Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genetic insights, disease mechanisms, and biological therapeutics for Waardenburg syndrome

Abstract

Waardenburg syndrome (WS), also known as auditory-pigmentary syndrome, is the most common cause of syndromic hearing loss (HL), which accounts for approximately 2–5% of all patients with congenital hearing loss. WS is classified into four subtypes depending on the clinical phenotypes. Currently, pathogenic mutations of PAX3, MITF, SOX10, EDN3, EDNRB or SNAI2 are associated with different subtypes of WS. Although supportive techniques like hearing aids, cochlear implants, or other assistive listening devices can alleviate the HL symptom, there is no cure for WS to date. Recently major progress has been achieved in preclinical studies of genetic HL in animal models, including gene delivery and stem cell replacement therapies. This review focuses on the current understandings of pathogenic mechanisms and potential biological therapeutic approaches for HL in WS, providing strategies and directions for implementing WS biological therapies, as well as possible problems to be faced, in the future.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2: Localization of the pathogenic gene mutations manifested in WS (figures modified from V. Pingault et al. 2010).
Fig. 3: Overview of the strategies of biotherapy for WS.
Fig. 4: Schematic of the stria vascularis and relevant structures in the cochlea.

Similar content being viewed by others

References

  1. Waardenburg PJ. A new syndrome combining developmental anomalies of the eyelids, eyebrows and nose root with pigmentary defects of the iris and head hair and with congenital deafness. Am J Hum Genet 1951;3:195–253.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Nayak CS, Isaacson G. Worldwide distribution of Waardenburg syndrome. Ann Otol Rhinol Laryngol. 2003;112:817–20.

    PubMed  Google Scholar 

  3. Dourmishev AL, Dourmishev LA, Schwartz RA, Janniger CK. Waardenburg syndrome. Int J Dermatol 1999;38:656–63.

    CAS  PubMed  Google Scholar 

  4. Pingault V, Ente D, Dastot-Le Moal F, Goossens M, Marlin S, Bondurand N. Review and update of mutations causing Waardenburg syndrome. Hum Mutat 2010;31:391–406.

    CAS  PubMed  Google Scholar 

  5. Zaman A, Capper R, Baddoo W. Waardenburg syndrome: more common than you think! Clinical otolaryngology: official journal of ENT-UK; official journal of Netherlands Society for Oto-Rhino-Laryngology & Cervico-Facial. Surgery. 2015;40:44–8.

    CAS  Google Scholar 

  6. Alzhrani F, Alhussini R, Hudeib R, Alkaff T, Islam T, Alsanosi A. The outcome of cochlear implantation among children with genetic syndromes. Eur Arch Oto-Rhino-Laryngol 2018;275:365–9.

    Google Scholar 

  7. Chen L, Wang L, Chen L, Wang F, Ji F, Sun W, et al. Transcript profiles of stria vascularis in models of Waardenburg syndrome. Neural Plasticity. 2020;2020:2908182.

    PubMed  PubMed Central  Google Scholar 

  8. Marcus RE. Vestibular function and additional findings in Waardenburg’s syndrome. Acta Oto-laryngol 1968;Suppl 229:1–30.

    Google Scholar 

  9. Hildesheimer M, Maayan Z, Muchnik C, Rubinstein M, Goodman RM. Auditory and vestibular findings in Waardenburg’s type II syndrome. J Laryngol Otol 1989;103:1130–3.

    CAS  PubMed  Google Scholar 

  10. Bogdanova-Mihaylova P, Alexander MD, Murphy RPJ, Murphy SM. Waardenburg syndrome: a rare cause of inherited neuropathy due to SOX10 mutation. J Peripheral Nervous Syst 2017;22:219–23.

    CAS  Google Scholar 

  11. Burke EA, Reichard KE, Wolfe LA, Brooks BP, DiGiovanna JJ, Hadley DW, et al. A novel frameshift mutation in SOX10 causes Waardenburg syndrome with peripheral demyelinating neuropathy, visual impairment and the absence of Hirschsprung disease. Am J Med Genetics 2020;182:1278–83.

    CAS  Google Scholar 

  12. Koyama H, Kashio A, Sakata A, Tsutsumiuchi K, Matsumoto Y, Karino S, et al. The hearing outcomes of cochlear implantation in Waardenburg syndrome. BioMed Res Int 2016;2016:2854736.

    PubMed  PubMed Central  Google Scholar 

  13. Farrer LA, Grundfast KM, Amos J, Arnos KS, Asher JH Jr., Beighton P, et al. Waardenburg syndrome (WS) type I is caused by defects at multiple loci, one of which is near ALPP on chromosome 2: first report of the WS consortium. Am J Hum Genet 1992;50:902–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu XZ, Newton VE, Read AP. Waardenburg syndrome type II: phenotypic findings and diagnostic criteria. Am J Med Genet 1995;55:95–100.

    CAS  PubMed  Google Scholar 

  15. Ahmed Jan DN, Mui RK, Masood S Waardenburg Syndrome. StatPearls. Treasure Island (FL): StatPearls Publishing Copyright © 2020, StatPearls Publishing LLC; 2020.

  16. Hennekam RC, Gorlin RJ. Confirmation of the Yemenite (Warburg) deaf-blind hypopigmentation syndrome. Am J Med Genet 1996;65:146–8.

    CAS  PubMed  Google Scholar 

  17. Newton VE. Clinical features of the Waardenburg syndromes. Adv Oto-Rhino-Laryngol 2002;61:201–8.

    Google Scholar 

  18. Song J, Feng Y, Acke FR, Coucke P, Vleminckx K, Dhooge IJ. Hearing loss in Waardenburg syndrome: a systematic review. Clin Genet 2016;89:416–25.

    CAS  PubMed  Google Scholar 

  19. Madden C, Halsted MJ, Hopkin RJ, Choo DI, Benton C, Greinwald JH Jr. Temporal bone abnormalities associated with hearing loss in Waardenburg syndrome. Laryngoscope 2003;113:2035–41.

    PubMed  Google Scholar 

  20. Xu GY, Hao QQ, Zhong LL, Ren W, Yan Y, Liu RY, et al. [SOX10 mutation is relevant to inner ear malformation in patients with Waardenburg syndrome]. Zhonghua er bi yan hou tou jing wai ke za zhi 2016;51:832–7.

