. Mol Cancer. 2015;14. https://doi.org/10.1186/s12943-015-0487-x.

  47. Ou HS, Li YM, Kang M. Activation of miR-21 by STAT3 induces proliferation and suppresses apoptosis in nasopharyngeal carcinoma by targeting PTEN gene. PLoS ONE. 2014;9:e109929.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Zhang N, Duan WD, Leng JJ, Zhou L, Wang X, Xu YZ, et al. STAT3 regulates the migration and invasion of a stem-like subpopulation through microRNA-21 and multiple targets in hepatocellular carcinoma. Oncol Rep. 2015;33:1493–8.

    Article  CAS  PubMed  Google Scholar 

  49. Zheng PM, Chen L, Yuan XL, Luo Q, Liu Y, Xie GH, et al. Exosomal transfer of tumor-associated macrophage-derived miR-21 confers cisplatin resistance in gastric cancer cells. J Exp Clin Cancer Res. 2017;36. https://doi.org/10.1186/s13046-017-0528-y.

  50. Gaudelot K, Gibier JB, Pottier N, Hemon B, Van Seuningen I, Glowacki F, et al. Targeting miR-21 decreases expression of multi-drug resistant genes and promotes chemosensitivity of renal carcinoma. Tumor Biol. 2017;39. https://doi.org/10.1177/1010428317707372.

  51. Hu LL, Liang YT, Wu KL, Wang CX, Zhang T, Peng R, et al. Repressing PDCD4 activates JNK/ABCG2 pathway to induce chemoresistance to fluorouracil in colorectal cancer cells. Ann Transl Med. 2021;9. https://doi.org/10.21037/atm-20-4292.

  52. Zhou X, Ren Y, Liu AQ, Jin R, Jiang QP, Huang YY, et al. WP1066 sensitizes oral squamous cell carcinoma cells to cisplatin by targeting STAT3/miR-21 axis. Sci Rep. 2014;4:994–1001.

    Article  Google Scholar 

  53. Dastmalchi N, Hosseinpourfeizi MA, Khojasteh SMB, Baradaran B, Safaralizadeh R. Tumor suppressive activity of miR-424-5p in breast cancer cells through targeting PD-L1 and modulating PTEN/PI3K/AKT/mTOR signaling pathway. Life Sci. 2020;259:118329.

    Article  Google Scholar 

  54. Yang MQ, Liu PP, Wang KF, Glorieux C, Hu YM, Wen SJ, et al. Chemotherapy induces tumor immune evasion by upregulation of programmed cell death ligand 1 expression in bone marrow stromal cells. Mol Oncol. 2017;11:358–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Theivanthiran B, Evans KS, DeVito NC, Plebanek M, Sturdivant M, Wachsmuth LP, et al. A tumor-intrinsic PD-L1/NLRP3 inflammasome signaling pathway drives resistance to anti-PD-1 immunotherapy. J Clin Investig. 2020;130:2570–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Li CF, Qiu JQ, Xue YW. Low-dose diosbulbin-B (DB) activates tumor-intrinsic PD-L1/NLRP3 signaling pathway mediated pyroptotic cell death to increase cisplatin-sensitivity in gastric cancer (GC). Cell Biosci. 2021;11. https://doi.org/10.1186/s13578-021-00548-x.

  57. Son S, Shim DW, Hwang I, Park JH, Yu JW. Chemotherapeutic agent paclitaxel mediates priming of NLRP3 inflammasome activation. Front Immunol. 2019;10. https://doi.org/10.3389/fimmu.2019.01108.

  58. Feng XD, Luo QQ, Zhang H, Wang H, Chen WT, Meng GX, et al. The role of NLRP3 inflammasome in 5-fluorouracil resistance of oral squamous cell carcinoma. J Exp Clin Cancer Res. 2017;36. https://doi.org/10.1186/s13046-017-0553-x.

  59. Huang Y, Wang HY, Hao YZ, Lin HL, Dong MH, Ye J, et al. Myeloid PTEN promotes chemotherapy-induced NLRP3-inflammasome activation and antitumour immunity. Nat Cell Biol. 2020;22:716–27.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (81972571), Key Science and Technology Program of Henan Province (212102310168) and Innovation Scientists and Technicians Troop Construction Projects of Henan Province (CXTD2017071).

Author information

Authors and Affiliations

Authors

Contributions

HJW: Conceptualization, investigation, validation, formal analysis, writing—original draft, writing-review and editing. YJQ: Conceptualization, writing—original draft, formal analysis, supervision. ZJL and JJX: Investigation, validation, and data curation. QWL: Investigation, validation, and funding acquisition. MXZ, TTY, and RLS: Validation, formal analysis. SGG: Conceptualization, investigation supervision. GFL: Conceptualization, writing-review and editing, supervision, project administration, and funding acquisition.

Corresponding authors

Correspondence to Shegan Gao or Gaofeng Liang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

All patients signed informed consents for the use and analysis of clinical data before surgery. The collection of blood samples and the acquisition of clinical data were approved by the Institutional Review Board of Henan University of Science and Technology.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Qi, Y., Lan, Z. et al. Exosomal PD-L1 confers chemoresistance and promotes tumorigenic properties in esophageal cancer cells via upregulating STAT3/miR-21. Gene Ther 30, 88–100 (2023). https://doi.org/10.1038/s41434-022-00331-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41434-022-00331-8

This article is cited by

Search

Quick links