    CAS  PubMed  Google Scholar 

  21. Fleck K, Erhardt G, Lühken G. From single nucleotide substitutions up to chromosomal deletions: genetic pause of leucism-associated disorders in animals. Berliner Munchener tierarztliche Wochenschrift. 2016;129:269–81.

    Google Scholar 

  22. Campbell B, Campbell N, Swift S. Waardenburg’s syndrome: a variation of the first arch syndrome. Arch Dermatol 1962;86:718–24.

    CAS  PubMed  Google Scholar 

  23. Attié T, Till M, Pelet A, Amiel J, Edery P, Boutrand L, et al. Mutation of the endothelin-receptor B gene in Waardenburg-Hirschsprung disease. Hum Mol Genet 1995;4:2407–9.

    PubMed  Google Scholar 

  24. Zlotogora J, Lerer I, Bar-David S, Ergaz Z, Abeliovich D. Homozygosity for Waardenburg syndrome. Am J Hum Genet 1995;56:1173–8.

    CAS  PubMed  Google Scholar 

  25. Edery P, Attié T, Amiel J, Pelet A, Eng C, Hofstra RM, et al. Mutation of the endothelin-3 gene in the Waardenburg-Hirschsprung disease (Shah-Waardenburg syndrome). Nat Genet 1996;12:442–4.

    CAS  PubMed  Google Scholar 

  26. Sánchez-Martín M, Rodríguez-García A, Pérez-Losada J, Sagrera A, Read AP, Sánchez-García I. SLUG (SNAI2) deletions in patients with Waardenburg disease. Hum Mol Genet 2002;11:3231–6.

    PubMed  Google Scholar 

  27. Bondurand N, Dastot-Le Moal F, Stanchina L, Collot N, Baral V, Marlin S, et al. Deletions at the SOX10 gene locus cause Waardenburg syndrome types 2 and 4. Am J Hum Genet 2007;81:1169–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Boudjadi S, Chatterjee B, Sun W, Vemu P, Barr FG. The expression and function of PAX3 in development and disease. Gene. 2018;666:145–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Potterf SB, Furumura M, Dunn KJ, Arnheiter H, Pavan WJ. Transcription factor hierarchy in Waardenburg syndrome: regulation of MITF expression by SOX10 and PAX3. Hum Genet 2000;107:1–6.

    CAS  PubMed  Google Scholar 

  30. Hoth CF, Milunsky A, Lipsky N, Sheffer R, Clarren SK, Baldwin CT. Mutations in the paired domain of the human PAX3 gene cause Klein-Waardenburg syndrome (WS-III) as well as Waardenburg syndrome type I (WS-I). Am J Hum Genet 1993;52:455–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Tassabehji M, Read AP, Newton VE, Harris R, Balling R, Gruss P, et al. Waardenburg’s syndrome patients have mutations in the human homologue of the Pax-3 paired box gene. Nature. 1992;355:635–6.

    CAS  PubMed  Google Scholar 

  32. Baldwin CT, Hoth CF, Amos JA, da-Silva EO, Milunsky A. An exonic mutation in the HuP2 paired domain gene causes Waardenburg’s syndrome. Nature. 1992;355:637–8.

    CAS  PubMed  Google Scholar 

  33. Read AP, Newton VE. Waardenburg syndrome. J Med Genet 1997;34:656–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Wollnik B, Tukel T, Uyguner O, Ghanbari A, Kayserili H, Emiroglu M, et al. Homozygous and heterozygous inheritance of PAX3 mutations causes different types of Waardenburg syndrome. Am J Med Genet 2003;122a:42–5.

    PubMed  Google Scholar 

  35. Tekin M, Bodurtha JN, Nance WE, Pandya A. Waardenburg syndrome type 3 (Klein-Waardenburg syndrome) segregating with a heterozygous deletion in the paired box domain of PAX3: a simple variant or a true syndrome? Clin Genet 2001;60:301–4.

    CAS  PubMed  Google Scholar 

  36. Sheffer R, Zlotogora J. Autosomal dominant inheritance of Klein-Waardenburg syndrome. Am J Med Genet 1992;42:320–2.

    CAS  PubMed  Google Scholar 

  37. Digeorge AM, Olmsted RW, Harley RD. Waardenburg’s syndrome. A syndrome of heterochromia of the irides, lateral displacement of the medial canthi and lacrimal puncta, congenital deafness, and other characteristic associated defects. J Pediatr 1960;57:649–69.

    CAS  PubMed  Google Scholar 

  38. Gad A, Laurino M, Maravilla KR, Matsushita M, Raskind WH. Sensorineural deafness, distinctive facial features, and abnormal cranial bones: a new variant of Waardenburg syndrome? Am J Med Genet 2008;146a:1880–5.

    CAS  PubMed  Google Scholar 

  39. Corry GN, Raghuram N, Missiaen KK, Hu N, Hendzel MJ, Underhill DA. The PAX3 paired domain and homeodomain function as a single binding module in vivo to regulate subnuclear localization and mobility by a mechanism that requires base-specific recognition. J Mol Biol 2010;402:178–93.

    CAS  PubMed  Google Scholar 

  40. Chi YI. Homeodomain revisited: a lesson from disease-causing mutations. Hum Genet 2005;116:433–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Birrane G, Soni A, Ladias JA. Structural basis for DNA recognition by the human PAX3 homeodomain. Biochemistry. 2009;48:1148–55.

    CAS  PubMed  Google Scholar 

  42. Corry GN, Hendzel MJ, Underhill DA. Subnuclear localization and mobility are key indicators of PAX3 dysfunction in Waardenburg syndrome. Hum Mol Genet 2008;17:1825–37.

    CAS  PubMed  Google Scholar 

  43. Chalepakis G, Goulding M, Read A, Strachan T, Gruss P. Molecular basis of splotch and Waardenburg Pax-3 mutations. Proc Natl Acad Sci USA 1994;91:3685–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Freyer L, Aggarwal V, Morrow BE. Dual embryonic origin of the mammalian otic vesicle forming the inner ear. Development 2011;138:5403–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Kim H, Ankamreddy H, Lee DJ, Kong KA, Ko HW, Kim MH, et al. Pax3 function is required specifically for inner ear structures with melanogenic fates. Biochem Biophys Res Commun 2014;445:608–14.

    CAS  PubMed  Google Scholar 

  46. Ma X, Li H, Chen Y, Yang J, Chen H, Arnheiter H, et al. The transcription factor MITF in RPE function and dysfunction. Prog Retinal Eye Res 2019;73:100766.

    CAS  Google Scholar 

  47. Thomas AJ, Erickson CA. FOXD3 regulates the lineage switch between neural crest-derived glial cells and pigment cells by repressing MITF through a non-canonical mechanism. Development 2009;136:1849–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Steingrímsson E. Interpretation of complex phenotypes: lessons from the Mitf gene. Pigment Cell Melanoma Res 2010;23:736–40.

    PubMed  Google Scholar 

  49. Zhang H, Chen H, Luo H, An J, Sun L, Mei L, et al. Functional analysis of Waardenburg syndrome-associated PAX3 and SOX10 mutations: report of a dominant-negative SOX10 mutation in Waardenburg syndrome type II. Hum Genet 2012;131:491–503.

    CAS  PubMed  Google Scholar 

  50. Tassabehji M, Newton VE, Read AP. Waardenburg syndrome type 2 caused by mutations in the human microphthalmia (MITF) gene. Nat Genet 1994;8:251–5.

    CAS  PubMed  Google Scholar 

  51. Pogenberg V, Ogmundsdóttir MH, Bergsteinsdóttir K, Schepsky A, Phung B, Deineko V. et al.Restricted leucine zipper dimerization and specificity of DNA recognition of the melanocyte master regulator MITF.Genes Dev. 2012;26:2647–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Takeda K, Takemoto C, Kobayashi I, Watanabe A, Nobukuni Y, Fisher DE, et al. Ser298 of MITF, a mutation site in Waardenburg syndrome type 2, is a phosphorylation site with functional significance. Hum Mol Genet 2000;9:125–32.

    CAS  PubMed  Google Scholar 

  53. Takebayashi K, Chida K, Tsukamoto I, Morii E, Munakata H, Arnheiter H, et al. The recessive phenotype displayed by a dominant negative microphthalmia-associated transcription factor mutant is a result of impaired nucleation potential. Mol Cell Biol 1996;16:1203–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang H, Luo H, Chen H, Mei L, He C, Jiang L, et al. Functional analysis of MITF gene mutations associated with Waardenburg syndrome type 2. FEBS Lett 2012;586:4126–31.

    CAS  PubMed  Google Scholar 

  55. Tachibana M, Perez-Jurado LA, Nakayama A, Hodgkinson CA, Li X, Schneider M, et al. Cloning of MITF, the human homolog of the mouse microphthalmia gene and assignment to chromosome 3p14.1-p12.3. Hum Mol Genet 1994;3:553–7.

    CAS  PubMed  Google Scholar 

  56. Steingrímsson E, Copeland NG, Jenkins NA. Melanocytes and the microphthalmia transcription factor network. Annu Rev Genet 2004;38:365–411.

    PubMed  Google Scholar 

  57. Hou L, Pavan WJ. Transcriptional and signaling regulation in neural crest stem cell-derived melanocyte development: do all roads lead to Mitf? Cell Res 2008;18:1163–76.

    CAS  PubMed  Google Scholar 

  58. Hai T, Guo W, Yao J, Cao C, Luo A, Qi M, et al. Creation of miniature pig model of human Waardenburg syndrome type 2A by ENU mutagenesis. Hum Genet 2017;136:1463–75.

    CAS  PubMed  Google Scholar 

  59. Chen W, Hao QQ, Ren LL, Ren W, Lin HS, Guo WW, et al. Cochlear morphology in the developing inner ear of the porcine model of spontaneous deafness. BMC Neurosci 2018;19:28.

    PubMed  PubMed Central  Google Scholar 

  60. Du Y, Ren LL, Jiang QQ, Liu XJ, Ji F, Zhang Y, et al. Degeneration of saccular hair cells caused by MITF gene mutation. Neural Dev 2019;14:1.

    PubMed  PubMed Central  Google Scholar 

  61. Harris ML, Baxter LL, Loftus SK, Pavan WJ. Sox proteins in melanocyte development and melanoma. Pigment Cell Melanoma Res 2010;23:496–513.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Haldin CE, LaBonne C. SoxE factors as multifunctional neural crest regulatory factors. Int J Biochem Cell Biol 2010;42:441–4.

    CAS  PubMed  Google Scholar 

  63. Wegner M. All purpose Sox: the many roles of Sox proteins in gene expression. Int J Biochem Cell Biol 2010;42:381–90.

    CAS  PubMed  Google Scholar 

  64. Inoue K, Khajavi M, Ohyama T, Hirabayashi S, Wilson J, Reggin JD, et al. Molecular mechanism for distinct neurological phenotypes conveyed by allelic truncating mutations. Nat Genet 2004;36:361–9.

    CAS  PubMed  Google Scholar 

  65. Pingault V, Guiochon-Mantel A, Bondurand N, Faure C, Lacroix C, Lyonnet S, et al. Peripheral neuropathy with hypomyelination, chronic intestinal pseudo-obstruction and deafness: a developmental “neural crest syndrome” related to a SOX10 mutation. Ann Neurol 2000;48:671–6.

    CAS  PubMed  Google Scholar 

  66. Yu X, Lin Y, Wu H. Targeted next-generation sequencing identifies separate causes of hearing loss in one deaf family and variable clinical manifestations for the p.R161C mutation in SOX10. Neural Plastic 2020;2020:8860837.

    Google Scholar 

  67. Sham MH, Lui VC, Chen BL, Fu M, Tam PK. Novel mutations of SOX10 suggest a dominant negative role in Waardenburg-Shah syndrome. J Med Genet 2001;38:E30.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Southard-Smith EM, Kos L, Pavan WJ. Sox10 mutation disrupts neural crest development in Dom Hirschsprung mouse model. Nat Genet 1998;18:60–4.

    CAS  PubMed  Google Scholar 

  69. Herbarth B, Pingault V, Bondurand N, Kuhlbrodt K, Hermans-Borgmeyer I, Puliti A, et al. Mutation of the Sry-related Sox10 gene in Dominant megacolon, a mouse model for human Hirschsprung disease. Proc Natl Acad Sci USA 1998;95:5161–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Potterf SB, Mollaaghababa R, Hou L, Southard-Smith EM, Hornyak TJ, Arnheiter H, et al. Analysis of SOX10 function in neural crest-derived melanocyte development: SOX10-dependent transcriptional control of dopachrome tautomerase. Dev Biol 2001;237:245–57.

    CAS  PubMed  Google Scholar 

  71. Watanabe K, Takeda K, Katori Y, Ikeda K, Oshima T, Yasumoto K, et al. Expression of the Sox10 gene during mouse inner ear development. Brain Res Mol Brain Res 2000;84:141–5.

    CAS  PubMed  Google Scholar 

  72. Hao X, Xing Y, Moore MW, Zhang J, Han D, Schulte BA, et al. Sox10 expressing cells in the lateral wall of the aged mouse and human cochlea. PloS ONE 2014;9:e97389.

    PubMed  PubMed Central  Google Scholar 

  73. Mao Y, Reiprich S, Wegner M, Fritzsch B. Targeted deletion of Sox10 by Wnt1-cre defects neuronal migration and projection in the mouse inner ear. PloS ONE 2014;9:e94580.

    PubMed  PubMed Central  Google Scholar 

  74. Kurihara H, Kurihara Y, Nagai R, Yazaki Y. Endothelin and neural crest development. Cell Mol Biol 1999;45:639–51.

    CAS  PubMed  Google Scholar 

  75. Bondurand N, Dufour S, Pingault V. News from the endothelin-3/EDNRB signaling pathway: Role during enteric nervous system development and involvement in neural crest-associated disorders. Dev Biol 2018;444:S156–s69.

    CAS  PubMed  Google Scholar 

  76. Amiel J, Attié T, Jan D, Pelet A, Edery P, Bidaud C, et al. Heterozygous endothelin receptor B (EDNRB) mutations in isolated Hirschsprung disease. Hum Mol Genet 1996;5:355–7.

    CAS  PubMed  Google Scholar 

  77. Issa S, Bondurand N, Faubert E, Poisson S, Lecerf L, Nitschke P, et al. EDNRB mutations cause Waardenburg syndrome type II in the heterozygous state. Hum Mutat 2017;38:581–93.

    CAS  PubMed  Google Scholar 

  78. Verheij JB, Kunze J, Osinga J, van Essen AJ, Hofstra RM. ABCD syndrome is caused by a homozygous mutation in the EDNRB gene. Am J Med Genet 2002;108:223–5.

    PubMed  Google Scholar 

  79. Baynash AG, Hosoda K, Giaid A, Richardson JA, Emoto N, Hammer RE, et al. Interaction of endothelin-3 with endothelin-B receptor is essential for development of epidermal melanocytes and enteric neurons. Cell. 1994;79:1277–85.

    CAS  PubMed  Google Scholar 

  80. Matsushima Y, Shinkai Y, Kobayashi Y, Sakamoto M, Kunieda T, Tachibana M. A mouse model of Waardenburg syndrome type 4 with a new spontaneous mutation of the endothelin-B receptor gene. Mammalian Genome 2002;13:30–5.

    CAS  PubMed  Google Scholar 

  81. Tachibana M. Sound needs sound melanocytes to be heard. Pigment Cell Res 1999;12:344–54.

    CAS  PubMed  Google Scholar 

  82. Hemavathy K, Ashraf SI, Ip YT. Snail/slug family of repressors: slowly going into the fast lane of development and cancer. Gene 2000;257:1–12.

    CAS  PubMed  Google Scholar 

  83. Nieto MA. The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol 2002;3:155–66.

    CAS  PubMed  Google Scholar 

  84. Sánchez-Martín M, Pérez-Losada J, Rodríguez-García A, González-Sánchez B, Korf BR, Kuster W, et al. Deletion of the SLUG (SNAI2) gene results in human piebaldism. Am J Med Genet 2003;122a:125–32.

    PubMed  Google Scholar 

  85. Stegmann K, Boecker J, Kosan C, Ermert A, Kunz J, Koch MC. Human transcription factor SLUG: mutation analysis in patients with neural tube defects and identification of a missense mutation (D119E) in the Slug subfamily-defining region. Mutation Res 1999;406:63–9.

    CAS  PubMed  Google Scholar 

  86. Mirhadi S, Spritz RA, Moss C. Does SNAI2 mutation cause human piebaldism and Waardenburg syndrome? Am J Med Genet Part A 2020;182:3074–5.

    CAS  PubMed  Google Scholar 

  87. Jiang R, Lan Y, Norton CR, Sundberg JP, Gridley T. The Slug gene is not essential for mesoderm or neural crest development in mice. Dev Biol 1998;198:277–85.

    CAS  PubMed  Google Scholar 

  88. Cohen N. The totally implantable cochlear implant. Ear Hearing 2007;28:100s–1s.

    PubMed  Google Scholar 

  89. McPhail MJ, Janus JR, Lott DG. Advances in regenerative medicine for otolaryngology/head and neck surgery. BMJ 2020;369:m718.

    PubMed  Google Scholar 

  90. Delmaghani S, El-Amraoui A. Inner ear gene therapies take off: current promises and future challenges. J Clin Med 2020;9:2309.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Tang PC, Hashino E, Nelson RF. Progress in modeling and targeting inner ear disorders with pluripotent stem cells. Stem Cell Rep 2020;14:996–1008.

    CAS  Google Scholar 

  92. Ahmed H, Shubina-Oleinik O, Holt JR. Emerging gene therapies for genetic hearing loss. J Assoc Res Otolaryngol 2017;18:649–70.

    PubMed  PubMed Central  Google Scholar 

  93. He ZH, Zou SY, Li M, Liao FL, Wu X, Sun HY, et al. The nuclear transcription factor FoxG1 affects the sensitivity of mimetic aging hair cells to inflammation by regulating autophagy pathways. Redox Biol 2020;28:101364.

    CAS  PubMed  Google Scholar 

  94. Chai R, Kuo B, Wang T, Liaw EJ, Xia A, Jan TA, et al. Wnt signaling induces proliferation of sensory precursors in the postnatal mouse cochlea. Proc Natl Acad Sci USA 2012;109:8167–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Liu Y, Qi J, Chen X, Tang M, Chu C, Zhu W, et al. Critical role of spectrin in hearing development and deafness. Sci Adv 2019;5:eaav7803.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Wang T, Chai R, Kim GS, Pham N, Jansson L, Nguyen DH, et al. Lgr5+ cells regenerate hair cells via proliferation and direct transdifferentiation in damaged neonatal mouse utricle. Nat Commun 2015;6:6613.

    CAS  PubMed  Google Scholar 

  97. Cheng C, Wang Y, Guo L, Lu X, Zhu W, Muhammad W, et al. Age-related transcriptome changes in Sox2+ supporting cells in the mouse cochlea. Stem Cell Res Therapy 2019;10:365.

    Google Scholar 

  98. Zhang S, Zhang Y, Dong Y, Guo L, Zhang Z, Shao B, et al. Knockdown of Foxg1 in supporting cells increases the trans-differentiation of supporting cells into hair cells in the neonatal mouse cochlea. Cell Mol Life Sci 2020;77:1401–19.

    CAS  PubMed  Google Scholar 

  99. Qi J, Liu Y, Chu C, Chen X, Zhu W, Shu Y, et al. A cytoskeleton structure revealed by super-resolution fluorescence imaging in inner ear hair cells. Cell Discov 2019;5:12.

    PubMed  PubMed Central  Google Scholar 

  100. Ding N, Lee S, Lieber-Kotz M, Yang J, Gao X. Advances in genome editing for genetic hearing loss. Adv Drug Delivery Rev 2020;168:118–33.

    Google Scholar 

  101. Naso MF, Tomkowicz B, Perry WL 3rd, Strohl WR. Adeno-associated virus (AAV) as a vector for gene therapy. BioDrugs 2017;31:317–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Akil O, Dyka F, Calvet C, Emptoz A, Lahlou G, Nouaille S, et al. Dual AAV-mediated gene therapy restores hearing in a DFNB9 mouse model. Proc Natl Acad Sci USA 2019;116:4496–501.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Tan F, Chu C, Qi J, Li W, You D, Li K, et al. AAV-ie enables safe and efficient gene transfer to inner ear cells. Nat Commun 2019;10:3733.

    PubMed  PubMed Central  Google Scholar 

  104. Pan B, Askew C, Galvin A, Heman-Ackah S, Asai Y, Indzhykulian AA, et al. Gene therapy restores auditory and vestibular function in a mouse model of Usher syndrome type 1c. Nat Biotechnol 2017;35:264–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. György B, Meijer EJ, Ivanchenko MV, Tenneson K, Emond F, Hanlon KS, et al. Gene transfer with AAV9-PHP.B rescues hearing in a mouse model of Usher syndrome 3A and transduces hair cells in a non-human primate. Mol Therapy Methods Clin Dev 2019;13:1–13.

    Google Scholar 

  106. Wang Y, Li J, Yao X, Li W, Du H, Tang M, et al. Loss of CIB2 causes profound hearing loss and abolishes mechanoelectrical transduction in Mice. Front Mol Neurosci 2017;10:401.

    PubMed  PubMed Central  Google Scholar 

  107. Zhu C, Cheng C, Wang Y, Muhammad W, Liu S, Zhu W, et al. Loss of ARHGEF6 causes hair cell stereocilia deficits and hearing loss in mice. Front Mol Neurosci 2018;11:362.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Toms M, Pagarkar W, Moosajee M. Usher syndrome: clinical features, molecular genetics and advancing therapeutics. Therap Adv Ophthalmol 2020;12:2515841420952194.

    Google Scholar 

  109. Locher H, de Groot JC, van Iperen L, Huisman MA, Frijns JH, Chuva de Sousa Lopes SM. Development of the stria vascularis and potassium regulation in the human fetal cochlea: Insights into hereditary sensorineural hearing loss. Dev Neurobiol 2015;75:1219–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Zhang L, Wu X, Lin X. Gene therapy for genetic mutations affecting non-sensory cells in the cochlea. Hearing Res 2020;394:107858.

    Google Scholar 

  111. Dupin E, Le, Douarin NM. Development of melanocyte precursors from the vertebrate neural crest. Oncogene. 2003;22:3016–23.

    CAS  PubMed  Google Scholar 

  112. Tachibana M, Kobayashi Y, Matsushima Y. Mouse models for four types of Waardenburg syndrome. Pigment Cell Res 2003;16:448–54.

    CAS  PubMed  Google Scholar 

  113. Moghadasi Boroujeni S, Koontz A, Tseropoulos G, Kerosuo L, Mehrotra P, Bajpai VK, et al. Neural crest stem cells from human epidermis of aged donors maintain their multipotency in vitro and in vivo. Sci Rep 2019;9:9750.

    PubMed  PubMed Central  Google Scholar 

  114. Vandamme N, Berx G. From neural crest cells to melanocytes: cellular plasticity during development and beyond. Cell Mol Life Sci 2019;76:1919–34.

    CAS  PubMed  Google Scholar 

  115. Kimura RS, Schuknecht HF. The ultrastructure of the human stria vascularis. I. Acta Oto-laryngol 1970;69:415–27.

    CAS  Google Scholar 

  116. Kimura RS, Schuknecht HF. The ultrastructure of the human stria vascularis. II. Acta Oto-laryngol 1970;70:301–18.

    CAS  Google Scholar 

  117. Kioussi C, Gross MK, Gruss P. Pax3: a paired domain gene as a regulator in PNS myelination. Neuron. 1995;15:553–62.

    CAS  PubMed  Google Scholar 

  118. Hao QQ, Li L, Chen W, Jiang QQ, Ji F, Sun W, et al. Key genes and pathways associated with inner ear malformation in SOX10 (p.R109W) mutation pigs. Front Mol Neurosci 2018;11:181.

    PubMed  PubMed Central  Google Scholar 

  119. Breuskin I, Bodson M, Thelen N, Thiry M, Borgs L, Nguyen L, et al. Sox10 promotes the survival of cochlear progenitors during the establishment of the organ of Corti. Dev Biol 2009;335:327–39.

    CAS  PubMed  Google Scholar 

  120. Elmaleh-Bergès M, Baumann C, Noël-Pétroff N, Sekkal A, Couloigner V, Devriendt K, et al. Spectrum of temporal bone abnormalities in patients with Waardenburg syndrome and SOX10 mutations. AJNR Am J Neuroradiol 2013;34:1257–63.

    PubMed  PubMed Central  Google Scholar 

  121. Liu H, Li Y, Chen L, Zhang Q, Pan N, Nichols DH, et al. Organ of corti and stria vascularis: Is there an Interdependence for Survival? PloS ONE 2016;11:e0168953.

    PubMed  PubMed Central  Google Scholar 

  122. Eckrich T, Blum K, Milenkovic I, Engel J. Fast Ca(2+) transients of inner hair cells arise coupled and uncoupled to Ca(2+) waves of inner supporting cells in the developing mouse cochlea. Front Mol Neurosci 2018;11:264.

    PubMed  PubMed Central  Google Scholar 

  123. Hai T, Cao C, Shang H, Guo W, Mu Y, Yang S, et al. Pilot study of large-scale production of mutant pigs by ENU mutagenesis. eLife. 2017;6:e26248.

    PubMed  PubMed Central  Google Scholar 

  124. Hornyak TJ, Hayes DJ, Chiu LY, Ziff EB. Transcription factors in melanocyte development: distinct roles for Pax-3 and Mitf. Mech Dev 2001;101:47–59.

    CAS  PubMed  Google Scholar 

  125. Pingault V, Faubert E, Baral V, Gherbi S, Loundon N, Couloigner V, et al. SOX10 mutations mimic isolated hearing loss. Clin Genetics. 2015;88:352–9.

    CAS  Google Scholar 

  126. Wang L, Jiang H, Brigande JV. Gene transfer to the developing mouse inner ear by in vivo electroporation. J Visual Exp. 2012:e3653.

  127. Hastings ML, Jones TA.Antisense oligonucleotides for the treatment of inner ear dysfunction.NeuroTherapeutics.2019;16:348–59.

    PubMed  PubMed Central  Google Scholar 

  128. Dulon D, Papal S, Patni P, Cortese M, Vincent PF, Tertrais M, et al. Clarin-1 gene transfer rescues auditory synaptopathy in model of Usher syndrome. J Clin Investig 2018;128:3382–401.

    PubMed  PubMed Central  Google Scholar 

  129. Nist-Lund CA, Pan B, Patterson A, Asai Y, Chen T, Zhou W, et al. Improved TMC1 gene therapy restores hearing and balance in mice with genetic inner ear disorders. Nat Commun 2019;10:236.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Geng R, Omar A, Gopal SR, Chen DH, Stepanyan R, Basch ML, et al. Modeling and preventing progressive hearing loss in Usher syndrome III. Sci Rep 2017;7:13480.

    PubMed  PubMed Central  Google Scholar 

  131. Seal RP, Akil O, Yi E, Weber CM, Grant L, Yoo J, et al. Sensorineural deafness and seizures in mice lacking vesicular glutamate transporter 3. Neuron. 2008;57:263–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Askew C, Chien WW. Adeno-associated virus gene replacement for recessive inner ear dysfunction: Progress and challenges. Hearing Res 2020;394:107947.

    Google Scholar 

  133. Khan TA, Safdar CA, Zameer S, Khushdil A. Waardenburg-Shah syndrome (WS type IV): a rare case from Pakistan. Perioperative Med 2020;9:4.

    Google Scholar 

  134. Thongpradit S, Jinawath N, Javed A, Noojarern S, Khongkraparn A, Tim-Aroon T, et al. MITF variants cause nonsyndromic sensorineural hearing loss with autosomal recessive inheritance. Sci Rep 2020;10:12712.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Ahmad S, Tang W, Chang Q, Qu Y, Hibshman J, Li Y, et al. Restoration of connexin26 protein level in the cochlea completely rescues hearing in a mouse model of human connexin30-linked deafness. Proc Natl Acad Sci USA 2007;104:1337–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Crispino G, Galindo Ramirez F, Campioni M, Zorzi V, Praetorius M, Di Pasquale G, et al. In vivo genetic manipulation of inner ear connexin expression by bovine adeno-associated viral vectors. Sci Rep 2017;7:6567.

    PubMed  PubMed Central  Google Scholar 

  137. Sánchez-Mejías A, Watanabe Y, Fernández RM, López-Alonso M, Antiñolo G, Bondurand N, et al. Involvement of SOX10 in the pathogenesis of Hirschsprung disease: report of a truncating mutation in an isolated patient. J Mol Med 2010;88:507–14.

    PubMed  Google Scholar 

  138. Hong CS, Saint-Jeannet JP. Sox proteins and neural crest development. Semin Cell Dev Biol 2005;16:694–703.

    CAS  PubMed  Google Scholar 

  139. Maka M, Stolt CC, Wegner M. Identification of Sox8 as a modifier gene in a mouse model of Hirschsprung disease reveals underlying molecular defect. Dev Biol 2005;277:155–69.

    CAS  PubMed  Google Scholar 

  140. Stolt CC, Lommes P, Hillgärtner S, Wegner M. The transcription factor Sox5 modulates Sox10 function during melanocyte development. Nucleic Acids Res 2008;36:5427–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Jay P, Sahly I, Gozé C, Taviaux S, Poulat F, Couly G, et al. SOX22 is a new member of the SOX gene family, mainly expressed in human nervous tissue. Hum Mol Genet 1997;6:1069–77.

    CAS  PubMed  Google Scholar 

  142. Rudnicki A, Avraham KB. microRNAs: the art of silencing in the ear. EMBO Mol Med 2012;4:849–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Akutsu Y, Shirai K, Takei A, Goto Y, Aoyama T, Watanabe A, et al. A patient with peripheral demyelinating neuropathy, central dysmyelinating leukodystrophy, Waardenburg syndrome, and severe hypoganglionosis associated with a novel SOX10 mutation. Am J Med Genet 2018;176:1195–9.

    CAS  PubMed  Google Scholar 

  144. Inoue K, Tanabe Y, Lupski JR. Myelin deficiencies in both the central and the peripheral nervous systems associated with a SOX10 mutation. Ann Neurol 1999;46:313–8.

    CAS  PubMed  Google Scholar 

  145. Touraine RL, Attié-Bitach T, Manceau E, Korsch E, Sarda P, Pingault V, et al. Neurological phenotype in Waardenburg syndrome type 4 correlates with novel SOX10 truncating mutations and expression in developing brain. Am J Hum Genet 2000;66:1496–503.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Lentz JJ, Jodelka FM, Hinrich AJ, McCaffrey KE, Farris HE, Spalitta MJ, et al. Rescue of hearing and vestibular function by antisense oligonucleotides in a mouse model of human deafness. Nat Med 2013;19:345–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Maeda Y, Sheffield AM, Smith RJH. Therapeutic regulation of gene expression in the inner ear using RNA interference. Adv Oto-rhino-laryngol 2009;66:13–36.

    CAS  Google Scholar 

  148. Shibata SB, Ranum PT, Moteki H, Pan B, Goodwin AT, Goodman SS, et al. RNA interference prevents autosomal-dominant hearing loss. Am J Hum Genet 2016;98:1101–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Maeda Y, Fukushima K, Nishizaki K, Smith RJ. In vitro and in vivo suppression of GJB2 expression by RNA interference. Hum Mol Genet 2005;14:1641–50.

    CAS  PubMed  Google Scholar 

  150. Yoshimura H, Shibata SB, Ranum PT, Moteki H, Smith RJH. Targeted allele suppression prevents progressive hearing loss in the mature murine model of human TMC1 deafness. Mol Therapy 2019;27:681–90.

    CAS  Google Scholar 

  151. Carroll D. Progress and prospects: zinc-finger nucleases as gene therapy agents. Gene Therapy. 2008;15:1463–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Campbell JM, Hartjes KA, Nelson TJ, Xu X, Ekker SC. New and TALENted genome engineering toolbox. Circ Res 2013;113:571–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Salsman J, Dellaire G. Precision genome editing in the CRISPR era. Biochem Cell Biol 2017;95:187–201.

    CAS  PubMed  Google Scholar 

  154. Liu C, Zhang L, Liu H, Cheng K. Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications. J Control Release 2017;266:17–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Karimian A, Azizian K, Parsian H, Rafieian S, Shafiei-Irannejad V, Kheyrollah M, et al. CRISPR/Cas9 technology as a potent molecular tool for gene therapy. J Cell Physiol 2019;234:12267–77.

    CAS  PubMed  Google Scholar 

  156. Cox DB, Platt RJ, Zhang F. Therapeutic genome editing: prospects and challenges. Nat Med 2015;21:121–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Gao X, Tao Y, Lamas V, Huang M, Yeh WH, Pan B, et al. Treatment of autosomal dominant hearing loss by in vivo delivery of genome editing agents. Nature. 2018;553:217–21.

    CAS  PubMed  Google Scholar 

  158. György B, Nist-Lund C, Pan B, Asai Y, Karavitaki KD, Kleinstiver BP, et al. Allele-specific gene editing prevents deafness in a model of dominant progressive hearing loss. Nat Med 2019;25:1123–30.

    PubMed  PubMed Central  Google Scholar 

  159. Chen JS, Dagdas YS, Kleinstiver BP, Welch MM, Sousa AA, Harrington LB, et al. Enhanced proofreading governs CRISPR-Cas9 targeting accuracy. Nature. 2017;550:407–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Komor AC, Badran AH, Liu DR. Editing the genome without double-stranded DNA breaks. ACS Chem Biol 2018;13:383–8.

    CAS  PubMed  Google Scholar 

  161. Gao G, Vandenberghe LH, Wilson JM. New recombinant serotypes of AAV vectors. Curr Gene Ther 2005;5:285–97.

    CAS  PubMed  Google Scholar 

  162. Schmidt M, Voutetakis A, Afione S, Zheng C, Mandikian D, Chiorini JA. Adeno-associated virus type 12 (AAV12): a novel AAV serotype with sialic acid- and heparan sulfate proteoglycan-independent transduction activity. J Virol 2008;82:1399–406.

    CAS  PubMed  Google Scholar 

  163. Akil O, Seal RP, Burke K, Wang C, Alemi A, During M, et al. Restoration of hearing in the VGLUT3 knockout mouse using virally mediated gene therapy. Neuron. 2012;75:283–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Chan KY, Jang MJ, Yoo BB, Greenbaum A, Ravi N, Wu WL, et al. Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems. Nat Neurosci 2017;20:1172–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Isgrig K, McDougald DS, Zhu J, Wang HJ, Bennett J, Chien WW. AAV2.7m8 is a powerful viral vector for inner ear gene therapy. Nat Commun 2019;10:427.

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Yu Q, Wang Y, Chang Q, Wang J, Gong S, Li H, et al. Virally expressed connexin26 restores gap junction function in the cochlea of conditional Gjb2 knockout mice. Gene Therapy 2014;21:71–80.

    CAS  PubMed  Google Scholar 

  167. Fukui H, Raphael Y. Gene therapy for the inner ear. Hearing Res 2013;297:99–105.

    CAS  Google Scholar 

  168. Wang Y, Sun Y, Chang Q, Ahmad S, Zhou B, Kim Y, et al. Early postnatal virus inoculation into the scala media achieved extensive expression of exogenous green fluorescent protein in the inner ear and preserved auditory brainstem response thresholds. J Gene Med 2013;15:123–33.

    CAS  PubMed  Google Scholar 

  169. Chang Q, Wang J, Li Q, Kim Y, Zhou B, Wang Y, et al. Virally mediated Kcnq1 gene replacement therapy in the immature scala media restores hearing in a mouse model of human Jervell and Lange-Nielsen deafness syndrome. EMBO Mol Med 2015;7:1077–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Dai C, Lehar M, Sun DQ, Rvt LS, Carey JP, MacLachlan T, et al. Rhesus cochlear and vestibular functions are preserved after inner ear injection of saline volume sufficient for gene therapy selivery. J Assoc Res Otolaryngol 2017;18:601–17.

    PubMed  PubMed Central  Google Scholar 

  171. Yin H, Kanasty RL, Eltoukhy AA, Vegas AJ, Dorkin JR, Anderson DG. Non-viral vectors for gene-based therapy. Nat Rev Genet 2014;15:541–55.

    CAS  PubMed  Google Scholar 

  172. Foldvari M, Chen DW, Nafissi N, Calderon D, Narsineni L, Rafiee A. Non-viral gene therapy: gains and challenges of non-invasive administration methods. J Control Release 2016;240:165–90.

    CAS  PubMed  Google Scholar 

  173. Zhu BZ, Saleh J, Isgrig KT, Cunningham LL, Chien WW. Hearing loss after round window surgery in mice is due to middle ear effusion. Audiol Neuro-otol 2016;21:356–64.

    CAS  Google Scholar 

  174. Xia L, Yin S, Wang J. Inner ear gene transfection in neonatal mice using adeno-associated viral vector: a comparison of two approaches. PloS ONE 2012;7:e43218.

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Chien WW, McDougald DS, Roy S, Fitzgerald TS, Cunningham LL. Cochlear gene transfer mediated by adeno-associated virus: comparison of two surgical approaches. Laryngoscope 2015;125:2557–64.

    CAS  PubMed  Google Scholar 

  176. Suzuki J, Hashimoto K, Xiao R, Vandenberghe LH, Liberman MC. Cochlear gene therapy with ancestral AAV in adult mice: complete transduction of inner hair cells without cochlear dysfunction. Sci Rep 2017;7:45524.

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Zhang S, Qiang R, Dong Y, Zhang Y, Chen Y, Zhou H, et al. Hair cell regeneration from inner ear progenitors in the mammalian cochlea. Am J Stem Cells 2020;9:25–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Ding J, Tang Z, Chen J, Shi H, Chen J, Wang C, et al. Induction of differentiation of human embryonic stem cells into functional hair-cell-like cells in the absence of stromal cells. Int J Biochem Cell Biol. 2016;81:208–22.

    CAS  PubMed  Google Scholar 

  179. Matsuoka AJ, Morrissey ZD, Zhang C, Homma K, Belmadani A, Miller CA, et al. Directed differentiation of human embryonic stem cells toward placode-derived spiral ganglion-like sensory neurons. Stem Cells Transl Med 2017;6:923–36.

    CAS  PubMed  Google Scholar 

  180. Lalu MM, McIntyre L, Pugliese C, Fergusson D, Winston BW, Marshall JC, et al. Safety of cell therapy with mesenchymal stromal cells (SafeCell): a systematic review and meta-analysis of clinical trials. PloS ONE 2012;7:e47559.

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Kanzaki S, Toyoda M, Umezawa A, Ogawa K. Application of mesenchymal stem cell therapy and inner ear regeneration for hearing loss: a review. Int J Mol Sci 2020;21:5764.

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Parker MA, Cotanche DA. The potential use of stem cells for cochlear repair. Audiol Neuro-otol 2004;9:72–80.

    Google Scholar 

  183. Hu Z, Andäng M, Ni D, Ulfendahl M. Neural cograft stimulates the survival and differentiation of embryonic stem cells in the adult mammalian auditory system. Brain Res 2005;1051:137–44.

    CAS  PubMed  Google Scholar 

  184. Li H, Corrales CE, Edge A, Heller S. Stem cells as therapy for hearing loss. Trends Mol Med 2004;10:309–15.

    CAS  PubMed  Google Scholar 

  185. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–72.

    CAS  PubMed  Google Scholar 

  186. Czajkowski A, Mounier A, Delacroix L, Malgrange B. Pluripotent stem cell-derived cochlear cells: a challenge in constant progress. Cell Mol Life Sci 2019;76:627–35.

    CAS  PubMed  Google Scholar 

  187. Tang ZH, Chen JR, Zheng J, Shi HS, Ding J, Qian XD, et al. Genetic correction of induced pluripotent stem cells from a deaf patient With MYO7A mutation results in morphologic and functional recovery of the derived hair cell-like cells. Stem Cells Transl Med 2016;5:561–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Chen JR, Tang ZH, Zheng J, Shi HS, Ding J, Qian XD, et al. Effects of genetic correction on the differentiation of hair cell-like cells from iPSCs with MYO15A mutation. Cell Death Differ 2016;23:1347–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Chen X, Yang Y, Luo L, Xu L, Liu B, Jiang G, et al. An iPSC line (TYWHSTi002-A) derived from a patient with Pendred syndrome caused by compound heterozygous mutations in the SLC26A4 gene. Stem Cell Res 2020;47:101919.

    CAS  PubMed  Google Scholar 

  190. Wang P, Wang J, Xing Y, Wang H, Yu D, Feng Y, et al. Establishment of an iPSC line (JTUi002-A) from a patient with Waardenburg syndrome caused by a SOX10 mutation and carrying a GJB2 mutation. Stem Cell Res 2020;44:101756.

    CAS  PubMed  Google Scholar 

  191. Banal C, Quelennec E, Bertani-Torres W, Gacem N, Amiel J, Marlin S, et al. Generation of an iPSC line (IMAGINi022-A) from a patient carrying a SOX10 missense mutation and presenting with deafness, depigmentation and progressive neurological impairment. Stem Cell Res 2020;48:101936.

    CAS  PubMed  Google Scholar 

  192. Liu LP, Li YM, Guo NN, Li S, Ma X, Zhang YX, et al. Therapeutic potential of patient iPSC-derived iMelanocytes in autologous transplantation. Cell Rep 2019;27:455–66.e5.

    CAS  PubMed  Google Scholar 

  193. Hosaka C, Kunisada M, Koyanagi-Aoi M, Masaki T, Takemori C, Taniguchi-Ikeda M, et al. Induced pluripotent stem cell-derived melanocyte precursor cells undergoing differentiation into melanocytes. Pigment Cell Melanoma Res 2019;32:623–33.

    CAS  PubMed  Google Scholar 

  194. Barrell WB, Griffin JN, Harvey JL, Danovi D, Beales P, Grigoriadis AE, et al. Induction of neural crest stem cells from Bardet-Biedl syndrome patient derived hiPSCs. Front Mol Neurosci 2019;12:139.

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Lee AS, Tang C, Rao MS, Weissman IL, Wu JC. Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies. Nat Med 2013;19:998–1004.

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Okano T, Kelley MW. Stem cell therapy for the inner ear: recent advances and future directions. Trends Amplification 2012;16:4–18.

    Google Scholar 

  197. Hu Z, Ulfendahl M. The potential of stem cells for the restoration of auditory function in humans. Regenerative Med 2013;8:309–18.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No.81700923,81771023 and 81873705). We also thank LetPub for its linguistic assistance during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lingyun Mei or Yong Feng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Jian Song & Sida Huang are co-first authors

The original online version of this article was revised: Supplementary material was missing.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, S., Song, J., He, C. et al. Genetic insights, disease mechanisms, and biological therapeutics for Waardenburg syndrome. Gene Ther 29, 479–497 (2022). https://doi.org/10.1038/s41434-021-00240-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41434-021-00240-2

This article is cited by

Search

Quick links